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Lecture 4

Property Testing of Distributions: Uniformity testing

In statistical inference, we often have limited access to the complete population and must
rely on samples. We model the population as a probability distribution, which provides
a mathematical framework for representing outcome probabilities. In distribution testing,
we aim to efficiently determine, based on observed samples, whether this distribution has a
certain property or is far from having it. This aligns with the core objective of statistical
inference: inferring properties of an unknown population distribution from data.

Problem Definition

What is a property? A property P is a set of distributions. If a distribution p ∈ P , then
p has the property; otherwise, it does not. For instance, P could be the set of unimodal
distributions or the set containing only the uniform distribution on [n], denoted as Un.

Distance measure: We need to define what it means for a distribution to be far from
having a property. First, consider the distance between two distributions. Common examples
include:

• ℓ1-distance: ∥p− q∥1 =
∑

x∈Ω |px − qx|

• ℓ2-distance: ∥p− q∥2 =
√∑

x∈Ω(px − qx)2

• Total Variation distance: ∥p− q∥TV = maxE⊆Ω |Prx∼p[[[x ∈ E ]]]−Prx∼q[[[x ∈ E ]]]|

where p and q are two distributions over a discrete domain Ω. A key relationship between
distances is:

∥p− q∥1 = 2 ∥p− q∥TV .

Exercise: Prove the above identity. The distance between a distribution p and a property
P is the distance between p and its closest distribution in P :

dist(p,P) := inf
q∈P

dist(p, q) .
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We can use various distance notions instead of dist here. We say p is ϵ-close to P if
dist(p,P) ≤ ϵ, and ϵ-far if dist(p,P) > ϵ.

What do we want to distinguish? Our goal is to distinguish distributions that have
a property from those that are far from having it. For example, consider a distribution
almost perfectly uniform over [n], except for a tiny probability of outputting the element
1. Finding such negligible differences can require many samples. Therefore, we aim to
distinguish whether p ∈ P or p is ϵ-far from P .
For distributions that are neither in P nor ϵ-far from P (i.e., ϵ-close but not in P), either
answer is considered valid. We accept the compromise of misclassifying distributions that
are close to having the property, even if they don’t have it exactly.

Tester: Consider three parameters ϵ ∈ (0, 1), δ ∈ (0, 1), and n ∈ N. Suppose an algorithm
A receives these parameters and m-samples from a discrete distribution p over [n] as its
input and produce an output in {accept, reject }. We say A is an (ϵ, δ)-tester for property
P , if the following holds with probability 1− δ:

1. If p ∈ P , then A outputs accept.

2. If p is ϵ-far from P (in ℓ1-distance), then A outputs reject.

m is considered as the sample complexity of the algorithm.

Uniformity Testing

The goal of uniformity testing is to design an algorithm that takes samples from a distribution
and determines whether the distribution is uniform or ϵ-far from uniform. Consider the
following sets of samples:

Scenario 1: 9, 2, 8, 5, 1, 5, 3

Scenario 2: 6, 4, 6, 4, 1, 1, 4

Could you guess one of this set of samples is drawn from a uniform distribution? Can you
find out what gives it away?

The intuition that we would like to highlight from this example is that If we draw samples
from a uniform distribution, we expect to see fewer repetitions compared to samples drawn
from a non-uniform distribution. Based on this intuition, we design an algorithm that counts
the number of repeated pair of samples or what we refer to as collisions. Consider two samples
drawn from p as Xi and Xj. We consider this pair as a collision if Xi = Xj. We use σi,j as
the indicator variable for this event:

σi,j :=

{
1 if Xi = Xj,
0 otherwise.

2



COMP 585 Lecture 4 Spring 2025

Now, in a sample set {X1, . . . , Xm}, the total number of collision can be a good indicator of
uniformity. We formalize this argument in Algorithm 1. For some number of samples, for
now denoted by m, and some sufficiently large threshold t, we count the number of collisions.
We normalize this number by dividing it by the total number of pairs of samples,

(
m
2

)
to

obtain a value between 0 and 1. Then, we compare it with the threshold t. If the number
of collisions are high we infer that the distribution is not uniform. Otherwise, it is uniform.
Our goal is to determine what m and t should be so that we get an (ϵ, δ = 0.1)-tester for
uniformity (P = {Un}).

Algorithm 1 Collision-Based Uniformity Tester

1: procedure Collision-Tester(ϵ, δ, n, sample access to p)
2: Draw m samples from the distribution p: X1, X2, ..., Xm.
3: for i = 1 to m− 1 do
4: for j = i+ 1 to m do
5: if Xi = Xj then
6: σi,j ← 1
7: else
8: σi,j ← 0

9: Y ←
∑

i<j σi,j(
m
2

)
10: if Y < t then
11: return accept
12: else
13: return reject

Here, we consider two cases: when the underlying distribution is uniform, denoted by p1,
and when it is far from uniform, denoted by p2. Figure 1 illustrates the probability density
function (PDF) of Y under these two scenarios. When p1 is uniform, Y has a low expectation,
Ep1[[[Y ]]]. Conversely, when p2 is far from uniform, Y has a high expectation, Ep2[[[Y ]]]. We set
the threshold t at the midpoint between these expectations. The concentration of Y around
its respective expectation ensures that deviations beyond t are improbable. Specifically, the
blue shaded area shows the unlikely event of Y > t when the underlying distribution is
uniform, and the red shaded area shows the unlikely event of Y < t when it is far from
uniform.
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Figure 1: Separation of the PMFs of Y when the underlying distribution is uniform versus
far from uniform.

Expected values

Let’s first analyze the expected value of Y . The expected value of σi,j is:

E[[[σi,j ]]] =
n∑

ℓ=1

Pr[[[Xi = Xj = ℓ]]] =
n∑

ℓ=1

Pr[[[Xi = ℓ]]] ·Pr[[[Xj = ℓ]]]

(Since samples are independent.)

=
n∑

ℓ=1

p2ℓ = ∥p∥
2
2 .

Therefore, the expected value of Y is:

E[[[Y ]]] =
1(
m
2

)∑
i<j

E[[[σi,j ]]] = ∥p∥22 . (1)

We can relate this to the ℓ2-distance of p from the uniform distribution:

E[[[Y ]]] = ∥p∥22 =
n∑

ℓ=1

p2ℓ =
n∑

ℓ=1

(
pℓ −

1

n
+

1

n

)2

=
n∑

ℓ=1

(
pℓ −

1

n

)2

+ 2

(
pℓ −

1

n

)
· 1
n
+

1

n2

= ∥p− Un∥22 +
2

n

(
n∑

ℓ=1

pℓ −
1

n

)
+

1

n

=
1

n
+ ∥p− Un∥22 .

(2)

Note that in the last equality we used the fact that
∑n

ℓ=1 pℓ is one. This shows that the
expected value of Y is directly related to the squared ℓ2 distance between the distribution p
and the uniform distribution. The farther p is from uniform, the larger the expected value
of Y .
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Now, when the underlying distribution is the uniform distribution, we have:

Ep1[[[Y ]]] =
1

n
.

On the other hand, when p is ϵ-far from the uniform distribution (i.e., the total variation
distance between p and the uniform distribution is at least ϵ), we have:

Ep2[[[Y ]]] =
1

n
+ ∥p2 − Un∥22 ≥

1

n
+
∥p2 − Un∥21

n
≥ 1 + ϵ2

n
.

The first inequality is due to the Cauchy-Schwarz inequality:(
n∑

ℓ=1

(
(p2)ℓ −

1

n

)2
)
·

(
n∑

ℓ=1

(1)2
)
≥

n∑
ℓ=1

∣∣∣∣(p2)ℓ − 1

n

∣∣∣∣ · 1
⇒ ∥p2 − Un∥22 · n ≥ ∥p2 − Un∥21 .

The second inequality is due to the fact that p2 is ϵ-far from being a uniform distribution.

The above analysis demonstrates a separation between the expected value of Y based on
the uniformity of the underlying distribution. We set our threshold to be between these two
bounds to account for the potential deviation of Y from its expectation:

t :=
1 + ϵ2/2

n
.

Concentration bounds

To establish concentration bounds for Y , we can employ concentration bounds. Note that Y
is not a sum of independent random variables, making it unsuitable for a direct application
of the Chernoff bound. Our plan is to use Chebyshev’s inequality, which requires us to
compute the variance of Y . We state the following lemma:

Lemma 1.

Var[[[Y ]]] =
1(
m
2

)2 · ((m2
)
∥p∥22 + 6

(
m

3

)
∥p∥33

)
.

We will defer the proof of this lemma for later. In the following, we bound the probability
that Y goes beyond threshold t.
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Case 1: the uniform distribution. In this case, we have:

Prp1[[[Y ≥ t]]] ≤ Pr

[[[
|Y − Ep1[[[Y ]]]| ≥ ϵ2

2n

]]]
≤ Var[[[Y ]]](

ϵ2

2n

)2 (By Chebyshev’s inequality)

=
1(
m
2

)2 · ((m2
)
∥p1∥22 + 6

(
m

3

)
∥p1∥33

)
· 4n

2

ϵ4

= Θ

(
n2

m4ϵ4
·
(
m2 · 1

n
+

m3

n2

))
(Since p1 is uniform.)

= Θ

(
n

m2ϵ4
+

1

mϵ4

)
≤ 0.1,

if m ≥ c ·
(√

n
ϵ2

+ 1
ϵ4

)
for a sufficiently large constant c.

Case 2: a distribution far from uniform. Consider p2 for which we have ∥p2 − Un∥1 >
ϵ. In this case, the bound on the variance can be large. Specifically, the term

(
m
2

)
∥p∥22 +

6
(
m
3

)
∥p∥33 could be problematic if we require |Y − E[[[Y ]]]| ≤ ϵ2

2n
. To address this, we adjust

the bound accordingly:

Prp2[[[Y < t]]] = Pr

[[[
E[[[Y ]]]− Y > E[[[Y ]]]− 1 + ϵ2/2

n

]]]
Note that using Equation 2, we have:(

1 +
ϵ2

2

)
· E[[[Y ]]] ≥

(
1 +

ϵ2

2

)
· 1
n

⇒ E[[[Y ]]]− 1 + ϵ2/2

n
≥ ϵ2

2
· E[[[Y ]]]

Thus, we obtain:
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Prp2[[[Y < t]]] = Pr

[[[
E[[[Y ]]]− Y > E[[[Y ]]]− 1 + ϵ2/2

n

]]]
≤ Pr

[[[
E[[[Y ]]]− Y >

ϵ2

2
· E[[[Y ]]]

]]]
≤ 4Var[[[Y ]]]

ϵ4E[[[Y ]]]2
(By Chebyshev’s inequality)

≤ 4(
m
2

)2 ·
(
m
2

)
∥p∥22 + 6

(
m
3

)
∥p∥33

ϵ4 ∥p∥42

= Θ

(
1

m2 · ϵ4 ∥p∥22
+

∥p∥33
m · ϵ4 ∥p∥42

)

≤ Θ

(
n

m2ϵ4
+

√
n

mϵ4

)
≤ 0.1,

(Using ∥p∥22 ≥
1
n
(implied by Eq. 2), and ∥p∥33 ≤ ∥p∥

3
2 (implied by Fact 2))

if m ≥ c ·
√
n

ϵ4
for a sufficiently large constant c. Here, we used the following inequality that

is known as ℓp-norm inequality:

Fact 2 (ℓp-norm Inequality for Distributions). For any probability distribution d =
(d1, d2, ..., dn) over [n] and 1 ≤ q ≤ p ≤ ∞, the following inequality holds:

∥d∥p ≤ ∥d∥q

where ∥d∥p is the ℓp-norm of the distribution p, defined as:

∥d∥p =

(
n∑

i=1

|di|p
)1/p

Putting all these pieces together, we have presented a collision-based uniformity tester and
analyzed its sample complexity. We have shown that the tester (Algorithm 1) requires

O
(√

n
ϵ4

)
samples to distinguish between uniform and ϵ-far from uniform distributions with

probability at least 1− δ = 0.9.

Variance bound: Proof of Lemma 1

Lemma 1.

Var[[[Y ]]] =
1(
m
2

)2 · ((m2
)
∥p∥22 + 6

(
m

3

)
∥p∥33

)
.
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Proof.

Var[[[Y ]]] = Var

(
1(
m
2

)∑
i<j

σi,j

)

=
1(
m
2

)2Var
(∑

i<j

σi,j

)
(Since Var(aX) = a2Var(X) for any constant a)

=
1(
m
2

)2
E

(∑
i<j

σi,j

)2
−(∑

i<j

E[[[σi,j ]]]

)2


=
1(
m
2

)2
(∑

i<j

∑
ℓ<k

E[[[σi,j · σℓ,k ]]]− ∥p∥42

)
(By Eq. 1)

Let’s focus on the terms E[[[σi,j σℓ,k ]]]. We have the following cases:

Case 1: i = ℓ and j = k Note that there are
(
m
2

)
many of such terms in the variance

bound. In this case via Equation 1, we have:

E[[[σi,j σℓ,k ]]] = E
[[[
σ2
i,j

]]]
= E[[[σi,j ]]] = ∥p∥22 .

Case 2: {i, j, ℓ, k} has three distinct elements. First, observe that there are 6
(
m
3

)
many

of such terms in the variance bound. Now, let’s compute the expectation. Without loss of
generality, assume ℓ ∈ {i, j}, and k ̸∈ {i, j}. Then, since Xi, Xj, and Xk are independent
and identically distributed, we have:

E[[[σi,j σℓ,k ]]] = Pr[[[Xi = Xj = Xk ]]] =
n∑

r=1

p3r = ∥p∥
3
3 .

Case 3: {i, j, ℓ, k} has four distinct elements. There are
(
m
2

)
·
(
m−2
2

)
many of such terms

in the variance bound. And, since all the indices are distinct, σi,j and σℓ,k are independent
of each other. Hence, we have:

E[[[σi,j σℓ,k ]]] = E[[[σi,j ]]] · E[[[σℓ,k ]]] = ∥p∥42 ,

where we use Equation 1.

Exercise: Verify that
(
m
2

)
+ 6
(
m
3

)
+
(
m
2

)(
m−2
2

)
=
(
m
2

)2
.
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Putting these cases together, we obtain:

Var[[[Y ]]] =
1(
m
2

)2
((

m

2

)
∥p∥22 + 6

(
m

3

)
∥p∥33 +

(
m

2

)(
m− 2

2

)
∥p∥42 −

(
m

2

)2

∥p∥42

)

≤ 1(
m
2

)2 ((m2
)
∥p∥22 + 6

(
m

3

)
∥p∥33

)

Bibliographic Note

The content of this lecture was based on the collision-based tester that can be traced back
to Goldreich and Ron’s work on testing graph expansion [GR00, GR11]. Batu et al. later
formalized the problem of uniformity testing for distributions [BFR+00] and provided a
lower bound of Ω(

√
n). Through a series of subsequent work, the sample complexity of the

problem settled to be O(
√
n/ϵ2) [Pan08, ADJ+12, VV17, CDVV14, DKN15]. Diakoniko-

las et al. [DGPP19] later provided a new analysis of the collision-based uniformity tester,
demonstrating that it achieves the optimal sample complexity of O(

√
n/ϵ2).
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