Lecture 27

1 Computational Hardness of PAC-Learning

So far, we've assumed that we can easily access and come up with any element in a concept class. Generally, for PAC-learning, we need to find a randomized-polynomial time algorithm.

In this lecture, we show that the concept class of 3 -disjunctive normal functions (3-DNF) is not PAC-learnable by proving that there does not exist a randomized-polynomial time algorithm that learns this class.

Definition 1.1 (3-DNF). We define the concept class, \mathcal{C} of 3-DNFs as:

$$
\mathcal{C}=\left\{T_{1} \vee T_{2} \vee T_{3} \mid T_{i} \in \mathcal{T}\right\}
$$

Where \mathcal{T} is the class of conjunctions over $\mathcal{X}=\left\{x_{1}, \overline{x_{1}}, \ldots, x_{m}, \overline{x_{m}}\right\}$ such that $S_{i} \subseteq \mathcal{X}$ and:

$$
T_{i}=\bigwedge_{y_{j} \in S_{i}} y_{j}
$$

To show the hardness of $3-\mathrm{DNF}$, we will create a reduction from an NP-hard problem, 3 -coloring on a graph.

Definition 1.2 (3-Coloring on a Graph). Let $G=(V, E)$ be a graph, with $V=[n]$. Then G is 3-colorable if we can assign each vertex of G one of three colors such that no two vertices are the same color.

Assume we have a 3-coloring over a graph G. Let $S_{G}=\left\{\left(\vec{x}_{1}, y_{1}\right), \ldots,\left(\vec{x}_{n}, y_{n}\right)\right\}$ be a set of labelled samples constructed from this coloring.
Let D be uniform over S_{G}, let $\epsilon=\frac{1}{2\left|S_{G}\right|}$ and let $\delta \in(0,1)$. Assume we have a PAC-learning algorithm, \mathcal{A}, for 3-DNF. Then, with probability $1-\delta$, given enough samples from D, \mathcal{A} outputs \hat{c} such that:

$$
\operatorname{err}(\hat{c}) \leq \epsilon
$$

We note that if \mathcal{A} succeeds, \hat{c} will actually have error 0 :

$$
\begin{aligned}
\operatorname{err}(\hat{c}) & =\mathbb{P}_{(\vec{x}, y) \sim D}(\hat{c}(\vec{x}) \neq y) \\
& =\frac{1}{\left|S_{G}\right|} \sum_{(\vec{x}, y) \sim S_{G}} \mathbb{1}[\hat{c}(\vec{x}) \neq y] \\
& =\frac{\beta}{\left|S_{G}\right|} \text { for some } \beta \in \mathbb{N} \\
& \leq \epsilon \text { w.p. } 1-\delta \\
& =\frac{1}{2\left|S_{G}\right|} \\
\Longrightarrow & \beta=0 \text { since } \beta \in \mathbb{N} \\
\Longrightarrow & \operatorname{err}(\hat{c})=0
\end{aligned}
$$

Then, we are interested in showing that S_{G} leads to \hat{c} with $\operatorname{err}(\hat{c})=0 \Longleftrightarrow G$ is 3-colorable.

1.1 G is 3-colorable $\Longrightarrow S_{G}$ leads to \hat{c} with $\operatorname{err}(\hat{c})=0$

Let $G=([n], E)$.
Construct a set $S_{G}^{+}=\left\{\left(v^{(i)}, y^{(i)}\right)\right\}_{i=1}^{n}$ corresponding to the vertices of G as follows:

$$
v^{(i)}=(1,1, \ldots, 1, \overbrace{y_{0}^{(i)}=1}^{\text {index } i}, 1, \ldots, 1) \in\{0,1\}^{n}
$$

Construct a set $S_{G}^{-}=\left\{\left(e^{(i, j)}, y^{(i, j)}\right)\right\}_{(i, j) \in E}$ corresponding to the edges of G as follows:

$$
\forall(i, j) \in E, e^{(i, j)}=(1, \ldots, 1, \overbrace{y^{(i, j)}=0}^{\text {index } i}, 1, \ldots, 1, \overbrace{0}^{\text {index } j}, 1, \ldots, 1) \in\{0,1\}^{n}
$$

Let $S_{G}=S_{G}^{+} \cap S_{G}^{-}$. We will show that G 3-colorable \Longrightarrow we can find a 3-DNF T such that $\operatorname{err}_{S_{G}}(T)=0$
Assume G is 3-colorable. Then, we can find a coloring (R, Y, B) such that R, Y, B form a partition of $[n]$. Using this coloring, we define T_{R}, T_{Y}, T_{B} to be used in our 3-DNF, T :

- $T_{R}(\vec{x})=\bigwedge_{i: i \notin R} \vec{x}_{i}$
- $T_{Y}(\vec{x})=\bigwedge_{i: i \notin Y} \vec{x}_{i}$
- $T_{B}(\vec{x})=\bigwedge_{i: i \notin B} \vec{x}_{i}$
- $T=T_{R} \vee T_{Y} \vee T_{B}$

We then prove that $\operatorname{err}_{S_{G}}(T)=0$. To achieve this, we want $T\left(v^{(i)}\right)=1$ for all $v^{(i)}$ and $T\left(e^{(i, j)}\right)=0$.

Consider three cases:

1. $v^{(i)} \in R$.

$$
\begin{aligned}
\Longrightarrow x_{i} & \notin T_{R} \text { and } v_{j}^{(i)}=1 \forall i \neq j \\
& \Longrightarrow T_{R}\left(v^{(i)}\right)=1 \\
& \Longrightarrow T\left(v^{(i)}\right)=1
\end{aligned}
$$

2. $v^{(i)} \notin R$.

$$
\begin{gathered}
\Longrightarrow x_{i} \in T_{R} \\
\Longrightarrow x_{i} \notin T_{Y} \text { or } x_{i} \notin T_{B} \\
\Longrightarrow \text { case 1 applies, considering } Y \text { or } B \text { instead of } R . \\
\Longrightarrow T\left(v^{(i)}\right)=1
\end{gathered}
$$

3. $v^{(i)} \in R$ and $(i, j) \in E$.

$$
\begin{aligned}
\Longrightarrow j \notin R & \Longrightarrow x_{j} \in T_{R} \text { and } e_{j}^{(i, j)}=0 \\
& \Longrightarrow T_{R}\left(v^{(i)}\right)=0
\end{aligned}
$$

WLOG, assume $v^{(j)} \in B$. By the same argument, $T_{B}\left(v^{(i)}\right)=0$. Then, we have both $v^{(i)} \notin Y$ and $v^{(j)} \notin Y$. So, $x_{i}, x_{j} \in T_{Y}$ and $e_{i}^{(i, j)}=e_{j}^{(i, j)}=0$. So, $T_{Y}\left(v^{(i)}\right)=0$.

$$
\Longrightarrow T\left(e^{(i, j)}\right)=0
$$

So, T correctly labels all samples in S_{G}.

$1.2 S_{\alpha}$ leads to \hat{c} with $\operatorname{err}(\hat{c})=0 \Longrightarrow G$ is 3-colorable

Given $G=([n], E)$ and a concept $T=T_{R} \vee T_{Y} \vee T_{B}$ with error 0 , we want to find a valid coloring (R, Y, B).

Because T has error 0 on S_{G}, we know that T satifies:

$$
T\left(v^{(i)}\right)=1, \quad T\left(e^{(i, j)}\right)=0
$$

Assign vertex i to R if $T_{R}\left(v^{(i)}\right)=1$. Perform the same process to construct Y and B. Then, we will show that (R, Y, B) is a valid coloring.

Proof. Let $(i, j) \in E$. We know $T\left(e^{(i, j)}\right)=0 \Longrightarrow T_{R}\left(e^{(i, j)}\right)=0$. For contradiction, assume $v^{(i)} \in R$ and $v^{(j)} \in R$. Then, $T_{R}\left(v^{(i)}\right)=1 \Longrightarrow x_{i} \notin T_{R}$ and $T_{R}\left(v^{(j}\right)=1 \Longrightarrow x_{j} \notin T_{R}$.

$$
\Longrightarrow T_{R}\left(e^{(i, j)}\right)=1 \text { since } x_{i}, x_{j} \notin T_{R} \text { and } e_{k}^{(i, j)}=1 \forall k \neq i, j
$$ Contradiction.

So, $v^{(i)}, v^{(j)}$ cannot both be in R. So, we have a valid coloring.

