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Lecture 11

Sub-Exponential Random Variables

In the previous lecture, we explored sub-Gaussian random variables and observed their lim-
itations. Specifically, we encountered simple random variables that did not fall under the
sub-Gaussian category. Additionally, we saw that Hoeffding’s Lemma, while useful, has lim-
itations due to its invariance to variance. To address these limitations, we now introduce
the concept of sub-exponential random variables. These variables offer a more nuanced ap-
proach to characterizing random variables and their concentration properties, particularly
in scenarios where sub-Gaussianity proves insufficient.

Recall from the last lecture that for |λ| ≤ 1/4, we have:

E
[[[
eZ

2−1
]]]
≤ e2λ

2

,

where Z ∼ N (0, 1) was a standard normal distribution.

The definition of sub-exponential random variables is inspired by the behavior of Z2. Like
Z2, sub-exponential random variables have moment generating functions (MGFs) that are
bounded for a range of λ values. In fact, we define a sub-exponential random variable with
this property:

Definition 1. A random variable X with mean µ = E[[[X ]]] is sub-exponential if there are
non-negative parameters (ν2, α) such that

E
[[[
eλ(X−µ)

]]]
≤ eν

2λ2/2 for all λ for which |λ| ≤ 1

α
.

We write X ∈ subE (ν2, α).

These variables also exhibit heavier tails than sub-Gaussian random variables, decaying at a
rate e−t, similar to that of Z2. This slower tail decay distinguishes sub-exponential random
variables from sub-Gaussian ones and makes them suitable for modeling distributions with
heavier tails.

Lemma 2. If X ∈ subE (ν2, α), then we have:

Pr[[[X − E[[[X ]]] ≥ t]]] ≤

{
e

−t2

2ν2 0 ≤ t ≤ ν2

α

e
−t
2α t ≥ ν2

α

(1)
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The same bound holds for the tail of E[[[X ]]]−X. Alternatively, we can write:

Pr[[[X − E[[[X ]]] ≥ t]]] ≤ exp

(
−min

{
t2

2ν2
,
t

2α

})
≤ exp

(
− t2/2

ν2 + tα

)
Proof. To establish this tail bound, we employ the Cramér-Chernoff method. This method
leverages the fact that for any strictly increasing function f and any x, y ∈ R, x ≥ y if and
only if f(x) ≥ f(y). This implies that Pr[[[X ≥ Y ]]] = Pr[[[f(X) ≥ f(Y )]]]. For any λ > 0, the
function f(x) = eλx is strictly increasing. Therefore, we get:

Pr[[[X − E[[[X ]]] ≥ t]]] = Pr
[[[
eλ(X−E[[[X ]]]) ≥ eλt

]]]
≤

E
[[[
eλ(X−E[[[X ]]])

]]]
eλt

. (by Markov’s inequality)

The expected value in the numerator is the moment generating function (MGF) of the
centered random variable X − E[[[X ]]]. Since X is sub-exponential, we can bound this MGF
as follows:

Pr[[[X − E[[[X ]]] ≥ t]]] ≤
E
[[[
eλ(X−E[[[X ]]])

]]]
eλt

≤ e
ν2λ2

2

eλt
= exp

(
ν2λ2

2
− λt

)
.

This bound holds for all λ ∈
(
0, 1

α

]
. Thus, we have:

Pr[[[X − E[[[X ]]] ≥ t]]] ≤ inf
λ∈(0,α−1]

exp

(
ν2λ2

2
− λt

)
.

To obtain the tightest upper bound, we minimize the exponent over this range. The exponent
is a quadratic function in λ:

g(λ) :=
ν2λ2

2
− λt = λ

(
ν2

2
λ− t

)
.

This quadratic has roots at λ = 0 and λ = 2t
ν2
, and it attains its minimum at the midpoint,

λmin = t
ν2
. Now, we consider two cases based on whether λmin is in (0, α−1] or not:

Case 1: λmin ≤ 1
α
. In this case, the minimum is within the allowed range for λ, and we

have:

Pr[[[X − E[[[X ]]] ≥ t]]] ≤ exp

(
ν2λ2

min

2
− λmint

)
= exp

(
− t2

2ν2

)
.
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Case 2: λmin > 1
α
. Here, the minimum falls outside the allowed range. Since g(λ) is

decreasing for λ < λmin, the minimum value within the allowed range is achieved at λ = 1
α
:

Pr[[[X − E[[[X ]]] ≥ t]]] ≤ exp

(
ν2

2α2
− t

α

)
≤ exp

(
t

2α
− t

α

)
(using t >

ν2

α
)

= exp

(
− t

2α

)
.

The above bounds together imply Equation (1). To see that the same bound applies to the
other tail, Pr[[[E[[[X ]]]−X ≥ t]]], we simply note that if X is sub-exponential, then so is −X
with the same parameters. Applying the above argument to −X yields the desired bound.

The alternative form of the bound can be easily derived from the above cases, and we leave
its proof as an exercise.

This lemma reveals that sub-exponential random variables exhibit tail behavior similar to
sub-Gaussian random variables near their mean. However, as we move further away from
the mean, their tail behavior transitions to an e−t decay. The parameter ν acts as a variance
parameter, while α serves as an inverse width parameter, controlling the range over which
the sub-Gaussian-like tail behavior holds.

Alternative Definitions

It is worth noting that alternative definitions of sub-exponential random variables exist
(e.g., Section 2.7 in [Ver18]), using roughly the same parameters for both ν and α. For these
alternative definitions, we have an analogous lemma to sub-Gaussians establishing equivalent
properties.

Lemma 3 (Equivalent Properties of Sub-Exponential Random Variables). The following
properties are equivalent (up to constant factors, with the Ci’s differing by at most an absolute
constant factor) for a random variable X:

1. Tail Bound: The tail probability of X satisfies

Pr[[[ |X| ≥ t]]] ≤ 2 exp(−t/C1) for all t ≥ 0 .

2. Moment bound: The moments of X satisfy

∥X∥Lp
:= (E[[[ |X|p ]]])1/p ≤ C2 p for all p ≥ 1 .

3. MGF of |X||X||X|: The moment generating function of |X| satisfies the following bound:

E
[[[
eλ |X|]]] ≤ exp (C3 λ) for all λ such that 0 ≤ λ ≤ 1

C3

.
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4. MGF of |X||X||X|: The moment generating function of |X| is bounded at some point. For
some C4, we have:

E
[[[
e|X|/C4

]]]
≤ 2 .

5. MGF of X: If X is centered (E[[[X ]]] = 0), then the moment generating function of
X satisfies:

E
[[[
eλX

]]]
≤ exp

(
C2

5 λ
2
)

for all λ such that |λ| ≤ 1

C5

.

Deriving MGF Bound from Moment Bound: Proof of 2 ⇒ 5

Proof. Suppose X is a zero mean random variable with bounded moments. For all p ≥ 1,
we have:

∥X∥Lp
:= (E[[[ |X|p ]]])1/p ≤ C2 p .

Our goal is to bound the moment generating function ofX. We start by the Taylor expansion
of the exponential function:

ex =
∞∑
p=0

xp

p!
.

Using this, we can write the MGF of X as:

E
[[[
eλX

]]]
= E

[[[
∞∑
p=0

(λX)p

p!

]]]
≤ E

[[[
1 + λX +

∞∑
p=2

(λX)p

p!

]]]

= 1 + λE[[[X ]]] +
∞∑
p=2

λpE[[[Xp ]]]

p!
= 1 +

∞∑
p=2

λpE[[[Xp ]]]

p!
,

where we used the fact that E[[[X ]]] = 0 in the last equality. Now, we can use the moment
bound to bound the terms in the summation:

E
[[[
eλX

]]]
≤ 1 +

∞∑
p=2

λpE[[[Xp ]]]

p!
≤ 1 +

∞∑
p=2

λp(C2 p)
p

p!

≤ 1 +
∞∑
p=2

(λC2 p)
p

(p/e)p
(using Stirling’s approximation: p! ≥ (p/e)p)

= 1 +
∞∑
p=2

(C2 λ e)
p = 1 +

(C2 λ e)
2

1− C2 λ e
(for |C2 λ e| < 1)

Note that the series in the last line converges only when |C2λe| is bounded away from one.
The denominator in the last term can get arbitrarily close to zero, which makes the bound
useless. Here, we set λ in a way that the denominator is at most a constant. (Remember
that we have control in determining the range of λ.) Let’s assume λ is in a range for which
we have |C2λe| at most 1/2. Then, we obtain:
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E
[[[
eλX

]]]
≤ 1 + 2(C2 λ e)

2 ≤ exp
(
2(C2 λ e)

2
)

(for all |λ| < 1
2C2e

)

≤ exp
(
(2 eC2)

2 λ2
)
.

This shows that the MGF of X is bounded as described in Definition 5 for C5 = 2C2 e.

Bibliographic Note

The content of this lecture was derived from Section 2.7 of [Ver18], and the lecture notes
of Prof. Sasha Rakhlin for “Mathematical Statistics: A Non-Asymptotic Approach”, which
can be found here [Rak22].
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