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Differential Privacy

In many contexts, data may be highly sensitive, yet the data needs to be used for some sort of public report. For
example, an individual’s hospital data should be kept confidential; meanwhile, hospitals or insurance companies
may be inclined to publish deindividualized data. However, the deindividualized data may unexpectedly be less
private than expected. In fact, in 1997, Massachusetts Governor William Weld’s medical data was identified in
such a fashion. Additionally, we have seen in this class how the Statistical Query Model can reconstruct data
with enough queries. Due to this, it is crucial that algorithms are mathematically private. But how can usefully
we define privacy? It’s crucial that a malicious agent cannot guess with high accuracy the data of a single user
even if given all other users’ data. This motivates the following definition:

Definition 1. Neighboring Data Sets: We say x and x′ are neighboring data sets if and only if the hamming
distance between x and x′ is one. i.e. ||x− x′||0 = 1.

This would correspond to a single user’s data being changed. And so, we are ready to define privacy:

Definition 2. Differential Privacy: We say a mechanism M : § ⇒ Y is ϵ differentiably private if and only
if ∀S ⊂ Y and for every neighboring pair (x, x′) taken from §,

Pr[M(x) ∈ S] ≤ eϵPr[M(x′) ∈ S]

By the symmetry of neighboring data sets, we can bound this expression on both sides:

e−ϵPr[M(x′) ∈ S] ≤ Pr[M(x) ∈ S] ≤ eϵPr[M(x′) ∈ S]

Additionally, we define ϵ, δ Differential Privacy:

Definition 3. Differential Privacy: We say a mechanism M : § ⇒ Y is ϵ, delta differentiably private if and
only if ∀S ⊂ Y and for every neighboring pair (x, x′) taken from §,

Pr[M(x) ∈ S] ≤ eϵPr[M(x′) ∈ S] + δ

However, we use the first definition of differential privacy for the remainder of the lecture.
Let f(x) : X ⇒ R be some function that we want to make private. Perhaps, f(xi) represents user i’s income.

Then, we can define sensitivity:

Definition 4. Sensitivity: Let Z = {x, x′ ∈ X : X and X ′are neighboring} be the set of all The sensitivity of
a function f , ∆(f) = maxx,x′∈Z |f(x)− f(x′)|

If it is obvious which function we are concerned with, we may abbreviate ∆(f) as simply, ∆. Sensitivity is
analogous to Lipschitz Continuity in a sense.

The first method we discussed is using the Laplace distribution to add appropriate noise to the data. the

mechanism is given by M(x) = f(x) + Lap(∆ϵ ) where the pdf of Lap(t) is given by e−|t|/b
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as desired.
Next, we explore the Exponential Mechanism. Suppose S = {s1, ..., sn} and u : S × X ⇒ R is a utility

function of si given the data, x. The objective is to maximize utility while still operating privately. The given
solution is to pick si with likelihood
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where ∆(u) = maxsi∈S maxx,x′∈Z |u(si, x)− u(si, x
′)|.

Then, given an outcome si
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Finally, we discussed randomized response mechanisms. In this setting, users give their data through a
private protocol to a public server where the algorithm takes place. The user does not want to simply give their
data as is, as it is entering a public stage. For simplicity, suppose a user’s data is binary. That is, xi ∈ {0, 1}.
Then, an appropriate protocol would yi like so:

yi =

{
xi with probability eϵ

1+eϵ ,

1− xi with probability 1
1+eϵ .

This ratio of probabilities will ensure privacy. It remains to show how well yi estimates of xi. It is rather
straightforward:
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