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Lecture 10

Sub-Gaussian Random Variables (cont.)

Recall that in our previous lecture we introduced the equivalent definitions of sub-Gaussian
random variables. In this lecture, we focus on proving some of these equivalences. The
purpose of presenting this proof is to illustrate the connections between the tail bound, the
moments bound, and the moment generating function (MGF). This approach shows how
these properties can be manipulated to derive one from another.

Lemma 1. [Equivalent Properties of Sub-Gaussian Random Variables] The following prop-
erties are equivalent (up to constant factors, with the Ki’s differing by at most an absolute
constant factor) for a random variable X:

1. Tail Bound: The tail probability of X satisfies

Pr[[[ |X| ≥ t]]] ≤ 2 exp(−t2/K2
1)

for all t ≥ 0.

2. Moment bound: The moments of X satisfy

∥X∥Lp
:= (E[[[ |X|p ]]])1/p ≤ K2

√
p

for all p ≥ 1.

3. MGF of X2X2X2: The moment generating function (MGF) of X2 satisfies the following
bound: There exists K3 > 0 such that, for all λ with |λ| ≤ 1

K3
, we have

E
[[[
eλ

2X2
]]]
≤ exp

(
K2

3λ
2
)
.

4. MGF of X2X2X2: The moment generating function of X2 is bounded at some point:

E
[[[
eX

2/K2
4

]]]
≤ 2 ,

for some K4.
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5. MGF of XXX: If X is centered (E[[[X ]]] = 0), then the moment generating function of
X satisfies

E
[[[
eλX

]]]
≤ exp

(
K2

5 λ
2
)
,

for all λ ∈ R.

(Partial) Proof of Lemma 1

Deriving Moment Bound from Tail Bound: Proof of 1 ⇒ 2

Proof. We start by the integral identity of expectation. For a non-negative random variable
Y ≥ 0, we have the following integral identity:

E[[[Y ]]] =

∫ ∞

0

Pr[[[Y > t]]] dt .

This is a useful tool here, since it connects the expected value to the tail bound of that
random variable. To show that the tail bound implies the moment growth condition, we can
use the integral identity and a change of variables. Starting with the definition of the p-th
moment, we have:

E[[[ |X|p ]]] =
∫ ∞

0

Pr[[[ |X|p > t]]] dt

=

∫ ∞

0

Pr
[[[
|X| ≥ p

√
t
]]]
dt.

Now, we make the change of variables u = p
√
t, which implies t = up and dt = pup−1du. This

gives:

E[[[ |X|p ]]] =
∫ ∞

0

Pr[[[ |X| ≥ u]]] · p up−1 du

≤
∫ ∞

0

2 e−u2/K2
1 · p up−1 du,

where we used the tail bound in the last inequality. Another change of variables z = u2/K2
1

leads to:

E[[[ |X|p ]]] ≤
∫ ∞

0

2e−z · p(K1

√
z)p−1 · K1

2
√
z
dz

= pKp
1

∫ ∞

0

e−zzp/2−1 dz

= pKp
1 Γ

(p
2

)
≤ 3 pKp

1

(p
2

)p/2

,
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where Γ(·) is the Gamma function. Here, without a proof, we are using this fact that
Γ(x) ≤ 3xx for all x ≥ 0.5. Taking the p-th root of both sides, we get:

(E[[[ |X|p ]]])1/p ≤ (3 p)1/p√
2

K1
√
p ≤ 2.13K1

√
p.

To see the last inequality note that (3x)1/x has a negative derivative for x ≥ 1 implying it
takes it maximum at x = 1. This shows that the moment growth condition Definition 2
holds for K2 ≥ 2.13K1.

Deriving tail bound from MGF bound: Proof of 5 ⇒ 1

Proof. Suppose X is a zero mean random variable with bounded MGF. For all λ ∈ R, we
have:

E
[[[
eλX

]]]
≤ exp

(
K2

5 λ
2
)
.

Our goal is to bound the tail probability. In particular, for any λ > 0, we have:

Pr[[[X ≥ t]]] = Pr
[[[
eλX ≥ etλ

]]]
This identity holds because the function eλx is strictly increasing in x for λ > 0. This means
that X ≥ t if and only if eλX ≥ eλt. Since the events are equivalent, their probabilities are
equal.

Next we use the Markov’s inequality and the MGF bound we found earlier:

Pr[[[X ≥ t]]] = Pr
[[[
eλX ≥ etλ

]]]
≤

E
[[[
eλX

]]]
etλ

≤ exp
(
K2

5λ
2 − tλ

)
.

Note that the above bound holds for any λ > 0. Hence, to obtain the strongest upper
bounds, we pick λ that minimizes the right hand side:

Pr[[[X ≥ t]]] ≤ inf
λ>0

exp
(
K2

5λ
2 − tλ

)
It suffices to minimize the exponent, which is a quadratic function with roots at λ = 0 and
λ = t/K2

5 . Hence the minimum occurs at λ = t/(2K2
5). By substituting λ in here, we obtain:

Pr[[[X ≥ t]]] ≤ exp

(
− t2

2K2
5

)
.

Note that the same bound can be proved for −X. Hence, we get:

Pr[[[X ≥ t]]] ≤ 2 exp

(
− t2

2K2
5

)
.

Note that this is the desired bound for Definition 1, if we set K1 ≥
√
2K5. Hence, the proof
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is complete.

For the rest of the proofs, see Vershynin’s book [Ver18].

Limitations of Sub-Gaussians

Issue with variance-insensitive bounds: One limitation of sub-Gaussian tail bounds,
such as Hoeffding’s inequality, is that they rely on the range of the random variables but not
their actual concentration behavior, such as their variance. This can lead to loose bounds
for distributions with small variance but large range.

For example, consider a random variable X that takes value 0 with high probability and
large values ±k with small probability. In particular, for some large k, we have:

X =



−k with probability
1

2 k2
,

0 with probability 1− 1

k2
,

k with probability
1

2 k2
.

Figure 1: Distribution of X with low variance, but high subGaussianity parameter

The mean of X is 0, and its variance is small (Var[[[X ]]] = 1/k), but its range is large
(2k). If we draw k i.i.d. copies of X, X1, . . . , Xk, the probability that all of them are 0 is
(1 − 1/k2)k ≈ e−1/k ≈ 1, which is close to 1 for large k. This means that the sum

∑k
i=1 Xi

is very likely to be 0.

However, Hoeffding’s inequality, which only depends on the range, cannot distinguish this
small-variance distribution from one that is uniform on [−k, k] or one that has 1/2 probability
mass on k and −k. This is because Hoeffding’s inequality only considers the worst-case
scenario, where the random variables are concentrated at the endpoints of their range. As
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a result, it gives a very loose upper bound on the tail probability Pr
[[[
|
∑k

i=1 Xi| ≥ kϵ
]]]
,

especially for small ϵ:

Pr

[[[∣∣∣∣∣
k∑

i=1

Xi

∣∣∣∣∣ ≥ ϵ k

]]]
≤ exp

(
−Θ

(
ϵ2

k

))
.

For ϵ that is o(
√
k), this bound is roughly e−tiny ≈ 1. Hence, the upper bound provided by

Hoeffding’s inequality is very loose: for a probability that is almost 0, we provide an upper
bound of almost 1.

This limitation highlights the importance of considering the actual concentration behavior of
random variables, not just their range, when applying sub-Gaussian tail bounds. In practice,
it may be necessary to use more refined tail bounds that take into account the variance or
other concentration properties of the random variables to obtain tighter bounds.

Not all random variables are sub-Gaussian: One might conjecture that every random
variable is a sub-Gaussian random variable for a sufficiently large parameter K. This is not
true for some unbounded random variables. For instance, the square of a standard Gaus-
sian random variable Z2 is not sub-Gaussian. To see this, consider the moment generating
function of the centered variable Z − E[[[Z ]]] = Z2 − 1:

E
[[[
eλ(Z

2−1)
]]]
=

1√
2π

∫ ∞

−∞
eλ(z

2−1)e−z2/2 dz =
e−λ

√
2π

∫ ∞

−∞
e−z2(1−2λ)/2 dz

=


e−λ

√
1− 2λ

λ < 1/2 ,

unbounded λ ≥ 1/2 ,

which is unbounded for λ ≥ 1/2. However, for |λ| ≤ 1/4, Z2 behaves like a sub-Gaussian
random variable. One can verify that for |λ| ≤ 1/4:

e−λ

√
1− 2λ

≤ e2λ
2

.

Bibliographic Note

The content of this lecture was derived from Section 2.5 of [Ver18], and the lecture notes
of Prof. Sasha Rakhlin for “Mathematical Statistics: A Non-Asymptotic Approach”, which
can be found here [Rak22].
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