COMP 585: Probabilistic Toolkit for

Learning and Computing

Lecture 1

Maryam Aliakbarpour

Spring 2024

Today's lecture

- Introduction
- Class format
- Policies
- Introduction to the topic

Introduction

Instructor: Maryam Aliakbarpour

Email: maryama@rice.edu

Office hour: Tuesdays 11am-12pm, Duncan Hall 3098

Lectures: Tuesdays & Thursdays, 9:25-10:40 am, Duncan Hall 1075

Website: https://maryamaliakbarpour.com/courses/S23/index.html+ Canvas

Introduction

Your turn!

- Name
- Program (department/major)
- Year
- Your advisors name
- Research interest

Class objectives

In this class, we explore randomness and its fundamental applications, including:

• Modeling and analyzing data: We extract meaningful information from data using statistical methods.

Class objectives

In this class, we explore randomness and its fundamental applications, including:

- Modeling and analyzing data: We extract meaningful information from data using statistical methods.
- Increasing Efficiency: We design randomized algorithms that are fast / use few data points / work with limitations on other computational resources / etc.

Class objectives

Our Goals:

- Understand fundamental probabilistic methods.
- Explore their applications in algorithms, learning theory, and statistical inference.
- Ultimately, engage in research, especially in theoretical domains.

Class topic

- Fundamentals: random variables, concentration, moments, Gaussians, Sub-Gaussians, and Sub-Exponentials
- Applications: hypothesis testing, property testing, hashing, etc
- Application in foundation of machine learning:
 - Linear Regression
 - Dimensionality Reduction, Johnson-Lindenstrauss lemma
 - Vapnik-Chervonenkis (VC) Dimension
 - Decision Trees
- Additional Topics (Time Permitting): methods for proving lower bounds

Class topic

What we do not cover:

- Coding for Stat/ML: R, Tensorflow, etc
- Neural nets
- Reinforcement learning/unsupervised learning

Grading

□ Active class participation

□ Scribe notes for two lectures

□ Assignments: 4 main assignments + 1 review assignment

Class project

- Report (proposal, mid-point evaluation, final)
- Class presentation

□ Readings for some lectures (Optional)

Class prerequisites

- An undergraduate-level course in algorithms, discrete mathematics, and probability is highly recommended.
- Solid understanding of mathematical proofs.
- Basics of algorithms, including O, Ω , and Θ notation,
- Basic probability concepts, such as expected value, variance, and conditional probability.

Policies

Read Syllabus

- An inclusive environment
- Rice Honor Code
- Disability Resource Center
- Wellbeing and Mental Health
- Title IX Responsible Employee Notification

Assignment 0

• Fill out <u>this form</u> by next Monday (1/15).

• Indicate your availability for scribing <u>here</u> by next Monday (1/15).