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Lecture 12

Sub-exponential Random Variables (cont.)

Recall from our last lecture that sub-exponential random variables are defined as:

Definition 1. A random variable X with mean µ = E[[[X ]]] is sub-exponential if there are
non-negative parameters (ν2, α) such that

E
[[[
eλ(X−µ)

]]]
≤ eν

2λ2/2 for all λ for which |λ| ≤ 1

α
.

We write X ∈ subE (ν2, α).

Here, we start off by focusing on some of the properties of sub-exponentials.

Scaling: Sub-exponentiality is closed under scaling: for any scalar c, if a random variable
X is in subE (ν2, α), then cX is in subE ((c ν)2, |c| · α).

Summation: Moreover, the sum of two independent sub-exponential random variables is
a sub-exponential random variable. In particular, if X1 and X2 are two independent sub-
exponential random variables in subE (ν2

1 , α1) and subE (ν2
2 , α2) respectively, then we have:

X1 +X2 ∈ subE
(
ν2
1 + ν2

2 ,max{α1, α2}
)
.

In general, we have the following lemma for the sum of n sub-exponential random variables.

Lemma 2. Let X1, X2, ..., Xn be n independent random variables with E[[[Xi ]]] = µi and
Xi ∈ subE (ν2

i , αi) for i = 1, 2, ..., n. Then, we have:

n∑
i=1

Xi ∈ subE

(
n∑

i=1

ν2
i , max

i∈[n]
αi

)
.

Proof. To prove the lemma, we will bound the moment generating function of the sum. We
show that for any λ such that |λ| < 1

maxi αi
, we have:
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E

[[[
exp

(
λ

n∑
i=1

(Xi − µi)

)]]]
≤ exp

((
n∑

i=1

ν2
i

)
λ2/2

)
.

Since the random variables X1, X2, ..., Xn are independent, the expectation of the product
is equal to the product of the expectations. Hence we have:

E

[[[
exp

(
λ

n∑
i=1

(Xi − µi)

)]]]
= E

[[[
n∏

i=1

exp (λ(Xi − µi))

]]]
=

n∏
i=1

E[[[exp (λ(Xi − µi))]]]

Now, we can use the fact that each Xi is sub-exponential. Since |λ| < 1
maxi αi

≤ 1
αi

for all i,
we can apply the MGF bound to each term in the product:

n∏
i=1

E[[[exp (λ(Xi − µi))]]] ≤
n∏

i=1

exp
(
ν2
i λ

2/2
)
= exp

((
n∑

i=1

ν2
i

)
λ2/2

)
.

Therefore, we have shown that for any |λ| < 1
maxi αi

:

E

[[[
exp

(
λ

n∑
i=1

(Xi − µi)

)]]]
≤ exp

((
n∑

i=1

ν2
i

)
λ2/2

)
,

implying the statement of the lemma.

From this theorem and the scaling property, the following property is immediately implied:

Corollary 3. Suppose X1, ..., Xn are independent zero-mean random variables with Xi ∈
subE (1, 1). Let a = (a1, ..., an) ∈ Rn. Then,

n∑
i=1

aiXi ∈ subE
(
∥a∥22, ∥a∥∞

)
.

Bernstein’s Inequality

Theorem 1. Suppose X1, ..., Xn are independent zero-mean random variables with Xi ∈
subE (1, 1). Let a = (a1, ..., an) ∈ Rn. Then, we have:

Pr

[[[∣∣∣∣∣
n∑

i=1

aiXi

∣∣∣∣∣ ≥ t

]]]
≤ 2 exp

(
−min

(
t2

2 ∥a∥22
,

t

2 ∥a∥∞

))
.
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In particular, when ai =
1
n
, we get:

Pr

[[[∣∣∣∣∣ 1n
n∑

i=1

Xi

∣∣∣∣∣ ≥ t

]]]
≤ 2 exp

(
−nmin

(
t2

2
,
t

2

))
.

Proof. By Corollary 3,
∑n

i=1 aiXi ∈ subE (∥a∥22, ∥a∥∞). The tail bound follows directly from
the lemma we proved in our previous lecture.

An interesting observation arises when comparing the tail bound of a single sub-exponential
random variable to the above tail bound for the average. For a single sub-exponential random
variable X ∈ subE (1, 1), the tail bound for t ≥ 1 is given by:

Pr

[[[∣∣∣∣ 1nX
∣∣∣∣ ≥ t

]]]
= Pr[[[ |X| ≥ n · t]]] ≤ 2 exp

(
−min

(
n2t2/2, nt/2

))
= 2 exp (−nt/2) .

This bound is identical to the tail bound for the average. Intuitively, these bounds suggest
that the probability of the average of n sub-exponential random variables exceeding t (for
t ≥ 1) is comparable to the probability of a single sub-exponential random variable exceeding
n · t. This highlights a key characteristic of sub-exponential random variables: that their
large deviations are typically driven by a single, exceptionally large observation rather than
by the cumulative effect of many moderate ones.

Comparison with Central Limit Theorem (CLT): It is natural to wonder if the CLT
could provide a tighter bound on the tail probabilities of sums of independent sub-exponential
random variables. The CLT states that for large n, the distribution of the normalized sum
1√
n

∑n
i=1 Xi approaches a standard Gaussian distribution:

Yn :=
√
n

(∑n
i=1Xi/n

σ

)
d−→ N (0, 1) ,

where
d−→ denotes convergence in distribution.

If we assume σ = 1 for simplicity, we might expect a tail bound of the form:

Pr

[[[∣∣∣∣∣ 1n
n∑

i=1

Xi

∣∣∣∣∣ ≥ t

]]]
= Pr

[[[∣∣∣∣∣ 1√
n

n∑
i=1

Xi

∣∣∣∣∣ ≥ t
√
n

]]]
≈ Pr

[[[
Yn >

√
n t
]]] ?

≤ exp
(
−n t2/2

)
. (1)

However, this line of reasoning is not entirely correct. The CLT describes the limiting
behavior of the distribution of the normalized sum for a fixed t, but it does not provide
precise tail bounds when t itself grows with n. More formally, for any fixed t, we have:

lim
n→∞

Pr[[[Yn > t]]] = PrZ∼N (0,1)[[[Z > t]]] .
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But we cannot directly use this limit to obtain a tail bound when t depends on n, as in
Equation (1). Therefore, while the CLT offers valuable insights into the asymptotic behavior
of sums of independent random variables (and for a very large category of them), it does not
necessarily yield tighter tail bounds than Bernstein’s inequality for sub-exponentials.

Bernstein’s Condition

In this section, we explore a more general condition that implies sub-exponentiality, known
as the Bernstein condition. This condition is particularly useful when dealing with random
variables that have low variance but potentially heavy tails or wide range (as we saw in an
example before).

Definition 4 (Bernstein Condition). A random variable X with mean µ is said to satisfy
the Bernstein condition with parameter b if for all i ≥ 3:

E
[[[
(X − µ)i

]]]
≤ 1

2
i!σ2 bi−2

where σ2 = V ar(X).

This condition essentially bounds the centered moments of the random variable. The
following lemma establishes the connection between the Bernstein condition and sub-
exponentiality:

Lemma 5. If X satisfies the Bernstein condition with parameter b, then X ∈
subE (2 (σ)2, 2 b).

Proof. For a random variable X satisfying the Bernstein condition with parameter b, we
want to bound the MGF of X − µ, where µ = E[[[X ]]]. Using the Taylor expansion of the
exponential function, we have:

E
[[[
eλ(X−µ)

]]]
= E

[[[
∞∑
i=0

(λ(X − µ))i

i!

]]]
.

Expanding the first three terms of the sum and using linearity of expectation, we get:

E
[[[
eλ(X−µ)

]]]
= 1 + λE[[[X − µ]]] +

λ2

2
E
[[[
(X − µ)2

]]]
+

∞∑
i=3

λi

i!
E
[[[
(X − µ)i

]]]
.

Since E[[[X − µ]]] = 0 and E[[[ (X − µ)2 ]]] =
V arX = σ2, we can simplify this to:
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E
[[[
eλ(X−µ)

]]]
= 1 +

λ2σ2

2
+

∞∑
i=3

λi

i!
E
[[[
(X − µ)i

]]]
.

Now, we can use the Bernstein condition to bound the higher-order moments E[[[ (X − µ)i ]]]
for i ≥ 3:

E
[[[
eλ(X−µ)

]]]
≤ 1 +

λ2σ2

2
+

∞∑
i=3

λi

i!
· 1
2
i!σ2 bi−2 = 1 +

λ2σ2

2
+

λ2σ2

2

∞∑
i=3

|λ|i−2bi−2

= 1 +
λ2σ2

2

(
1 +

∞∑
i=1

|λ b|i
)

= 1 +
λ2σ2

2

(
∞∑
i=0

|λ b|i
)

.

For |λ b| < 1, the geometric series converges, and we have:

E
[[[
eλ(X−µ)

]]]
= 1 +

λ2σ2

2
· 1

1− |λb|

If we further assume |λ b| < 1
2
, we can simplify this to:

E
[[[
eλ(X−µ)

]]]
≤ 1 + λ2σ2 ≤ exp(λ2σ2)

This shows that X satisfies the sub-exponential condition with parameters (2σ2, 2 b), com-
pleting the proof.

Bernstein’s Inequality for Bounded Variables

The Bernstein condition is particularly useful for bounded random variables.

Theorem 2. Let X be a random variable with mean µ such that |X − µ| < B. Then, X
satisfies the Bernstein condition with parameter b = B

3
.

Proof. The proof involves showing that the centered moments of X can be bounded by B.
Specifically, for any i ≥ 3 we have:

E
[[[
(X − µ)i

]]]
≤ E

[[[
|X − µ|i−2 · (X − µ)2

]]]
≤ Bi−2 · E

[[[
|X − µ|i−2

]]]
≤ Bi−2 · σ2 ≤ σ2Bi−2

(
i!

2 · 3i−2

)
To see why the last inequality holds, we can show that

(
i!

2·3i−2

)
is at least one by an inductive
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argument. For i = 3, i!/(2 · 3i−1) = 3!/6 ≥ 1. And for any i > 3, we have:

i!

2 · 3i−2
=

i

3
· (i− 1)!

2 · 3(i−1)−2
≥ 1 .

Thus, we get:

E
[[[
(X − µ)i

]]]
≤ σ2Bi−2

(
i!

2 · 3i−2

)
≤ 1

2
i!σ2

(
B

3

)i−2

.

Hence, the proof is complete.

Using this result, we can derive a version of Bernstein’s inequality specifically tailored for
bounded random variables:

Theorem 3. Let X1, X2, ..., Xn be independent random variables with E[[[Xi ]]] = µ,
Var[[[Xi ]]] = σ2, and range |Xi − µ| ≤ B. Then,

Pr

[[[∣∣∣∣∣
n∑

i=1

(Xi − µ)

∣∣∣∣∣ ≥ t

]]]
≤ 2 exp

(
− t2/2

nσ2 +Bt/3

)
or, in the normalized version,

Pr

[[[∣∣∣∣∣ 1n
n∑

i=1

(Xi − µ)

∣∣∣∣∣ ≥ t

]]]
≤ 2 exp

(
− nt2/2

σ2 +Bt/3

)
Proof. Ignoring the constant factors, this follows directly from Bernstein’s inequality and
the fact that bounded variables satisfy the Bernstein condition, and hence they are sub-
exponential.

This version of Bernstein’s inequality is particularly useful in scenarios where we have
bounded random variables with variance much smaller than their range. As we saw pre-
viously, this bound implies that we have a fast-dropping tail that resembles the behavior of
a Gaussian around the mean, where t ≪ σ2/B. The heavy tail kicks in later when we get
further from the mean.

Bibliographic Note

The content of this lecture was derived from Section 2.7 of [Ver18] and the lecture notes of
Prof. Sasha Rakhlin for “Mathematical Statistics: A Non-Asymptotic Approach”, which can
be found here [Rak22].
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