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Lecture 7

Reducing the L2 Norm of a Distribution via Flattening

A useful technique in distribution testing is reducing the L2 norm of a distribution. This
can be achieved through flattening, a process that transforms the original distribution p into
a new distribution p′. The core idea is to distribute the probability mass of elements with
high probability in p among multiple elements in p′, effectively “flattening” the distribution
and reducing its L2 norm. This process is illustrated in Figure 1.

The transformation from p to p′ involves determining, for each element i in the domain [n],
the number of elements in p′ that will correspond to i. Let bi denote this number for element i.
We will discuss how to choose bi shortly; for now, assume bi is given. For each element i
in the domain of p, we associate bi elements in the domain of p′ with i. We refer to these
associated elements as “buckets.” The probability mass of i in p is then distributed equally
among its bi buckets in p′.

Formally, we define:

New domain of p′ : D′ := {(i, j) | i ∈ [n], j ∈ [bi]} (1)

New domain size: |D′| =
n∑

i=1

bi (2)

Probability of a domain element in p′ : p′(i,j) =
pi
bi

(3)

It is straightforward to verify from this definition that the probabilities in p′ sum to one.

1 2 3 4

p

bi’s: 2 1 2 3 (1, 1) (1, 2) (2, 1) (3, 1) (3, 2) (4, 1) (4, 2) (4, 3)

p′

split flattening

Figure 1: Flattening of a distribution p to p′
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This transformation ideally has the following properties:

1. Access: For known bi’s, we have the same access to p′ as to p. That is, if we know the
probabilities of every element in p, we also know the probabilities of every element in
p′. Similarly, if we have sample access to p, we have sample access to p′.

2. Preservation of L1 distance: For a fixed set of bi’s, the transformation preserves
the L1 distance between distributions.

3. Reduced L2 norm: We can choose bi’s such that the L2 norm of p′ is low.

The first two properties are straightforward to establish for any choice of bi’s. Regarding
access, if p is known, the probability of each bucket (i, j) is given by Equation (3). To sample
from p′, we can use a sample from p. Specifically, if i is a sample drawn from p, we can then
draw a uniform random sample j from [bi]. The pair (i, j) then constitutes a sample from p′.

Next, we show that if we flatten p and q using the same set of bi’s, the resulting distributions
p′ and q′ have the same L1 distance as p and q. Formally,

∥p′ − q′∥1 =
∑
i∈[n]

∑
j∈[bi]

|p′(i,j) − q′(i,j)| =
∑
i∈[n]

∑
j∈[bi]

∣∣∣∣pibi − qi
bi

∣∣∣∣
=
∑
i∈[n]

|pi − qi|
∑
j∈[bi]

1

bi

∑
i∈[n]

|pi − qi| = ∥p− q∥1 .

Determining the Number of Buckets

For the third property (reduced L2 norm), we need to carefully choose the number of buckets,
bi, for each element i. Ideally, we want to decompose elements of p with high probability into
smaller pieces, effectively ”flattening” the distribution and making it more uniform. Thus,
we aim for bi to be proportional to pi. Various methods exist for determining the bi values.
Here, we focus on the approach proposed in [DK16]. This approach is illustrated in Figure 2.
Given a parameter k, the method proceeds as follows:

1. Draw k′ from a Poisson distribution with mean k (i.e., k′ ← Poi(k)).

2. Draw a set F of k′ independent samples from p.

3. For each i ∈ [n], let fi denote the frequency of element i in F .

4. For each i ∈ [n], set bi = fi + 1.
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1 2 3 4

p

1 3 4 4

bi’s: 2 1 2 3

samples frequency + 1

Figure 2: Calculating bi’s from samples of p

Let’s analyze how this flattening affects the L2
2 norm of p′. We focus on the expected value

of the L2
2 norm, where the expectation is taken over the randomness of the sample set F .

EF

[[[
∥p′∥22

]]]
= EF

[[[
n∑

i=1

bi∑
j=1

(p′(i,j))
2

]]]
= EF

[[[
n∑

i=1

bi∑
j=1

p2i
b2i

]]]

=
n∑

i=1

p2i · EF

[[[
1

bi

]]]
=

n∑
i=1

p2i · EF

[[[
1

fi + 1

]]]
.

Recall that we defined bi = fi+1, where fi is the frequency of element i in the sample set F .
From the discussion on Poissonization, we know that fi is a random variable drawn from
Poi(pi k). Let’s focus on the expected value of 1/(fi + 1):

Efi∼Poi(pi·k)

[[[
1

fi + 1

]]]
= E

[[[∫ 1

0

xfidx

]]]
=

∫ 1

0

E
[[[
xfi
]]]
dx (via linearity of expectation)

=

∫ 1

0

(
∞∑
t=0

xt · e
−pik(pi k)

t

t!

)
dx (via definition of Poisson dist.)

=

∫ 1

0

e−pi k+pi k x

(
∞∑
t=0

e−pi k x(pi k x)
t

t!

)
dx

Note that the terms in the sum are probabilities of Z = t, where Z is drawn from Poi(pi k x).
Thus, the sum of those terms is equal to one. Therefore, we have:

Efi∼Poi(pi·k)

[[[
1

fi + 1

]]]
=

∫ 1

0

epi k (x−1)dx =
1

pi k
· epi k (x−1) |1x=0≤

1

pi k
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Now, returning to the bound for the L2
2 norm of p′, we have:

EF

[[[
∥p′∥22

]]]
=

n∑
i=1

p2i · EF

[[[
1

fi + 1

]]]
≤ 1

k

n∑
i=1

pi =
1

k

Costs of flattening: While flattening significantly reduces the L2
2-norm, it introduces

some costs. First, the process of determining the bi’s requires drawing samples from p, thus
increasing the overall sample complexity. Second, flattening inflates the domain size, which
can indirectly increase the sample complexity of any subsequent algorithms that operate on
the flattened distribution:

new domain size: |D′| =
n∑

i=1

bi =
n∑

i=1

fi + 1 = Poi(k) + n

Other flattening schemes: There are various methods for determining the bi values,
allowing us to choose a flattening strategy tailored to the specific problem structure. For
instance, some flattening techniques are designed for testing the independence of random
variables. Here, we focused on a scheme suitable for an unknown distribution p. If p were
known (i.e., all probabilities pi were available), we could set bi = ⌊npi⌋ + 1. As an exercise,
the reader can verify that this approach reduces the L2

2 norm of p′ to O(1/n).

Back to Closeness Tester

Recall from our previous lecture that there exists an algorithm that, for two distributions
over [n], distinguishes whether p = q or they are ϵ-far with a probability of at least 0.9 using
the following number of samples:

s = O

(
n ·max (∥p∥2, ∥q∥2)

ϵ2

)
.

Given the flattening technique introduced in this lecture, we can efficiently test closeness
between p and q. For some k (to be determined), we draw Poi(k) samples from p and q
and use them to create flattened distributions p′ and q′, respectively. We then apply the
closeness tester to p′ and q′ to determine if they are equal or ϵ-far. This process is depicted
in Figure 3. As shown previously, flattening preserves the L1 distance between distributions.
Thus, p = q if and only if p′ = q′, and if p is ϵ-far from q, then p′ is ϵ-far from q′.

To reduce the L2 norm of both p and q, we combine the flattening steps. Drawing two sets
of Poi(k) samples (one from p and one from q), we set bi = f

(p)
i + f

(q)
i , where f

(p)
i and f

(q)
i

are the frequencies of element i in the respective sample sets. As long as bi ≥ f
(p)
i + 1, the

L2
2 norm reduction is guaranteed, as shown earlier.

To ensure that the testing step has a reduced sample complexity, we must show that the
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Figure 3: Diagram of the flattening and testing process

L2 norm is reduced with high probability. Since the expected L2 norm of p′ is at most 1/k,
Markov’s inequality implies that the L2 norms of p′ and q′ are each at most 100/k with
probability at least 0.99.

The optimal choice of k balances the sample complexity of the flattening and testing steps.
The total sample complexity is

O(k + s) = O

(
k +

n′

ϵ2
√
k

)
= O

(
k +

n+ k

ϵ2
√
k

)
,

where n′ = O(n+ k) is the size of the new domain.

If k ≥ n, the sample complexity increases with k, so we need not consider k > n. When k ≤ n,

we have two competing terms: O(k) (increasing) and O
(

n√
kϵ2

)
(decreasing). Minimizing

their sum yields k = n2/3/ϵ4/3. Since k ≤ n, the optimal choice is k = min(n, n2/3/ϵ4/3).
Substituting this value into the total sample complexity gives a final sample complexity of

O

(
n2/3

ϵ4/3
+

√
n

ϵ2

)
.

This sample complexity is known to be optimal for this problem.

Bibliographic Note: The content of this lecture is based on [DK16]. Further applications
of the flattening technique can be found in that work.
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