
COMP 585 Spring 2024

Probabilistic Toolkit for Learning and Computing Instructor: Maryam Aliakbarpour

Problem Set 3

Instruction:

• Submissions are due no later than 11:59 PM on Tuesday, April 2, 2024.

• Please upload your solution in PDF format to the course website on Canvas. You
may typeset or upload a scanned version of your handwritten solution. Your solution
should be legible and clear. Full credit will be given only to the correct solutions that
are easy to read and understand.

• This problem set is designed to test your basic prerequisite knowledge and help you
brush up on your previous knowledge. Please do not google the solutions or use Large
Language Models (LLMs) to solve the problems.

• You may collaborate with other class members (group of 2-3 people), but you must
mention the names of your collaborators in your solution. The idea behind collabora-
tion is to collectively work towards finding a solution in a fair manner. Here are some
guidelines for collaboration:

– Spend a few hours thinking about the problems before engaging in discussions
with others.

– Do not collaborate with someone who has already solved the problem or is not at
the same level of progress as you.

– Exercise good judgment to prevent one person from providing the solution to
another.

– Collaboration does not permit uploading the same solution file. After discussions
with team members, you must independently write your solution. Your write-
up should genuinely reflect your understanding of the solution. Avoid sharing
your solution with others and refrain from copying solutions, even when working
together.

• Please refer to the course syllabus for information regarding the late submission policy.
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Problem 1. (30 points) Consider a non-negative random variable that satisfies a con-
centration inequality of the form

Pr[[[Z ≥ t]]] ≤ C exp

(
−t2/2

v2 + bt

)
(1)

for positive v, b and C ≥ 1.

a. Show that
E[[[Z ]]] ≤ 2v(

√
π +

√
logC) + 4b(1 + logC) .

Hint: You may find it useful to use the integral identity for expectation and Equa-
tion 2.

Hint: In the tail bound, the dominating term in the denominator of the exponent
changes when t = v2/b. Maybe this is good breaking point for your integral.

b. Let X1, . . . , Xn be i.i.d. zero-mean random variables satisfying the Bernstein Condition
stated in class (See Equation 3). Let σ2 = Var[[[Xi ]]]. Use Part a. to show that

E

[[[∣∣∣∣∣ 1n
n∑

i=1

Xi

∣∣∣∣∣
]]]
≤ 2σ√

n
(
√
π +

√
log 2) +

4b

n
(1 + log 2)

Problem 2. (20 points) Consider the random projection M ∈ Rd′×d which we have
used in the Johnson–Lindenstrauss (JL) lemma in our lecture. Each entry of M is a scaled
Gaussian random variable:

Mij ∼ c · N (0, 1) ,

for a fixed value of c = 1/
√
d′. The randomized mapping in JL lemma maps every u in Rd

to v = Mu in Rd′ .

a. In this part, we focus on how M affects the ℓ1-norm of a vector. Fix a vector u. Let
v = Mu. Show that the expected ℓ1-norm of v is bounded from above:

E[[[∥v∥1 ]]] = E

[[[
d′∑
i=1

|vi|

]]]
≤

√
d′ · ∥u∥2 .

Hint: Identify the distribution of each coordinate vi.

b. Find a similar lower bound for E[[[∥v∥1 ]]]. Then, use Part a., to come up with a set of
points such that their ℓ1-distance cannot be preserved up to a factor of two if d′ = o(d)
(at least not in expectation).
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Problem 3. (10 points) Suppose C is a finite class of binary concepts: c : X → {0, 1}.
Let D be a target distribution over X × {0, 1}. We sample a set of m labeled instances
(x1, y1), . . . , (xm, ym) ∈ X fromD. For a concept c ∈ C, the (true) error of c, is the probability
of mislabeling a random sample via c:

err(c) := Pr(x,y)∼D[[[c(x) ̸= y ]]] .

Show that C is PAC learnable in the agnostic case with m = O
(

log(|C|/δ)
ϵ2

)
samples. That is,

there exists an algorithmA that receivesm samples, and outputs ĉ such that with probability
1− δ:

err(ĉ) ≤ min
c∈C

err(c) + ϵ .

Note: The agnostic case refers to the case where there is no c ∈ C that perfectly label all
the instances (minc∈C err(c) > 0).

Problem 4. (20 points) Consider a variant of the PAC model in which there are two
example oracles: one that generates positive examples and one that generates negative ex-
amples, both according to the underlying distribution D on X . Formally, given a target
function1 c∗ : X → {0, 1}, let D+ be the distribution over X+ = {x ∈ X : c∗(x) = 1} defined

by D+(A) = D(A)
D(X+)

for every A ⊆ X+. Similarly, D− is the distribution over X− induced by
D.

The definition of PAC learnability in the two-oracle model is the same as the standard defi-
nition of PAC learnability except that here the learner has access to m+(ϵ, δ) i.i.d. examples
from D+ and m−(ϵ, δ) i.i.d. examples from D−. The learner’s goal is to output ĉ s.t. with
probability at least 1 − δ (over the choice of the two training sets, and possibly over the
nondeterministic decisions made by the learning algorithm), the error is low according to
both distributions:

err+(ĉ) = Prx∼D+[[[ ĉ(x) ̸= 1]]] ≤ ϵ , and err−(ĉ) = Prx∼D−[[[ ĉ(x) ̸= 0]]] ≤ ϵ .

a. Show that if C is PAC learnable (in the standard one-oracle model), then C is PAC
learnable in the two-oracle model.

b. Define c+ to be the always-plus hypothesis and c− to be the always-minus hypothesis.
Assume that c+, c− ∈ C. Show that if C is PAC learnable in the two-oracle model, then
C is PAC learnable in the standard one-oracle model.

Problem 5. (20 points) Let Hd
con be the class of Boolean conjunctions over the variables

x1, . . . , xd (d ≥ 2). Every member of this class is a logical AND of the literals of the form xi

or xi. For example, h = x2∧x3 is a member of H3
con. In our example, h labels x(1) = (0, 1, 0)

by one and x(2) = (0, 1, 1) by zero. We have already seen in the class that this class is PAC
learnable in the realizable case. Also, we know that this class is finite and thus agnostic
PAC learnable using the previous problem. In this problem, we aim to show that the VC-
dimension of this class is d.

1For this problem, assume we are in the realizable case. Thus, such c∗ always exists.
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a. Show that Hd
con shatters the set of unit vectors S := {ei : i ∈ [d]}.

b. Show that Hd
con cannot shatter any set S of size d+ 1.

Hint: Assume by contradiction that there exists a set S =
{
x(1), . . . , x(d+1)

}
that is

shattered by Hd
con. Let h1, . . . , hd+1 be hypotheses in Hd

con that satisfy

hi(x
(j)) =

{
0 if i = j

1 otherwise

For each i ∈ [d + 1], hi (or more accurately, the conjunction that corresponds to hi)
contains some literal xℓi or xℓi which is false on x(i) and true on x(j) for each j ̸= i.
Use this fact to reach contradiction.
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Cheat Sheet

You may find the following facts useful for this problem set.

Integral identity for expectation: For a non-negative random variable X, we have:

E[[[X ]]] =

∫ ∞

0

Pr[[[X > t]]] dt .

A useful integral: While generally integrals of the form
∫
e−x2

dx do not have a simple
closed form, we have the following for every a > 0:∫ ∞

0

e−x2/a dx =

√
π · a
2

(2)

You may also verify this by looking at the PDF of the Gaussian distribution.

Bernstein condition: Suppose X is a random variable with mean E[[[X ]]] = µ and variance
Var[[[X ]]] = σ2. We say X satisfy the Bernstein condition with parameter b if for every integer
i ≥ 2 the following holds:

E
[[[
(X − µ)i

]]]
≤ 1

2
i!σ2 bi−2 (3)

A useful formula for variance: For a random variable X, we have:

Var[[[X ]]] = E
[[[
X2

]]]
− E[[[X ]]]2 .

Jensen’s inequality: For every convex function f , and a random variable X, we have:

f (E[[[X ]]]) ≤ E[[[f(X)]]] .

Chernoff Bound The Chernoff Bound is a probabilistic bound that provides an exponen-
tially decreasing bound on tail distributions of the sum of random variables.

Let X1, X2, . . . , Xm be independent Poisson trials such that Pr[[[Xi = 1]]] = pi and
Pr[[[Xi = 0]]] = 1− pi. (Poisson trials are 0-1 random variables like the Bernoulli trials. How-
ever, the Poisson trials do not have to have the same success probability.) Let X =

∑m
i=1 Xi

be the sum of these m random variables, and let p denote the mean of pi’s: p =
∑m

i=1 pi/m.
The bound is expressed as follows for every ϵ ∈ [0, 1]:
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Pr

[[[
X

m
≥ (1 + ϵ) · p

]]]
≤ e−mpϵ2/3, and

Pr

[[[
X

m
≤ (1− ϵ) · p

]]]
≤ e−mpϵ2/2

Here, is another version of this inequality which holds for any ϵ > 0:

Pr

[[[
X

m
≥ (1 + ϵ) · p

]]]
≤

(
eϵ

(1 + ϵ)1+ϵ

)mp

.

Hoeffding bound: The Hoeffding bound bounds the probability that the sum of inde-
pendent bounded random variables deviates from its expected value. Mathematically, for
independent variables X1, X2, . . . , Xn with bounds ai ≤ Xi ≤ bi, the bound is given by:

Pr

[[[∣∣∣∣∣ 1n
n∑

i=1

Xi − E[[[X ]]]

∣∣∣∣∣ ≥ t

]]]
≤ 2 exp

(
− 2n2t2∑n

i=1(bi − ai)2

)
,

where E[[[X ]]] is the expected value of the mean of Xi’s, and t is the margin of deviation.

If Xi’s are Bernoulli random variable with success probability p then we have:

Pr

[[[
1

n

n∑
i=1

Xi ≥ p+ ϵ

]]]
≤ exp

(
−2nϵ2

)

Pr

[[[
1

n

n∑
i=1

Xi ≤ p− ϵ

]]]
≤ exp

(
−2nϵ2

)
Total Law of Probability The Total Law of Probability is a fundamental rule that relates
marginal probabilities to conditional probabilities. It is expressed as:

Pr[[[A]]] =
∑
i

Pr[[[A|Bi ]]]Pr[[[Bi ]]]

where Pr[[[A]]] is the total probability of event A, and Pr[[[A|Bi ]]] is the probability of A given
Bi, with Bi being a partition of the sample space.
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