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Binomial/Multinomial Poisson
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why does this even make sense ?

Binomials are usually pretty normal ,

unless you push them to the limit

- then they turn into a Poisson

(and make quite the splashh...)
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Example balls and bins

- [

M balls are thrown into n bins uniformly
at random.

Xi : = #balls in bin i

Xi Bin (m , Yn(

Xi's are not independent. ·

(X , -m implies all other Bis are zero
.)

In Poisson world :

Y +
Poi (Mn(

↳ all independent

Go and solve your favorite problem in

this new worldd.
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n is very longe and p is small
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Poissons with fixed sum

suppose we have two independent r
.

v.

Y
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Kim observe that YY
, eYa is a rando

variable from Poi(d + d) .

proof
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claim 2 condition on the sum of Y + Yz
-

These rv . are coming from a Binomial

distribution.

Assume Y
,

+ Ye = m for a fixed m,

then
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How about the joint distribution
-

binomial world Poisson would

(k) (m)

↓ ie In] Xis Bin(k , Yml : Poi (Mul

(m) (m)

Theorem The distribution (Y ... - ,
Yn (

-

conditioned on[Y
-
b is the

i

same as (X ,
"

, ...,

Xn
*

).

Proof Suppose we have
a tuple (k , , ..., kn]

-

such that Ki =
Binomial world :

Pr(X :
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= My . --
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How to go from binomial world to poisson

world ?

Example sampling from a discrete
-

distribution

S1 ,
S
, ,

. . . .

,
Sm - P over (1]

* is [n] Xi : = Frequency of i

among samples

=
not independent

E(Xi] = mp ; Yi = Poi (mpil



Multinomial world : Poisson world

Fix m Fix m

Draw S,
, . - - Sm 1 : -

Poi (m)

Xia Bin ( m
, Pil

Draw S, ...., Som

Yi - frequency of i
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* Since the probability distribution of :

does not involve any Y; (j * i) ,
one can

imply thatPi's one independent.



How to translate back ?

Example : we focus on balls and bins

setting and mention few theorems without

proofs.

setup :

Suppose we have thrown m balls

into n bins uniformly at random.

Xi = # balls in bin i is a random

variable drawn from Bin (m , Yn)

we approximate Xi with Yi

where i is drawn From Poilm/)

notice the means &
are identical .



Theorem 1

Letf(x ,
, . . .,

And be a non-negative

function. Then for the balls and bins

setup stated above :

E [f(X ,, . .

., Xn)]2eVm #[f(Y , . ... Yn]

corollary if an event A happens with

probability p in the poisson setup ,
the

A happens with probability at most

perm in the binomial setup.

Proof
.
Set f(a , . . . ., an) = 1

if A considered as
"occurred" when we

have di balls in bin i
.

and set

f(d , . . . .,
Un100 otherwise



clearly ,
we have

E[f(X , ,
. . . ,
Xn)] - Pr [A inbinomiala

E[f.,
.
... YnSt - Pr [A in Piasson]would

Applying theorem 1 implies the

statement 13

-

Theorem 2 Let 71s
, ...,

km) be a non-negative

function s .

t
. E[F(X ....., Xm)] in either monotonically

increasing or monotonically decreasing in m.

Then
E (f(X , , . ., Xn)]22 - #[71y, , . . .. Yn)]

corollary : Let A be on event whose probability

is either monotonically increasing or monotonically

decreasing, in the number of balls. If A has

probability p is in the poissonized world. Her

A has probability elp in t Binomial would.


