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Lecture 9

Sub-Gaussian Random Variables

In probability theory, we often encounter random variables that exhibit light-weight tails,
where the probability of extremely large or small values (outliers) is relatively low. This
property makes them particularly useful in analyzing concentration inequalities and estab-
lishing bounds on probabilities of rare events and finds applications in various areas such as
statistics, machine learning, and high-dimensional probability.

Among these, sub-Gaussian random variables are characterized by their tail behavior, which
closely resembles that of Gaussian random variables.

Definition 1. A random variable X is sub-Gaussian with variance proxy K2 (also known
as variance factor or sub-Gaussianity parameter) if

Pr[[[ |X| ≥ t]]] ≤ 2 exp(−t2/K2) for all t ≥ 0.

We write X ∈ subG (K2).

In this definition, the tail probability drops at the rate e−t2/K2
, which resembles a Gaussian

random variable with mean zero and variance of Θ(K2). It turns out there are other ways
to define this kind of random variables.

Lemma 2. [Equivalent Properties of Sub-Gaussian Random Variables] The following prop-
erties are equivalent (up to constant factors, with the Ki’s differing by at most an absolute
constant factor) for a random variable X:

1. Tail Bound: The tail probability of X satisfies

Pr[[[ |X| ≥ t]]] ≤ 2 exp(−t2/K2
1)

for all t ≥ 0.

2. Moment bound: The moments of X satisfy

∥X∥Lp
:= (E[[[ |X|p ]]])1/p ≤ K2

√
p

for all p ≥ 1.
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3. MGF of X2X2X2: The moment generating function (MGF) of X2 satisfies the following
bound: There exists K3 > 0 such that, for all λ with |λ| ≤ 1

K3
, we have

E
[[[
eλ

2X2
]]]
≤ exp

(
K2

3λ
2
)
.

4. MGF of X2X2X2: The moment generating function of X2 is bounded at some point:

E
[[[
eX

2/K2
4

]]]
≤ 2 ,

for some K4.

5. MGF of XXX: If X is centered (E[[[X ]]] = 0), then the moment generating function of
X satisfies

E
[[[
eλX

]]]
≤ exp

(
K2

5 λ
2
)
,

for all λ ∈ R.

We use the Θ notation in X ∈ subG (Θ (K2)) to emphasize that the sub-Gaussianity param-
eter can vary by constant factors.

Scaling: Sub-Gaussianity is closed under scaling: if a random variable X is sub-Gaussian
with parameter K, then cX is sub-Gaussian with parameter cK.

Summation: Moreover, the sum of two sub-Gaussian random variables is a sub-Gaussian
random variable (you will prove this in the problem set). In particular, if X1 and X2 are two
independent sub-Gaussian random variables in subG (K2

1) and subG (K2
2) respectively, then

we have:
X1 +X2 ∈ subG

(
K2

1 +K2
2

)
.

Examples

We provide a few examples of sub-Gaussian random variables.

Gaussian: Gaussian random variables are indeed sub-Gaussian too. In particular, we have
the following lemma about the tail bound of a standard normal random variable:

Lemma 3 (Tails of the Normal Distribution, Proposition 2.1.2 in [Ver18]). Suppose Z ∼
N (0, 1) is a standard normal random variable. Then for all t > 0, we have:(

1

t
− 1

t3

)
1√
2π

e−t2/2 ≤ Pr[[[Z ≥ t]]] ≤ 1

t
√
2π

e−t2/2 .
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Proof. To obtain an upper bound on the tail probability Pr[[[Z ≥ t]]], we start by integrating
the PDF:

Pr[[[Z ≥ t]]] =
1√
2π

∫ ∞

t

e−x2/2 dx.

We change variables by setting x = t+ y. This gives:

Pr[[[Z ≥ t]]] =
1√
2π

∫ ∞

0

e−(t+y)2/2 dy

=
1√
2π

e−t2/2

∫ ∞

0

e−tye−y2/2 dy

≤ 1√
2π

e−t2/2

∫ ∞

0

e−ty dy,

where we used the fact that e−y2/2 ≤ 1. The last integral evaluates to 1/t, so we obtain the
desired upper bound:

Pr[[[Z ≥ t]]] ≤ 1

t
√
2π

e−t2/2.

To obtain the lower bound, we use the following identity (which can be verified by integration
by parts): ∫ ∞

t

(1− 3x−4)e−x2/2 dx =

(
1

t
− 1

t3

)
e−t2/2.

Since, 1− 3x−4 is at most one, we have:(
1

t
− 1

t3

)
1√
2π

e−t2/2 =
1√
2π

∫ ∞

t

(1− 3x−4)e−x2/2 dx

≤ 1√
2π

∫ ∞

t

e−x2/2 dx = Pr[[[Z ≥ t]]] .

Hence, the proof is complete.

Given this bound, one can show that Z is a sub-Gaussian random variable as well. Using
the symmetry of the Gaussian distribution, i.e., Pr[[[Z ≤ −t]]] = Pr[[[Z ≥ t]]], we have for all
t ≥ 0:

Pr[[[ |Z| ≥ t]]] ≤ min

(
1, 2

1

t
√
2π

e−t2/2

)
≤ 2 e−t2/2

where the first inequality is due to the fact that the probability is always at most one, or
it is bounded by the tail bound we have shown earlier. For the second inequality, note that
for t ≥ 1/

√
2π, the inequality is trivial. For t < 1/

√
2π, it is easy to see that the right-hand

side is greater than one. In addition to this proof, you may see the plots of the two sides of
the inequality here.

In general, if Z ∼ N (0, σ2), then Z ∈ subG (Θ (σ2)). This follows from the fact that Z/σ ∼
N (0, 1), and applying the previous result shows that Z is sub-Gaussian with a variance proxy
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scaled by Θ(σ2). To see the effect of scaling, see Definition 1.

Rademacher random variables: If X is a random variable taking values ±1 with equal
probability, then X ∈ subG (Θ (1)). To see this, we can bound the moment generating
function of X:

E
[[[
eλX

]]]
=

1

2
eλ +

1

2
e−λ =

1

2

∞∑
k=0

λk

k!
+

(−λ)k

k!
(Since

∑∞
n=0

xn

n!
= ex for all x ∈ R)

=
1

2

∞∑
k=0

λ2k

(2k)!
(Only even terms are non-zero.)

≤
∞∑
k=0

(λ2)k

2kk!
= eλ

2/2.

This shows that the moment generating function of X is bounded by e(1/
√
2)2λ2

. Combined
with the fact that E[[[X ]]] is zero, Definition 5 implies that X ∈ subG (Θ (1)).

Bounded random variables Suppose Y is a random variable that only takes two possible
values: a and b, each with probability 1/2. The centered version of Y is Y − E[[[Y ]]] and is
defined as:

Y ′ =


b− a

2
with probability

1

2

a− b

2
with probability

1

2

Note that Y ′ has the same distribution as (b− a) ·X/2, where X is the Rademacher random
variable we defined earlier. Using the fact that X is a sub-Gaussian random variable, and
by the scaling property of sub-Gaussians, we have Y ′ ∈ subG ((b− a)2/4).

More generally, we can show the same result for any bounded random variable Z in [a, b]
with E[[[Z ]]] = 0:

Lemma 4 (Hoeffding’s Lemma). Suppose X is a zero-mean random variable in [a, b]. Then,

E
[[[
eλX

]]]
≤ exp

(
λ2(b− a)2

8

)
,

which implies X ∈ subG ((b− a)2/8).

The proof of this lemma can be found in [Rak22], Lemma 2.

This result shows that bounded random variables with zero mean are sub-Gaussian, and their
sub-Gaussianity parameter depends on the range of the variable. This is a useful property
because many random variables encountered in practice are bounded.
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Hoeffding’s Bound

The sub-Gaussianity of bounded random variables has an interesting implication. We can
show our first sophisticated concentration lemma here: Hoeffding’s bound!

Theorem 1 (Hoeffding’s Bound). Let X1, . . . , Xn be i.i.d. random variables in the range
[a, b]. Then,

Pr

[[[∣∣∣∣∣ 1n
n∑

i=1

Xi − E[[[Xi ]]]

∣∣∣∣∣ ≥ ϵ

]]]
≤ 2 exp

(
− 2ϵ2n

(b− a)2

)
.

Proof. Here we prove this theorem ignoring the constant factor in the exponent. Let’s first
focus on centering these random variables. Define Yi = Xi−E[[[Xi ]]]. Then, Yi is a zero-mean
random variable in the interval [a− E[[[Xi ]]], b− E[[[Xi ]]]]. By Hoeffding’s Lemma (Lemma 4),
Yi’s are in subG ((b− a)2/8). Since Y1, . . . , Yn are independent, we have

n∑
i=1

Yi ∈ subG
(
n(b− a)2/8

)
.

Therefore, using the tail bound property of sub-Gaussians, we have:

Pr

[[[∣∣∣∣∣ 1n
n∑

i=1

Xi − E[[[Xi ]]]

∣∣∣∣∣ ≥ ϵ

]]]
= Pr

[[[∣∣∣∣∣
n∑

i=1

Yi

∣∣∣∣∣ ≥ ϵn

]]]
≤ 2 exp

(
−Θ

(
ϵ2n2

n(b− a)2

))
.

Ignoring the constant in the exponent, this bound implies the statement of the lemma.

Bibliographic Note

The content of this lecture was derived from Section 2.5 of [Ver18], and the lecture notes
of Prof. Sasha Rakhlin for “Mathematical Statistics: A Non-Asymptotic Approach”, which
can be found here [Rak22].
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