
Lecture 1

Probability Review

To lay the groundwork for understanding randomized algorithms and their analysis, we'll start with a review of fundamental probability concepts. While we expect students to have some familiarity with these ideas, this lecture serves as a quick refresher.

A discrete probability space is defined by $\Omega = \{w_1, w_2, \dots\}$, which represents the sample space containing elementary outcomes (finite or countable). An event is any subset of Ω . The probability function P maps events to values in $[0, 1]$ such that $\sum_{\omega \in \Omega} P(\omega) = 1$. For any event $E \subseteq \Omega$, $P(E)$ is defined as the sum of probabilities of elementary outcomes in E : $P(E) := \sum_{\omega \in E} P(\omega)$.

Discrete Probability Spaces

The probability measure P is defined by assigning a probability $P(w_i) \in [0, 1]$ to each elementary outcome $w_i \in \Omega$, such that:

$$\sum_i P(w_i) = 1.$$

The probability of any event $E \subseteq \Omega$ is given by:

$$P(E) := \sum_{\omega \in E} P(\omega).$$

Example: Rolling a Fair Die. Consider a single roll of a fair six-sided die. The sample space is

$$\Omega = \{1, 2, 3, 4, 5, 6\},$$

and since the die is fair, each outcome has probability $P(\omega) = 1/6$ for all $\omega \in \Omega$. Let A be the event that the outcome is even: $A = \{2, 4, 6\}$. Then, the probability of this event is: $\Pr[A] = 3/6 = 1/2$.

Continuous Probability Spaces

If we define a probability distribution more formally, a probability space is a triple (Ω, \mathcal{F}, P) , where:

- Ω is the **sample space**, the set of all possible outcomes,
- \mathcal{F} is a **σ -algebra** of subsets of Ω , whose elements are called **measurable sets** or **events**,
- P is a **probability measure** defined on \mathcal{F} , assigning each event a value in $[0, 1]$ such that $P(\Omega) = 1$, and P is countably additive.

A σ -algebra \mathcal{F} is a collection of subsets of Ω that includes the empty set, is closed under complements, and is closed under countable unions (and hence countable intersections). These properties ensure that probabilities are well-defined for limits of events and match our intuition about how events should behave. We will not study the formal construction of σ -algebras here; instead, we treat them as specifying which events can be meaningfully assigned probabilities, and are therefore called *measurable*. A subset $E \subseteq \Omega$ is called measurable if $E \in \mathcal{F}$.

In the discrete case, the sample space $\Omega = \{w_1, w_2, \dots\}$ is finite or countably infinite. The σ -algebra \mathcal{F} is typically the power set 2^Ω , so every subset is measurable. In the continuous case, the sample space Ω is uncountable (for example, an interval of real numbers). The σ -algebra \mathcal{F} is usually taken to be the Borel σ -algebra or a closely related collection of **Lebesgue-measurable** sets.

In such settings, a probability distribution P assigns probabilities to events in \mathcal{F} such that $P(\Omega) = 1$ and is countably additive. Both discrete and continuous probability spaces fit into the same measure-theoretic framework. The main distinction lies in how the measure P is constructed: as a weighted sum over points in the discrete case, and as an integral with respect to a density in the continuous case. In both settings, the σ -algebra \mathcal{F} ensures that probabilities are well-defined and behave properly under limits.

Random variable, expectation, and variance

A random variable takes values based on a probability distribution. We denote $X \sim P$, if X takes value x with probability $P(x)$. If $X \sim P$, its expected value and its variance are defined as follows:

$$\mathbf{E}[X] := \sum_{x \in \Omega} P(x) \cdot x,$$

$$\mathbf{Var}[X] := \mathbf{E}[(X - \mathbf{E}[X])^2].$$

Some key properties of expectations and variances are as follows:

- Linearity of Expectation:

For every pair of random variables X and Y : $\mathbf{E}[X + Y] = \mathbf{E}[X] + \mathbf{E}[Y]$,

For all constant scalar $a \in \mathbb{R}$: $\mathbf{E}[a \cdot X] = a \cdot \mathbf{E}[X]$.

- Alternative form: *integral identity* for expectation, states that for a **non-negative** random variable X , we have:

$$\mathbf{E}[X] = \int_0^\infty \Pr[X > t] dt.$$

- Linearity of variance under independence:

For every pair of **independent** random variables X and Y : $\mathbf{Var}[X + Y] = \mathbf{Var}[X] + \mathbf{Var}[Y]$,

For all constant scalar $a \in \mathbb{R}$: $\mathbf{Var}[a \cdot X] = a^2 \cdot \mathbf{Var}[X]$.

- Alternative formula for variance:

$$\mathbf{Var}[X] = \mathbf{E}[X^2] - (\mathbf{E}[X])^2.$$

- Law of total variance: Suppose we have two random variables X and Y that are on the same probability space, and Y has finite variance, then:

$$\mathbf{Var}[Y] = \mathbf{E}_X[\mathbf{Var}[Y|X]] + \mathbf{Var}_X[\mathbf{E}[Y|X]].$$

Example: Let X be the random variable equal to the outcome of the die roll. Then

$$\mathbf{E}[X] = \sum_{x=1}^6 x \cdot \frac{1}{6} = \frac{1+2+3+4+5+6}{6} = \frac{7}{2}.$$

We compute the variance using the alternative formula

$$\mathbf{Var}[X] = \mathbf{E}[X^2] - (\mathbf{E}[X])^2.$$

First, we compute

$$\mathbf{E}[X^2] = \frac{1^2 + 2^2 + 3^2 + 4^2 + 5^2 + 6^2}{6} = \frac{91}{6}.$$

Thus,

$$\mathbf{Var}[X] = \frac{91}{6} - \left(\frac{7}{2}\right)^2 = \frac{91}{6} - \frac{49}{4} = \frac{35}{12}.$$

Hence, the variance of a fair six-sided die is $\mathbf{Var}[X] = \frac{35}{12}$.

Joint and Conditional Probability

For two events A and $B \subseteq \Omega$, the joint probability, $\Pr[A \cap B]$, is the probability that both A and B happen. Conditional probability, $P_{|A}(B)$ or $\Pr[B|A]$, is the probability that B happens conditioned on that A happens, defined as:

$$\Pr[B|A] = \frac{\Pr[A \cap B]}{\Pr[A]}.$$

Bayes' Theorem states that

$$\Pr[A|B] = \frac{\Pr[B|A] \cdot \Pr[A]}{\Pr[B]}.$$

Example: In our rolling dice example, the event that the outcome is both even *and* divisible by 3 is $A \cap B = \{6\}$. Therefore, $\Pr[A \cap B] = \frac{1}{6}$.

Independence

Two events A and B are independent events iff (if and only if) $\Pr[A|B] = \Pr[A]$, which also implies:

$$\Pr[A \cap B] = \Pr[A] \cdot \Pr[B].$$

Two random variables X and X' are independent iff for every $x \in \Omega$ and $x' \in \Omega'$, the two events $X = x$ and $X' = x'$ are independent.

Note that in the rolling dice example we have

$$\Pr[A \cap B] = 1/6 = 1/2 \cdot 1/3 = \Pr[A] \cdot \Pr[B],$$

so the events A and B are *independent*.