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Lecture 1

Probability Review

To lay the groundwork for understanding randomized algorithms and their analysis, we’ll
start with a review of fundamental probability concepts. While we expect students to have
some familiarity with these ideas, this lecture serves as a quick refresher.

A discrete probability space is defined by Ω = {w1, w2, . . . }, which represents the sample
space containing elementary outcomes (finite or countable). An event is any subset of Ω.
The probability function P maps events to values in [0, 1] such that

∑
ω∈Ω P (ω) = 1. For

any event E ⊆ Ω, P (E) is defined as the sum of probabilities of elementary outcomes in E:
P (E) :=

∑
ω∈E P (ω).

Discrete Probability Spaces

The probability measure P is defined by assigning a probability P (wi) ∈ [0, 1] to each
elementary outcome wi ∈ Ω, such that:∑

i

P (wi) = 1.

The probability of any event E ⊆ Ω is given by:

P (E) :=
∑
ω∈E

P (ω).

Example: Rolling a Fair Die. Consider a single roll of a fair six-sided die. The sample
space is

Ω = {1, 2, 3, 4, 5, 6},

and since the die is fair, each outcome has probability P (ω) = 1/6 for all ω ∈ Ω. Let A
be the event that the outcome is even: A = {2, 4, 6}. Then, the probability of this event is:
Pr[[[A]]] = 3/6 = 1/2.
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Continuous Probability Spaces

If we define a probability distribution more formally, a probability space is a triple (Ω,F , P ),
where:

• Ω is the sample space, the set of all possible outcomes,

• F is a σ-algebra of subsets of Ω, whose elements are called measurable sets or
events,

• P is a probability measure defined on F , assigning each event a value in [0, 1] such
that P (Ω) = 1, and P is countably additive.

A σ-algebra F is a collection of subsets of Ω that includes the empty set, is closed under
complements, and is closed under countable unions (and hence countable intersections).
These properties ensure that probabilities are well-defined for limits of events and match our
intuition about how events should behave. We will not study the formal construction of σ-
algebras here; instead, we treat them as specifying which events can be meaningfully assigned
probabilities, and are therefore called measurable. A subset E ⊆ Ω is called measurable if
E ∈ F .

In the discrete case, the sample space Ω = {w1, w2, . . . } is finite or countably infinite. The
σ-algebra F is typically the power set 2Ω, so every subset is measurable. In the continuous
case, the sample space Ω is uncountable (for example, an interval of real numbers). The
σ-algebra F is usually taken to be the Borel σ-algebra or a closely related collection of
Lebesgue-measurable sets.

In such settings, a probability distribution P assigns probabilities to events in F such that
P (Ω) = 1 and is countably additive. Both discrete and continuous probability spaces fit
into the same measure-theoretic framework. The main distinction lies in how the measure
P is constructed: as a weighted sum over points in the discrete case, and as an integral with
respect to a density in the continuous case. In both settings, the σ-algebra F ensures that
probabilities are well-defined and behave properly under limits.

Random variable, expectation, and variance

A random variable takes values based on a probability distribution. We denote X ∼ P , if
X takes value x with probability P (x). If X ∼ P , its expected value and its variance are
defined as follows:

E[[[X ]]] :=
∑
x∈Ω

P (x) · x ,

Var[[[X ]]] := E
[[[
(X − E[[[X ]]])2

]]]
.

Some key properties of expectations and variances are as follows:
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• Linearity of Expectation:

For every pair of random variables X and Y : E[[[X + Y ]]] = E[[[X ]]] + E[[[Y ]]] ,

For all constant scalar a ∈ R: E[[[a ·X ]]] = a · E[[[X ]]] .

• Alternative form: integral identity for expectation, states that for a non-negative
random variable X, we have:

E[[[X ]]] =

∫ ∞

0

Pr[[[X > t]]] dt .

• Linearity of variance under independence:

For every pair of independent random variables X and Y : Var[[[X + Y ]]] = Var[[[X ]]] +Var[[[Y ]]] ,

For all constant scalar a ∈ R: Var[[[a ·X ]]] = a2 ·Var[[[X ]]] .

• Alternative formula for variance:

Var[[[X ]]] = E
[[[
X2

]]]
− (E[[[X ]]])2 .

• Law of total variance: Suppose we have two random variables X and Y that are on
the same probability space, and Y has finite variance, then:

Var[[[Y ]]] = EX[[[Var[[[Y |X ]]]]]] +VarX[[[E[[[Y |X ]]]]]] .

Example: Let X be the random variable equal to the outcome of the die roll. Then

E[[[X ]]] =
6∑

x=1

x · 1
6
=

1 + 2 + 3 + 4 + 5 + 6

6
=

7

2
.

We compute the variance using the alternative formula

Var[[[X ]]] = E
[[[
X2

]]]
− (E[[[X ]]])2.

First, we compute

E
[[[
X2

]]]
=

12 + 22 + 32 + 42 + 52 + 62

6
=

91

6
.

Thus,

Var[[[X ]]] =
91

6
−

(
7

2

)2

=
91

6
− 49

4
=

35

12
.

Hence, the variance of a fair six-sided die is Var[[[X ]]] = 35
12
.
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Joint and Conditional Probability

For two events A and B ⊆ Ω, the joint probability, Pr[[[A ∩B ]]], is the probability that both
A and B happen. Conditional probability, P|A(B) or Pr[[[B|A]]], is the probability that B
happens conditioned on that A happens, defined as:

Pr[[[B|A]]] =
Pr[[[A ∩B ]]]

Pr[[[A]]]
.

Bayes’ Theorem states that

Pr[[[A|B ]]] =
Pr[[[B|A]]] ·Pr[[[A]]]

Pr[[[B ]]]
.

Example: In our rolling dice example, the event that the outcome is both even and divis-
ible by 3 is A ∩B = {6}. Therefore,Pr[[[A ∩B ]]] = 1

6
.

Independence

Two events A and B are independent events iff (if and only if) Pr[[[A|B ]]] = Pr[[[A]]], which
also implies:

Pr[[[A ∩B ]]] = Pr[[[A]]] ·Pr[[[B ]]] .

Two random variables X and X ′ are independent iff for every x ∈ Ω and x′ ∈ Ω′, the two
events X = x and X ′ = x′ are independent.

Note that in the rolling dice example we have

Pr[[[A ∩B ]]] = 1/6 = 1/2 · 1/3 = Pr[[[A]]] ·Pr[[[B ]]] ,

so the events A and B are independent.
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