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Lecture 5

Poisson Approximation for Binomial Distribution

Definitions

You are probably familiar with the binomial, Multinomial, and Poisson distributions. Here
we provide their definitions.

Binomial distribution: A Binomial random variable X with parameters (m, q) is given
by

X ∼ Bin(m, q), Pr[[[X = k ]]] =

(
m

k

)
qk(1− q)m−k,

for k = 0, 1, . . . ,m. This distribution arises when we count the number of successes in a
fixed number of independent trials, where each trial has the same probability of success.

Multinomial distribution: The Multinomial distribution generalizes the binomial dis-
tribution to scenarios with more than two outcomes. We have m independent trials, where
each trial can result in one of n possible outcomes with probabilities p1, p2, ..., pn (where∑n

i=1 pi = 1). Let Xi be the number of times outcome i occurs in the m trials. Then,
the random vector (X1, X2, ..., Xn) follows a multinomial distribution. This is equivalent
to drawing m samples from a distribution p over [n], where Xi represents the frequency of
element i in the sample set.

Poisson distribution: Poisson random variable Y with parameter λ is given by

Y ∼ Poi(λ), Pr[[[Y = k ]]] =
e−λλk

k!
,

for k = 0, 1, 2, . . .. This distribution arises when we count the number of events that occur
over a fixed period of time or space, given a constant rate of occurrence and independence
between occurrences.

A well-known approximation result states that a binomial distribution can be approximated
with a Poisson distribution under certain conditions. This approximation provides a useful
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simplification in probability applications. In this lecture, we will explore the connections
between these two distributions from various aspects and prove some interesting properties
about these two distributions.

Convergence in the limit

The binomial distribution converges to the Poisson distribution in the limit. Specifically,
when the number of trials m is large and the success probability q is small, the binomial
distribution with parameters m and q converges to the Poisson distribution. This concept is
formalized in the following theorem.

Theorem 1. Let Xm ∼ Bin(m, q), where q depends on m in such a way that mq = λ (a
constant). Then for any fixed k ≥ 0,

lim
m→∞

Pr[[[Xm = k ]]] =
e−λ λk

k!
= PrY∼Poi(λ)[[[Y = k ]]] .

Sketch of Proof. Here is an informal proof sketch. The following shows that these prob-
abilities are roughly the same.

Pr[[[Xm = k ]]] =

(
m

k

)
qk (1− q)m−k

=
m!

k! (m− k)!
qk (1− q)m−k

=
m(m− 1) · · · (m− k + 1) (m− k)!

k! (m− k)!
qk (1− q)m−k

≈ (mq)k

k!
(1− q)m (m ≈ m− i when m is large compared to i.)

≈ (mq)k

k!
e−mq

=
λk e−λ

k!
= PrY∼Poi(λ)[[[Y = k ]]] ,

where we used the approximation (1− q)m ≈ e−mq for large m, since:

lim
m→∞

(1− λ/m)m

e−λ
= 1 .

For a more rigorous proof, see Theorem 5.5 and its proof in [MU05].

From Poissons to Multinomials

A nice property of Poisson distributions is that they are closed under addition. That is,
suppose we have two independent Poisson random variables: Y1 ∼ Poi(λ1) and Y2 ∼ Poi(λ2).
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Then, the sum of the two random variables is also a Poisson random variable, with the
parameter being the sum of the individual parameters:

Y1 + Y2 ∼ Poi(λ1 + λ2).

Poisson random variable
with rate λ1

Poisson random variable
with rate λ2

Sum = Poisson random variables with rate λ1 + λ2.

Figure 1: Imagine two pipes pouring streams of red and blue balls into a pool. Each pipe
follows an independent Poisson process with rates λ1 and λ2, respectively. The total number
of balls in the pool also follows a Poisson process, with a combined rate of λ1 + λ2. If
the pool contains exactly m balls, the number of red balls follows a binomial distribution:

Bin
(
m, λ1

λ1+λ2

)
.

An interesting question is: if we fix the sum of two independent Poisson random variables
(i.e., Y1 + Y2 = m), what would be the contribution of the first versus the second? It turns

out that given Y1+Y2 = m, the distribution of Y1 is a binomial distribution: Bin
(
m, λ1

λ1+λ2

)
.

More formally, we have the following lemma which shows this interesting connection between
the Poisson and binomial distributions:

Lemma 1. Suppose we have two independent Poisson random variables: Y1 ∼ Poi(λ1) and
Y2 ∼ Poi(λ2). Then, condition of Y1 + Y2 = m, for any k ∈ {0, 1, . . . ,m}, we have:

Pr
[[[
Y1 = k

∣∣ Y1 + Y2 = m
]]]

= Pr[[[X = k ]]], for X ∼ Bin
(
m,

λ1

λ1 + λ2

)
.

Proof. We claim that, conditioning on Y1 + Y2 = m, the distribution of Y1 is exactly the
same as a Bin

(
m, λ1

λ1+λ2

)
. Indeed, for k ≤ m, we have:
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Pr
[[[
Y1 = k

∣∣ Y1 + Y2 = m
]]]
=

Pr[[[Y1 = k and Y1 + Y2 = m]]]

Pr[[[Y1 + Y2 = m]]]

=
Pr[[[Y1 = k and Y2 = m− k ]]]

PrY∼Poi(λ1+λ2)[[[Y = m]]]

=

e−λ1 λk
1

k!
· e−λ2 λm−k

2

(m− k)!

e−(λ1+λ2)(λ1 + λ2)
m

m!

=
e−(λ1+λ2) λk

1 λ
m−k
2

k! (m− k)!
· m!

e−(λ1+λ2) (λ1 + λ2)m

=

(
m

k

)(
λ1

λ1+λ2

)k(
λ2

λ1+λ2

)m−k

.

This is exactly the PMF of a Bin
(
m, λ1

λ1+λ2

)
. Hence, we have:

Pr
[[[
Y1 = k

∣∣ Y1 + Y2 = m
]]]

= Pr[[[X = k ]]], X ∼ Bin
(
m, λ1

λ1+λ2

)
.

By induction, one can verify that similar statement is true when we have n Poisson random
variables: If Yi ∼ Poi(λi) for all i ∈ [n], then we have:

n∑
i=1

Yi ∼ Poi

(
n∑

i=1

λi

)
.

Moreover, condition on that the sum is m, for each Yi and k ∈ {0, 1, . . . ,m}, we have :

Pr

[[[
Yi = k

∣∣∣∣∣
n∑

i=1

Yi = m

]]]
= Pr[[[X = k ]]], X ∼ Bin

(
m, λi∑n

i=1 λi

)
.

From Multinomials to Poissons: Poissonization Method

Consider a distribution p over [n]. Suppose we draw m samples from p. Let Xi be the
frequency of element i ∈ [n]. We stated earlier that Xi’s are coming from a multinomial
distribution. We can also view each Xi individually as a binomial random variable:
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Xi ∼ Bin(m, pi).

Note that Xi’s here are not independent since we know their sum is fixed:
∑

i Xi = m. This
is an issue if we want to analyze a statistic involving Xi, as we saw in the case of number
collisions in the previous lecture, where the analysis of the variance gets complicated when
random variables are not independent. In such cases, one applies a “Poissonization” trick to
handle the dependency more easily - replacing a fixed-sample-size model by an approximate
Poisson model, for which the frequency of elements becomes a Poisson random variable and
independent of the rest of the frequencies, making certain calculations more tractable.

Based on our intuition from the previous part, in this case, we know we need to make the
total number of samples a Poisson random variable. Let’s try this approach and make the
number of samples, instead of m, a random variable m̂ ∼ Poi(m):

• Draw a (random) number m̂ ∼ Poi(m).

• Then, draw m̂ i.i.d. samples s1, . . . , sm̂ from p.

• For each i ∈ [n], let
Yi = #{indices j : sj = i}.

We claim each Yi is distributed as Poi(mpi), and moreover the Yi’s are independent. Com-
pare this to the standard binomial model: Xi ∼ Bin(m, pi), where

∑n
i=1 Xi = m is

fixed.

Lemma 2. If Yi’s are generated according to the process we described earlier, then we
have:

Yi ∼ Poi(mpi) ,

and they are independent of each other.

Proof. Note that if we fix m̂, Yi’s form a random variable from a multinomial distribution.
Therefore, we obtain:

Pr[[[Yi = k ]]] =
∞∑
t=0

Pr
[[[
Yi = k

∣∣ m̂ = t
]]]
Pr[[[m̂ = t]]] (By law of total probability)

=
∞∑
t=k

(
t

k

)
pki (1− pi)

t−k e−m mt

t!
.

Note that it is impossible to have Yi > m̂. Thus, the first k terms in the above sum are zero.
We continue our calculation by expanding the binomial coefficient:
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Pr[[[Yi = k ]]] = pki e
−m

∞∑
t=k

mt (1− pi)
t−k

k! (t− k)!

=
pki
k!

e−m

∞∑
u=0

mk+u (1− pi)
u

u!
(Change of variable to u := t− k)

=
pki m

k

k!
e−m

∞∑
u=0

[
m(1− pi)

]u
u!

=
pki m

k

k!
e−mem(1−pi) (Since

∑∞
n=0

xn

n!
= ex for all x ∈ R)

=
(pi m)k

k!
e−pim,

which is exactly the PMF of a Poi(pi m).

Moreover, a closer look at the above derivation shows that Pr[[[Yi = k ]]] involves no terms
from Yj (j ̸= i), meaning the probability of Yi = k stays the same regardless of all other Yj’s.
One can make a similar calculation for each Yj. Therefore, one can imply that the Yi’s are
independent Poi(pi m) variables.

Poissonization and De-Poissonization

One way to leverage the Poisson approximation is to treat binomial random variables as
if they were Poisson. This allows us to exploit the independence of Poisson variables and
simplify calculations in the “Poisson world”. We can then translate the results back to
the binomial world. This technique is particularly useful for the classical “balls and bins”
problem.

To illustrate, consider throwing m balls into n bins uniformly at random. For each bin i,
the number of balls in that bin, denoted by Xi, follows a binomial distribution:

Xi ∼ Bin
(
m, 1

n

)
.

We can approximate Xi with a Poisson random variable Yi:

Yi ∼ Poi
(

m
n

)
.

Both Xi and Yi have the same mean, m/n, but their distributions differ. The strategy is to
perform calculations in the Poisson world, treating Xi as if it were Yi, and then translate
the results back to the binomial world. This is often easier due to the independence and
other convenient properties of Poisson variables. The following theorems provide bounds for
translating results between the two worlds.

Theorem 2. Let f(x1, . . . , xn) be a nonnegative function. For the balls-and-bins setup, the
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expectation in the binomial world is bounded by the expectation in the Poisson world as
follows:

E[[[f(X1, . . . , Xn)]]] ≤ e
√
mE[[[f(Y1, . . . , Yn)]]]

Corollary 3. If an event A occurs with probability q in the Poisson world, its probability in
the binomial world is at most

q e
√
m.

Proof. Define an indicator function f that equals 1 if event A occurs and 0 otherwise. The
expectations of f in the binomial and Poisson worlds correspond to the probabilities of A in
those worlds. Applying Theorem 1 yields the desired bound.

Theorem 3. Let f(x1, . . . , xn) be a nonnegative function whose expectation is monotonic in
the number of balls (m =

∑n
i=1Xi). Then,

E[[[f(X1, . . . , Xn)]]] ≤ 2E[[[f(Y1, . . . , Yn)]]] .

This theorem offers a tighter bound than Theorem 2 when the expectation of the function
is monotonic.

Corollary 4. Let A be an event whose probability is either monotonically increasing or
monotonically decreasing as we vary the number of balls m. If Pr[[[A in Poisson world]]] ≤ q,
then Pr[[[A in binomial world]]] ≤ 2 q.

Here, “monotonically increasing” means that adding more balls can only make A more likely.
And, similarly for “monotonically decreasing” means that adding more balls can only make
A less likely.

For the proof of these theorems, see Section 5.4 of [MU05].

Bibliographic note:

The content of this lecture was drawn from Section 5.4 of our reference book [MU05].
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