
COMP 585 Spring 2026

Probabilistic Toolkit for Learning and Computing Instructor: Maryam Aliakbarpour

January 15, 2026 Scriber: Maryam Aliakbarpour

Lecture 2

Introduction to Property Testing: Testing Sortedness

Randomness is a powerful tool for designing fast, efficient algorithms. However, randomized
approaches introduce unique challenges: unlikely events can occur (e.g., observing an unusual
streak of heads in coin tosses), and very small deviations from a desired property can be
difficult to detect reliably.

Property testing provides a formal framework to address these issues. It does so by
relaxing two traditional algorithmic requirements:

• Probability of Error: We allow the algorithm a small, bounded probability of failing
to provide the correct answer.

• Distance to Property: Instead of detecting any deviation, we only require the algo-
rithm to reject inputs that are “far” from satisfying the property.

Unlike traditional deterministic algorithms that must scan every element to find even a
single violation, a property tester uses a small number of random queries to seek substantial
evidence of non-conformance. By accepting these relaxations, we can design testers with
sublinear complexity, often significantly outperforming their deterministic counterparts.

In this session, we explore the specific problem of testing the sortedness of an array
and examine how to design algorithms with rigorous error guarantees.

Defining the Problem

Let A = (A[1], A[2], . . . , A[n]) be an array of n elements. We say that A is sorted if:

A[1] ≤ A[2] ≤ · · · ≤ A[n].

We aim to design an algorithm that can distinguish whether A is sorted or it is “far” from
being sorted. A deterministic algorithm can check if A is sorted via a linear scan, requiring
Θ(n) queries. Our goal is to determine if we can achieve o(n) queries under a relaxed notion
of correctness.

1

COMP 585 Lecture 2 Spring 2026

Remark 1 (The Query Access Model). The feasibility of sublinear time complexity depends
entirely on the access model. In many settings, we cannot even “read” the input in o(n)
time. In this lecture, we assume a query model (or oracle model): The input is already
stored (e.g., in memory or the cloud). We do not read the entire array; instead, we query
an oracle which, given an index i ∈ [n], returns the value A[i] in O(1) time. Our complexity
is measured by the total number of such queries made to the oracle.

One possible randomized approach is to sample random locations and check for local con-
sistency. However, a naive sampling approach may fail for two primary reasons:

1. Missing the “Bad” Region: A significantly unsorted array may appear sorted if
we happen to sample a “wrong set of indices” that coincidentally follow an increasing
order.

2. Missing Tiny Deviations: We may fail to detect a tiny deviation from sortedness
(such as a single swapped pair) by not hitting the specific indices where the violation
occurs.

2 4 6 8 10 12 14 1 3 5 17 9 20 13

Globally unsorted array (large violation hidden)

4 8 12 17 20

Figure 1: Random sampling may fail to detect global unsortedness if the sample is coinci-
dentally ordered.

2 4 7 8 10 12 11 18 31 46 48 55 79 90

Mostly sorted array (tiny deviation)

4 8 12 48 79

Figure 2: Random sampling may fail to detect a tiny deviation (local violation) by not
hitting the specific “bad” indices.

If we insist on perfect testers, we cannot hope to have an algorithm with o(n) time/query
complexity.

The Property Testing Framework

Property testers are designed to determine, with a high success probability (typically 1− δ),
whether a large object—such as an array, a probability distribution, or a graph—possesses
a specific property P or is ε-far from satisfying it. Mathematically, we define a property P

2

COMP 585 Lecture 2 Spring 2026

as the set of all objects that satisfy the condition; for instance, in the context of sortedness,
P is the set of all sorted arrays of length n.

This definition introduces two specific notions that require formal quantification:

1. Proximity parameter (ε): We must define a metric to determine what it means
for an object to be “far” from a property. Usually, this is determined based on the
context. A good candidate may be the minimum fraction of the object that must be
modified to satisfy P .

For two arrays A,B of length n, we define their distance as the fraction of indices
where they differ:

dist(A,B) :=
|{i ∈ [n] : A[i] ̸= B[i]}|

n
.

An array A is said to be ε-far from a property P if it requires changing more than εn
elements to satisfy the property:

dist(A,P) := min
B∈P

dist(A,B) > ε.

2. Confidence parameter(δ): Since the algorithm is randomized, we must bound the
probability of error. We require the tester to succeed with probability at least 1− δ.

These two parameters, ε and δ, allow us to study the trade-off between the “strictness” of
our test and the number of queries required.

(ε, δ)(ε, δ)(ε, δ)-Tester. An algorithm A is an (ε, δ)-tester for property P for input object A iff it
satisfies the following with probability at least 1− δ:

• Completeness: If A ∈ P , then A outputs accept.

• Soundness: If dist(A,P) > ε, then A outputs reject.

P
ε

accept

reject

Figure 3: Property testing viewpoint. In the white region both answers are considered valid.

3

COMP 585 Lecture 2 Spring 2026

The Binary Case

Consider the simplified setting where A[i] ∈ {0, 1}. A sorted binary array must be of the
form 0k1n−k (a sequence of 0s followed by 1s). We propose the following algorithm to test
sortedness.

Algorithm 1 Sampling-Based Sortedness Tester ({0, 1} Case)
1: Input: n, ε, δ, Query access to an array A of length n
2: Parameter: m← ⌈2

ε
ln 2

δ
⌉

3: Pick m indices S = {i1, i2, . . . , im} independently and uniformly at random from [n]
4: Sort the sampled indices such that i1 < i2 < · · · < im
5: Query A[ij] for all j ∈ [m]
6: if A[i1] ≤ A[i2] ≤ · · · ≤ A[im] then
7: return accept
8: else
9: return reject

Proof of Correctness

Completeness: If A is sorted, any sampled subsequence is also sorted. The algorithm will
always find A[ij] ≤ A[ij+1], thus it outputs accept with probability 1.

Soundness: Suppose A is ε-far from sorted. This means we must change at least εn
elements to make A sorted. We define two critical sets of indices:

• Q1: The set of indices of the first εn/2 occurrences of 1.

• Q0: The set of indices of the last εn/2 occurrences of 0.

Let imax = max(Q1) be the index of the (εn/2)-th 1, and imin = min(Q0) be the index of the
(εn/2)-th 0 from the end. If imin < imax, any sample that picks one index from Q1 and one
from Q0 will find a violation (a 1 appearing before a 0).

0 0 1 0 1 1 1 0 1 1 0 0 1 1

Q1 Q0

imax imin

Figure 4: An illustration of the sets Q1 and Q0 with εn/2 = 3.

Lemma 1. If the binary array A is ε-far from sorted, then imin > imax.

4

COMP 585 Lecture 2 Spring 2026

Proof. To understand this, it is easiest to prove the contrapositive: If imin < imax, then A is
not ε-far from sorted.

Assume imax < imin. We can demonstrate that A can be made sorted by changing at most
εn elements. Consider a “split point” k chosen such that imin ≤ k < imax. We can transform
A into a sorted array of the form 0k1n−k using the following two steps:

1. Fix the left side: For all indices i ≤ k, change any 1 to a 0. By definition, imax is the
index of the (εn/2)-th occurrence of 1 in the array. Since k < imax, there are at most
εn/2 such ones to change.

2. Fix the right side: For all indices i > k, change any 0 to a 1. By definition, imin is
the index of the (εn/2)-th occurrence of 0 from the end of the array. Since k ≥ imin,
there are at most εn/2 such zeros to change.

The total number of modifications required to sort the array is:

Total Changes ≤ εn

2︸︷︷︸
from Step 1

+
εn

2︸︷︷︸
from Step 2

= εn.

By definition, an array is ε-far if it requires more than εn changes to become sorted. Since
we have shown that A can be sorted with ≤ εn changes, A is not ε-far. Therefore, if A is
truly ε-far, the indices must overlap such that imin > imax.

Analysis of the Failure Probability

The algorithm fails to reject an ε-far array only if the set of sampled indices S misses at
least one of the critical sets, Q1 or Q0. If the sample S contains at least one index i ∈ Q1

and one index j ∈ Q0, then by the previous Lemma, j < i. Because A[j] = 0 and A[i] = 1,
the algorithm will detect the violation and correctly reject.

Let E1 be the event that S ∩Q1 = ∅ and E0 be the event that S ∩Q0 = ∅. Since we sample
m indices independently and uniformly at random, and |Q1| = |Q0| = εn/2, the probability
of missing a set in a single draw is (1− ε/2). For m draws, we have:

Pr[[[E1]]] =
(
1− ε

2

)m

≤ e−εm/2, Pr[[[E0]]] =
(
1− ε

2

)m

≤ e−εm/2.

By the Union Bound, the total probability of error is bounded by:

Pr[[[Failure]]] = Pr[[[E1 ∪ E0]]] ≤ Pr[[[E1]]] +Pr[[[E0]]] ≤ 2e−εm/2.

To satisfy the (ε, δ) requirement, we set 2e−εm/2 ≤ δ. Solving for m:

e−εm/2 ≤ δ

2
=⇒ −εm

2
≤ ln

(
δ

2

)
=⇒ m ≥ 2

ε
ln

(
2

δ

)
.

5

COMP 585 Lecture 2 Spring 2026

Consequently, a query complexity of m = O
(
1
ε
log 1

δ

)
is sufficient to achieve the desired

confidence.

6

