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Lecture 4

Concentration of Random Variables

A fundamental phenomenon in probability theory is that while a single random experiment
is unpredictable, the average of many independent experiments is remarkably stable. As we
gather more data, the empirical average of our observations tends to “concentrate” around
the true underlying expectation. This behavior allows us to make rigorous predictions about
large-scale systems even when individual components are uncertain.

In this lecture, we explore this phenomena. We introduce the quantitative tools used to
measure this concentration, known as tail bounds. We will use the problem of estimating a
coin’s bias as a running example to illustrate how these tools help us determine the amount
of data needed to reach a specific level of confidence.

Running Example: Estimating Coin Bias

Suppose we have a coin with an unknown probability p = Pr[[[head]]]. We wish to design an
(ϵ, δ)-tester to determine if the coin is fair. Specifically, with probability at least 1− δ:

• If p = 1
2
, the algorithm outputs accept.

• If |p− 1
2
| > ϵ, the algorithm outputs reject.

The algorithm is simple: flip the coin m times, and let X denote the number of observed
heads. We compute the empirical mean p̂ = X

m
and return accept if

∣∣p̂ − 1
2

∣∣ ≤ t, and
reject otherwise. The central question is how to choose the parameters m and t so that the
algorithm satisfies the desired guarantees for given δ and ϵ.

A reasonable choice for t is ϵ/2. The reason is that if we can estimate p with error at most
|p̂ − p| ≤ ϵ/2, then the two cases are fully separated. When p1 = 1

2
, the empirical mean p̂1

lies in the interval [
1−ϵ
2
, 1+ϵ

2

]
,

and deviations within this range can be attributed to sampling noise. In contrast, when
|p2 − 1

2
| > ϵ, the empirical mean is centered outside this interval. One can distinguish these

two cases, by looking at where p̂ lands and decide to accept or reject.
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p̂
p1 = 1

2
1−ϵ
2

1+ϵ
2

ϵ/2

p2 > 1
2

+ ϵp− ϵ
2

p+ ϵ
2

ϵ/2

Separation exists because p2 >
1
2 + ϵ.

range of p̂1 range of p̂2

This reduces to understanding how well X
m

concentrates around p, and how large m must be
to ensure this concentration.

Asymptotic Results

Before continuing, it is instructive to contrast concentration inequalities with two classical
limit theorems: the Law of Large Numbers (LLN) and the Central Limit Theorem (CLT).
These results explain why empirical averages stabilize, while concentration inequalities quan-
tify how fast this stabilization occurs for a finite number of samples.

Law of Large Numbers (LLN). Let X1, X2, . . . be i.i.d. random variables with mean µ,
and let

Xm =
1

m

m∑
i=1

Xi.

The (weak) Law of Large Numbers states that for every ϵ > 0,

Pr
[[[
|Xm − µ| > ϵ

]]]
−−−→
m→∞

0.

This theorem establishes convergence in probability of the empirical mean to the true mean.
However, it does not provide a quantitative bound on how large m must be to achieve a
given confidence level δ, nor does it describe the rate at which the probability decays.

The Law of Large Numbers (LLN)

The Law of Large Numbers is the most basic form of concentration phenomenon. It de-
scribes the behavior of the sample average of a large number of independent and identically
distributed (i.i.d.) random variables. It provides the mathematical justification for the
“average” outcome in long-term experiments.

The Weak Law of Large Numbers states that the sample average converges in probability
to the expected value. Let X1, X2, . . . , Xm be i.i.d. random variables with µ := E[[[Xi ]]]. Let
X̄m denote the empirical mean of the samples 1

m

∑m
i=1 Xi. For any ϵ > 0:

lim
m→∞

Pr
[[[
|X̄m − µ| > ϵ

]]]
= 0 .

That is, for a sufficiently large number of samples m, the probability that the average X̄m
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is far from µ is arbitrarily small.

The Strong Law of Large Numbers is a more powerful statement, asserting that the sample
average converges almost surely to the expected value. Under the same conditions as
above:

Pr
[[[
lim

m→∞
X̄m = µ

]]]
= 1 .

This means that as the number of samplesm goes to infinity, the sequence of sample averages
will converge to µ with probability 1.

The Weak Law of Large Numbers guarantees that for any small ϵ, δ > 0 we can pick a specific
m0, for which the probability that your average of m ≥ m0 samples is ϵ-far from the mean is
at most δ; however, it stays silent on whether that average might wander away again if you
were to keep sampling. In contrast, the Strong Law of Large Numbers makes a much more
powerful claim about the entire history of the process, asserting that with probability 1, the
running average will eventually enter a small window around the mean and stay there for
all eternity. While the Weak Law says that “failures” are unlikely at any given large m, the
Strong Law ensures that the total number of times the average deviates significantly from
the mean is finite, meaning that in the infinite limit, the long-run behavior of the average
becomes locked near the mean.

Central Limit Theorem (CLT). Under mild conditions (e.g. finite variance σ2 =
Var[[[X ]]]), the CLT refines this picture by describing the distributional behavior of the error.
CLT states that if you take sufficiently large random samples from any population (regardless
of its distribution), the distribution of the sample means will follow a normal distribution.
More formally, we have

√
m (Xm − µ)

in distribution−−−−−−−−→ N (0, σ2).

Equivalently, we have

lim
m→∞

Pr
[[[√

m (Xm − µ) ≤ t
]]]
= Φ

(
t

σ

)
, ∀ t ∈ R≥0.

where Φ(z) is the standard normal cdf evaluated at z.

While the Gaussian approximation provided by the central limit theorem is often accurate
in practice (for example, when m ≥ 50), it is fundamentally asymptotic. In particular, it
does not yield exact finite-sample guarantees, and it provides no explicit control over how
the quality of the approximation depends on m.

As an illustration, in high-dimensional settings the quantity
∥∥Xm − µ

∥∥
2
need not converge

in the manner suggested by the CLT when the sample size m is too small compared to the
dimension. These phenomenon, however, cannot be deduced from the CLT alone.
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Non-Asymptotic Bounds

Concentration inequalities address this limitation by providing non-asymptotic bounds that
hold for every finite sample size m, rather than describing limiting behavior as m → ∞.
Specifically, they yield bounds of the form

Pr
[[[
|Xm − µ| > ϵ

]]]
≤ f(m, ϵ),

where f(m, ϵ) decays with m. Such bounds offer explicit sample complexity guarantees.
Although they typically require stronger assumptions (e.g., boundedness or sub-Gaussian
tails), they provide uniform high-probability control that is absent from asymptotic results.

To measure how much our empirical average Xm deviates from the mean µ, we start with
basic bounds that require very few assumptions.

Markov’s Inequality: For any non-negative random variable X and a > 0:

Pr[[[X ≥ a]]] ≤ E[[[X ]]]

a

Proof. Let X be a non-negative continuous random variable with density fX , and fix a > 0.
Then

E[[[X ]]] =

∫ ∞

0

x fX(x) dx =

∫ a

0

x fX(x) dx +

∫ ∞

a

x fX(x) dx

≥ 0 +

∫ ∞

a

a fX(x) dx = aPr[[[X ≥ a]]] .

Dividing both sides by a > 0 yields the statement.

Applying this to our coin example, if p ≤ 0.01, then Pr
[[[
X
m

> 0.1
]]]
≤ E[[[X/m ]]]

0.1
≤ 0.1. While

very general, Markov’s inequality is not very meaningful when p is close to one because it is
a relatively loose bound that only uses the first moment, the expected value.

Chebyshev’s Inequality: For a random variable X with finite mean and variance σ2:

Pr[[[ |X − E[[[X ]]]| ≥ kσ ]]] ≤ 1

k2

Proof. Let X be a random variable with finite mean E[[[X ]]] and variance Var[[[X ]]] = σ2 < ∞,
and let t > 0. Apply Markov’s inequality to the non-negative random variable (X−E[[[X ]]])2:

Pr[[[ |X − E[[[X ]]]| ≥ t]]] = Pr
[[[
(X − E[[[X ]]])2 ≥ t2

]]]
≤ E[[[ (X − E[[[X ]]])2 ]]]

t2
=

Var[[[X ]]]

t2
=

σ2

t2
.

Setting t = kσ yields

Pr[[[ |X − E[[[X ]]]| ≥ kσ ]]] ≤ 1

k2
.
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For our coin example, E
[[[
X
m

]]]
= p and Var

[[[
X
m

]]]
= p(1−p)

m
. Substituting into Chebyshev’s

inequality:

Pr
[[[
|X
m
− p| > ϵ

]]]
≤

Var
[[[
X
m

]]]
ϵ2

≤ 1

4mϵ2

To ensure this error is at most δ, we need m ≈ 1
δϵ2

. This captures the correct dependency
on ϵ, but the dependency on δ is quite poor (linear rather than logarithmic).

We already see that Chebyshev’s inequality yields a stronger guarantee than Markov’s in-
equality, as it exploits additional information about the distribution. In particular, it incor-
porates the variance of the random variable (its second moment) whereas Markov’s inequal-
ity relies only on the mean. For the coin example, this additional information comes from
knowing the variance of the empirical mean.

Chernoff Bound: LetX1, . . . , Xm be independent Bernoulli trials. For the empirical mean
Xm, true mean p, and any ϵ ∈ [0, 1], we have:

Pr
[[[
Xm − p > ϵp

]]]
≤ e−mpϵ2/3 and Pr

[[[
p−Xm > ϵp

]]]
≤ e−mpϵ2/2

In the proof of this bound, we use the moment generating function of the random variable.
Such functions provide an even richer description of a random variable, as they encode
all of its moments (when they exist) and therefore capture substantially more information
about the distribution. This additional structure enables the derivation of much sharper
concentration inequalities.

Before proceeding to the proof, we define the moment generating function of a random
variable Z as:

MZ(t) = E
[[[
etZ

]]]
The power of this function lies in its name: it “generates” the moments of the distribution.
By taking the n-th derivative with respect to t and evaluating at t = 0, we recover the n-th
raw moment:

dn

dtn
MZ(t) = E

[[[
ZnetZ

]]]
=⇒ E[[[Zn ]]] =

dn

dtn
MZ(t)

∣∣∣∣
t=0

This encodes the entire distribution’s profile (mean, variance, skewness, etc.) into a single
analytic function, which allows for much sharper tail bounds than those using only the first
or second moments.

Proof of a simplified version. Here, we prove a simplified version of the upper tail
Pr

[[[
Xm − p > ϵp

]]]
≤ e−mpϵ2/4 for ϵ < 0.5 that captures the interesting ideas in the main

proof.

We use the Cramér-Chernoff approach, which is a standard method for proving concentration
bounds in general by relating the tail bound to the moment generating function. Since
Xm = 1

m

∑
Xi, the inequality Xm − p > ϵp can be rewritten in terms of the sum as
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∑
Xi > mp(1 + ϵ). For any t > 0, we multiply by t and take the exponent of both sides:

Pr
[[[
Xm − p > ϵp

]]]
= Pr

[[[
et

∑
Xi > etmp(1+ϵ)

]]]
Note that the equality above is due to the fact that etx is a strictly increasing function. Using
Markov’s inequality on the non-negative exponential term:

Pr
[[[
et

∑
Xi > etmp(1+ϵ)

]]]
≤

E
[[[
et

∑
Xi
]]]

etmp(1+ϵ)

Let’s bound the expected value above. For a binary coin with bias p:

E
[[[
etXi

]]]
= pet(1) + (1− p)et(0) = 1 + p(et − 1)

Using 1+ x ≤ ex, we bound this as E
[[[
etXi

]]]
≤ ep(e

t−1). By independence, the expectation of
the product is the product of expectations. Substituting the above bound back yields:

E
[[[
et

∑
Xi
]]]
=

m∏
i=1

E
[[[
etXi

]]]
≤ emp(et−1)

Our bound becomes:

Pr
[[[
Xm − p > ϵp

]]]
≤ emp(et−1)

etmp(1+ϵ)
= emp(et−1−t(1+ϵ))

Note that the above bound is correct for any t > 0. To obtain the tightest bound, we
aim to minimize the right-hand side for t. Setting t = ln(1 + ϵ) and applying the Taylor
approximation ln(1 + ϵ) ≥ ϵ− ϵ2/2 yields:

Pr
[[[
Xm − p > ϵp

]]]
≤ emp(ϵ−(ϵ−ϵ2/2)·(1+ϵ)) = emp(−ϵ2/2+ϵ3/2) ≤ e−mpϵ2/4

The last inequality holds for ϵ < 1/2.

In our coin example, setting these bounds to be at most δ results in a sample complexity of

m = O
(

log(1/δ)
pϵ2

)
. This represents a significant improvement over Chebyshev’s inequality, as

the required number of samples grows only logarithmically with 1/δ. However, the inverse
dependence on p is problematic as p → 0. This reflects the inherent difficulty of learning
small probabilities: estimating them even up to a constant factor is statistically expensive.
For instance, to distinguish an event that happens once in a billion from one that happens
twice in a billion, one typically requires roughly a billion samples just to observe the event
at all, let alone to estimate its probability accurately.

Hoeffding’s Inequality: A related bound for the sum of independent bounded variables
provides similar exponential concentration, but with an additive error bound. This is espe-
cially useful when p might be too small and hence the Chernoff bound is not useful. Let
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X1, . . . , Xm be independent Bernoulli trials. For the empirical mean Xm, true mean p, and
any ϵ ∈ [0, 1], we have:

Pr
[[[
|Xm − µ| > ϵ

]]]
≤ 2e−2mϵ2

We will skip the proof of this bound here. We will prove it in future lectures, where we will
dive deeper into tail behavior.

For the coin example, this impliesm ≥ 2 ln(2/δ)
ϵ2

is sufficient to guarantee the desired confidence
δ, and this is optimal.
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