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Lecture 27

1 Computational Hardness of PAC-Learning

So far, we’ve assumed that we can easily access and come up with any element in a concept
class. Generally, for PAC-learning, we need to find a randomized-polynomial time algorithm.

In this lecture, we show that the concept class of 3-disjunctive normal functions (3-DNF)
is not PAC-learnable by proving that there does not exist a randomized-polynomial time
algorithm that learns this class.

Definition 1.1 (3-DNF). We define the concept class, C of 3-DNF's as:
C:{Tl\/TQ\/Tg | T;ET}
Where T is the class of conjunctions over X = {x1, @1, ..., Tm, Tm} such that S; C X and:

Ti= N vy
Y; €Si
To show the hardness of 3-DNF, we will create a reduction from an NP-hard problem,
3-coloring on a graph.
Definition 1.2 (3-Coloring on a Graph). Let G = (V, E) be a graph, with V = [n]. Then G
18 3-colorable if we can assign each vertex of G one of three colors such that no two vertices
are the same color.

Assume we have a 3-coloring over a graph G. Let Sg = {(Z1,v1), ..., (Tn,yn)} be a set of
labelled samples constructed from this coloring.

Let D be uniform over S¢, let € = m and let 0 € (0,1). Assume we have a PAC-learning
algorithm, A, for 3-DNF. Then, with probability 1 — §, given enough samples from D, A
outputs ¢ such that:

err(¢) <e
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We note that if A succeeds, ¢ will actually have error 0:

= 1[e(T) # y]
(Zy)~Sa
:iforsomeﬁel\l
|S¢|
<e wp. 1—=9
1
PR

— [ =0since p €N
= err(¢) =0

Then, we are interested in showing that Sg leads to ¢ with err(¢) = 0 <= G is 3-colorable.

1.1 G is 3-colorable — S leads to ¢ with err(¢) =0

Let G = ([n], E).
Construct a set Sgy = {(v, y)}™_, corresponding to the vertices of G as follows:
index 4
v = (1,1,...,1, 0 ,1,..,1) € {0,1}"
y =1

Construct a set Sg = {(e®), y))}; scp corresponding to the edges of G as follows:

index ¢ index j
- = A
V(i,j) € E, %) =(1,..,1,” 0 ,1,..,1," 0 ,1,..,1) €{0,1}"
yi) =

Let Sg = S5 N Sg. We will show that G 3-colorable = we can find a 3-DNF T such that
errg, (1) =0

Assume G is 3-colorable. Then, we can find a coloring (R, Y, B) such that R,Y, B form a
partition of [n]. Using this coloring, we define Tk, Ty, T to be used in our 3-DNF, T"

¢ R
e Iy(@) = A %

1:1¢Y
o Tp(T)= A &

ii¢ B



COMP 585 Lecture 27 Spring 2024

[ ] T:TR\/Ty\/TB

We then prove that errs.(7) = 0. To achieve this, we want T(v®) = 1 for all v and
T(e®)) = 0.

Consider three cases:

1. v® e R.
= $i¢TRandp§i):1‘v’i7éj
- TR(U(Z)) =1
— T(w") =1
2. v ¢ R

— x; €1x
— $i¢TyOI'£L‘i§éTB
= case 1 applies, considering Y or B instead of R.
— T(w9) =1
3. v € Rand (i,7) € E.

— j¢ R = a:jGTRande;i’j):O

WLOG, assume v) € B. By the same argument, T3(v”) = 0. Then, we have both
v ¢Y and v ¢ Y. So, x;,x; € Ty and e?’” = ey’j) = 0. So, Ty (v®) = 0.

= T(e™) =0

So, T' correctly labels all samples in S¢.

1.2 S, leads to ¢ with err(¢) =0 = G is 3-colorable

Given G = ([n], E) and a concept T' = Tg V Ty V Tp with error 0, we want to find a valid
coloring (R,Y, B).

Because T' has error 0 on S, we know that T satifies:
T(U(i)) =1, T(e(m')) =0

Assign vertex i to R if Tr(v)) = 1. Perform the same process to construct Y and B.

Then, we will show that (R,Y, B) is a valid coloring.
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Proof. Let (i,j) € E. We know T(e(")) =0 = Tr(e") = 0. For contradiction, assume
v € Rand v € R. Then, Tr(vW) =1 = 2, ¢ Tg and Tr(vV) =1 = x; ¢ Tk.

= Tr(e")) =1 since x;,7; ¢ Ty and e,(f’j) =1Vk#i,j
Contradiction.

So, v, vU) cannot both be in R. So, we have a valid coloring. O
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