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Lecture 1

Probability Review

To lay the groundwork for understanding randomized algorithms and their analysis, we’ll
start with a review of fundamental probability concepts. While we expect students to have
some familiarity with these ideas, this lecture serves as a quick refresher.

A discrete probability space is defined by = {w;, ws,...}, which represents the sample
space containing elementary outcomes (finite or countable). An event is any subset of €.
The probability function P maps events to values in [0, 1] such that > _, P(w) = 1. For
any event £ C (), P(FE) is defined as the sum of probabilities of elementary outcomes in E:

PE) =3 cpPWw).

Discrete Probability Spaces

The probability measure P is defined by assigning a probability P(w;) € [0,1] to each
elementary outcome w; € €2, such that:

> Plw) =1.
The probability of any event E C (2 is given by:

P(E) =) P(w).

weFE

Example: Rolling a Fair Die. Consider a single roll of a fair six-sided die. The sample
space 18
0 =1{1,2,3,4,5,6},

and since the die is fair, each outcome has probability P(w) = 1/6 for allw € . Let A
be the event that the outcome is even: A = {2,4,6}. Then, the probability of this event is:
Pr[A] =3/6 = 1/2.
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Continuous Probability Spaces

If we define a probability distribution more formally, a probability space is a triple (2, F, P),
where:

e () is the sample space, the set of all possible outcomes,

e F is a o-algebra of subsets of (), whose elements are called measurable sets or
events,

e P is a probability measure defined on F, assigning each event a value in [0, 1] such
that P(2) = 1, and P is countably additive.

A o-algebra F is a collection of subsets of €2 that includes the empty set, is closed under
complements, and is closed under countable unions (and hence countable intersections).
These properties ensure that probabilities are well-defined for limits of events and match our
intuition about how events should behave. We will not study the formal construction of o-
algebras here; instead, we treat them as specifying which events can be meaningfully assigned
probabilities, and are therefore called measurable. A subset E C () is called measurable if

EecF.

In the discrete case, the sample space 2 = {wy, ws, ...} is finite or countably infinite. The
o-algebra F is typically the power set 2, so every subset is measurable. In the continuous
case, the sample space 2 is uncountable (for example, an interval of real numbers). The
o-algebra F is usually taken to be the Borel g-algebra or a closely related collection of
Lebesgue-measurable sets.

In such settings, a probability distribution P assigns probabilities to events in JF such that
P(©2) = 1 and is countably additive. Both discrete and continuous probability spaces fit
into the same measure-theoretic framework. The main distinction lies in how the measure
P is constructed: as a weighted sum over points in the discrete case, and as an integral with
respect to a density in the continuous case. In both settings, the o-algebra F ensures that
probabilities are well-defined and behave properly under limits.

Random variable, expectation, and variance

A random variable takes values based on a probability distribution. We denote X ~ P, if
X takes value x with probability P(x). If X ~ P, its expected value and its variance are
defined as follows:

E[X] ::ZP(x)~x,

e

Var[X] = E[(X — E[X])?] .

Some key properties of expectations and variances are as follows:
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Linearity of Expectation:

For every pair of random variables X and Y:  E[X +Y]| =E[X]+ E[Y],
For all constant scalar a € R: Ela - X]=a-E[X].

e Alternative form: integral identity for expectation, states that for a non-negative

random variable X, we have:

E[X] = /OOO PrX > ] dt .

e Linearity of variance under independence:

For every pair of independent random variables X and Y:

For all constant scalar a € R:

e Alternative formula for variance:

Var[X] = E[ X?] — (E[X])?.

Var[X + Y] = Var[ X] + Var[Y]
Var[a - X] = a®- Var[X] .

e Law of total variance: Suppose we have two random variables X and Y that are on

the same probability space, and Y has finite variance, then:

Var[Y] = Ex[Var[Y|X]] + Varx[E[Y|X]].

Example: Let X be the random variable equal to the outcome of the die roll. Then

6
1 14243444546
E[X]:Zx-é— =

B 6

=1

We compute the variance using the alternative formula
Var[X] = E[ X?] — (E[X])>.

First, we compute
12 +22 437 +42 + 546> 91

T
>

E[X?] = —.

Thus,

1 2 91 4
Var[X]:%—<;> :9———9:§.

Hence, the variance of a fair six-sided die is Var[X] = 2.
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Joint and Conditional Probability

For two events A and B C 2, the joint probability, Pr[A N B], is the probability that both
A and B happen. Conditional probability, P4(B) or Pr[B|A], is the probability that B
happens conditioned on that A happens, defined as:

Pr[AN B]

Pr[B|A] = Pr[A]

Bayes’ Theorem states that

Pr[B|A] - Pr[A]

Pr[A|B] = Pr(E]

Example: In our rolling dice example, the event that the outcome is both even and divis-
ible by 3 is AN B = {6}. Therefore,Pr[AN B] = ¢.

Independence

Two events A and B are independent events iff (if and only if) Pr[A|B] = Pr[A], which
also implies:
Pr[AN B] = Pr[A] - Pr[B].

Two random variables X and X’ are independent iff for every x € Q and 2’ € ', the two
events X =z and X' = 2’ are independent.

Note that in the rolling dice example we have
Pr[ANB]=1/6=1/2-1/3 = Pr[A] - Pr[B],

so the events A and B are independent.



