
COMP 585 Spring 2026

Probabilistic Toolkit for Learning and Computing Instructor: Maryam Aliakbarpour

January 20, 2026 Scriber: Maryam Aliakbarpour

Lecture 3

Testing Sortedness: General Case

In this lecture, we focus on testing sortedness of general array where the value of each entry
can be an arbitrary number. Unlike the binary case, random sampling does not work for
testing sortedness because the array may contain a small number of local violations while
being globally well ordered. Randomly checking indices is therefore unlikely to hit one of
these violations.

2 5 7 9 12 15 14 18 21 24 28 27 31 35 39 38 43 47

Mostly increasing array with a few hidden local violations

violation violation violation

sample sample sample sample sample

Figure 1: A few local violations can be hidden inside an otherwise increasing global trend.
Randomly sampled indices may miss the bad adjacencies unless we sample many locations
or search large neighborhoods.

One might try to fix this by sampling a random index and then searching for violations in
its vicinity, but this raises two problems: we do not know how large the vicinity must be,
and we still need to sample enough locations to ensure the global order is correct. Searching
many random locations with large neighborhoods quickly leads to a suboptimal algorithm.

A different approach is to exploit other structural properties of sorted (or nearly sorted)
arrays. It is well known that binary search is designed to work on sorted arrays. In particular,
if an array A is sorted, then for every index i, running binary search on value A[i] returns
exactly i. In this lecture, we show the contrapositive idea: if binary search fails at many
locations, then the array must be far from being sorted. Our goal is to make this intuition
precise and turn it into a tester.

For simplicity, assume without loss of generality that all values in A are distinct (ties can be
broken lexicographically by index). We use the standard recursive binary search procedure,
even though the array may not be sorted.

1

COMP 585 Lecture 3 Spring 2026

Distance to sortedness: Similar to the binary case, for arrays A,A′ of length n, define
the normalized Hamming distance

dist(A,A′) =
1

n
|{k ∈ [n] : A[k] ̸= A′[k]}| .

Let P denote the set of sorted arrays of length n. The distance of A from being sorted is

dist(A,P) = min
A′∈P

dist(A,A′).

We say that A is ϵ-far from sortedness if dist(A,P) ≥ ϵ.

Background: Binary Search

We begin by recalling the standard binary search algorithm. Binary search is typically used
to locate a target value, namely x, in a sorted array by repeatedly comparing against the
middle element and discarding half of the search interval.

Algorithm 1 BinarySearch(A, x, ℓ, r)

1: Input: Array A, target value x, interval [ℓ, r)
2: while ℓ < r do
3: m← ⌊(ℓ+ r)/2⌋
4: if A[m] = x then
5: return m
6: else if A[m] > x then
7: r ← m
8: else
9: ℓ← m+ 1

10: return “not found”

If A is sorted and contains x, binary search always returns the unique index i such that
A[i] = x. If the array is not sorted, however, the algorithm may return an incorrect index
or fail to find x altogether.

Binary-Search-Based Tester

The tester uses binary search as a consistency check : it verifies whether binary search behaves
as if the array were sorted at randomly chosen locations. At a high-level, each iteration selects
a random index i and checks whether binary search can correctly locate the value A[i] by
returning i. If the array is sorted, this always succeeds. If the array is far from sorted,
binary search fails on a noticeable fraction of indices, causing the tester to reject with high
probability.

2

COMP 585 Lecture 3 Spring 2026

Algorithm 2 Binary-Search-Based Sortedness Tester

1: Input: n, ϵ, δ, query access to array A
2: s←

⌈
1
ϵ
log 1

δ

⌉
3: for t = 1 to s do
4: Pick i ∼ Unif([n])
5: Run BinarySearch(A,A[i], 1, n+ 1)
6: if the returned index ̸= i then
7: return reject

8: return accept

Proof of Correctness

In this part, we show that Algorithm 2 is an (ϵ, δ)-tester for sortedness.

Completeness. First, we argue about the case that A is sorted. Clearly, if A is sorted,
binary search behaves correctly at every index i upon search for A[i], the procedure returns
i. Thus, the tester always accepts.

Soundness. Next, we show that if the array is ϵ-far from being sorted, then our tester
rejects with probability at least 1 − δ. The argument proceeds in two steps: We show that
correctness at many indices enforces a global ordering. Hence, binary search should fail for
a sufficiently far-from-sorted array. Next, we pick s in a way that guarantees that with high
probability we will observe a failure.

We define a nice index for which the binary search works correctly. In particular, an index
i ∈ [n] is called nice if BinarySearch(A,A[i], 1, n + 1) returns i. The key observation is
that binary search correctness is not merely local: if it holds at many indices, it enforces a
strong global ordering.

Lemma 1 (Nice indices preserve order). If i < j are both nice indices, then A[i] < A[j].

Proof. Let Si and Sj be the sequences of pivot indices m visited by BinarySearch when
searching for A[i] and A[j], respectively. Both searches begin with the same interval [1, n+1)
and follow the same path of pivots until they diverge. Let m⋆ be the last mutual pivot
common to both sequences.

Since i and j are nice, we know that i ∈ Si and j ∈ Sj. We consider the relative position of
i, j, and m⋆:

• Case i = m⋆: Since i < j, the search for A[j] must have branched to the right at
index m⋆ to eventually reach j. According to Algorithm 1, the search moves to the
right subinterval only if A[m⋆] < A[j]. Thus, A[i] < A[j].

• Case j = m⋆: Since i < j, the search for A[i] must have branched to the left at
index m⋆ to eventually reach i. The algorithm moves to the left subinterval only if
A[m⋆] > A[i]. Thus, A[i] < A[j].

3

COMP 585 Lecture 3 Spring 2026

3

1

4

2

6

3

8

4

14

5

18

6

19

7

29

8

45

9

58

10

Array A:

i m0m⋆ j

5 A[5] = 14

3 m⋆ (A[3] = 6)

Both search go to the left (< A[5] = 14)

2

Found i = 2

4

Found j = 4

A[2] < A[3] = 6 A[4] > A[3] = 6

Figure 2: Binary search paths for nice indices i = 2 and j = 4. They diverge at m⋆ = 3
because A[2] < A[3] < A[4].

• Case i ̸= m⋆ and j ̸= m⋆: Since m⋆ is the last mutual pivot and the searches must
eventually reach i and j, the two paths must diverge at this point. Given i < j, the
search for A[i] must branch left (A[i] < A[m⋆]) and the search for A[j] must branch
right (A[m⋆] < A[j]). By transitivity, A[i] < A[j].

In all cases, the condition i < j for nice indices implies A[i] < A[j]. An illustration of this
proof is shown in Figure 2.

Next, we show that in an array that is ϵ-far from being sorted, there are many indices that
are not nice. Let

p := Pri∼Unif([n])[[[i is not nice]]].

Note that p is exactly the probability that a single iteration of the tester rejects. Let
N ⊆ [n] denote the set of nice indices. By Lemma 1, the subsequence {A[i] : i ∈ N} is
strictly increasing. We construct a sorted array A′ as follows:

• For all i ∈ N , set A′[i] = A[i].

• Modify the remaining entries so that A′ is globally sorted.

Only indices outside N are modified, so at most n− |N | entries change. Hence,

dist(A,P) ≤ n− |N |
n

= Pri∼Unif([n])[[[i is not nice]]] = p.

Therefore, if A is ϵ-far from sorted, we must have p ≥ ϵ. That is, for more than ϵ-fraction of
the indices in [n], the algorithm will reject.

4

COMP 585 Lecture 3 Spring 2026

We aim to set s in a way that the tester reject with probability at least 1 − δ. Note that
the tester accepts only if all s trials succeed. In a single round, the probability that the
algorithm does not reject is 1− p. Thus, for s rounds, we have:

Pr[[[outputting accept]]] = (1− p)s ≤ (1− ϵ)s ≤ e−ϵs .

In the second inequality we use 1 − x < e−x for all real x. Choosing s to be at least⌈(
1
ϵ
log 1

δ

)⌉
ensures that the probability of outputting accept is at most δ, implying rejection

with probability at least 1− δ as desired.

Bibliographic Note

The binary-search-based tester for sortedness was introduced by Ergün, Kannan, Kumar,
Rubinfeld, and Viswanathan in their seminal paper “Spot-checking phenomena” (STOC
1998) [EKK+98]. This work was among the first to demonstrate that global structural prop-
erties, like monotonicity, can be tested in sublinear time by checking for internal consistency
of classical algorithms.

References

[EKK+98] Funda Ergün, Sampath Kannan, Ravi Kumar, Ronitt Rubinfeld, and Mahesh
Viswanathan. Spot-checkers. In Proceedings of the Thirtieth Annual ACM Sym-
posium on the Theory of Computing (STOC), pages 259–268, 1998.

5

