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Lecture 26

1 Adaboost

• Input ϵ, δ, T

• Draw m samples, get training set S = {(x1, y1), ..., (xm, ym)}

• D1(i) =
1
m

• For t = 1, ..., T

– ĉt ← WeakLearner(ϵ′, δ′)

– update Dt+1(i) ∀i

• output H s.t. H(x) = sign(
T∑
t=1

αtĉt(x))

1.1 Choosing ϵ1, ϵ2, δ
′,m, T

• let HT = {H(x) = sign(
T∑
t=1

αtĉt(x))|ĉt ∈ C}

• Recall êrr(H) ≤ e−2γ2T = ϵ1

• Assume HT has finite VC dimension.

=⇒ HT satisfies uniform convergence for m = O(
1

ϵ22
VCdim(H) log(2/δ)) samples

=⇒ |êrr(H)− err(H)| ≤ ϵ2

• We then have:

err(H) = err(H)− êrr(H) + êrr(H)

≤ |err(H)− êrr(H)|+ êrr

≤ ϵ2 + ϵ1
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• Choosing ϵ1 = ϵ2 =
ϵ
2
, err(H) ≤ ϵ

• So, we have:

m = O(
2

ϵ2
VCdim(H) log(2/δ))

e−2γ2T =
ϵ

2
=⇒ T = O(

log(2/ϵ)

2γ2
)

• To choose δ′, we have the probability that the weak learner succeeds T times is Tδ′. If
we choose the probability of drawing enough samples from uniform convergence to be
ϵ
2
, we want Tδ′ + ϵ

2
≤ δ, and can choose δ′ = δ

2T
.

• To complete our discussion of our choice of m, we need to determine the VC dimension
of H.

1.2 VC Dimension of H

To analyze the VC dimension of H, we first consider the VC Dimension of halfspaces.

We consider the set of halfspaces G, where we define:

cα(x) = sign(⟨α, x⟩)
G = {cα|α ∈ Rd }

Lemma 1.1. VCdim(G) = d

Proof. To prove Lemma 1.1, we need to show that G shatters a set of size d and that G
cannot shatter any set of size d+ 1.

We begin by proving that G shatters the set of unit vectors in d-dimensions. Let S =
{unit vectors ei}di=1. Create a labelling of these vectors from G. This gives us:

⟨α, e1⟩ = y1
⟨α, e2⟩ = y2

...
⟨α, ed⟩ = yd

Let α = (y1, y2, ..., yd). Then, cα correctly labels all the unit vectors. So, G shatters the unit
vectors.

Then, we show that no set of size d + 1 can be shattered by G. Given S = {x1, ..., xm},
where xi ∈ Rd and m > d, we have:∑m

i=1 aixi = 0⃗ for ai ∈ R, where ∃ai ̸= 0.

Let I+ = {i|ai > 0} and I− = {i|ai ≤ 0}.
Then, either |I+| ≠ 0 or |I−| ≠ 0. WLOG, assume |I−| ≠ 0.
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Assume ∃w ∈ Rm that correctly labels each xi.

=⇒ ⟨w, xi⟩ ≥ 0 ∀i ∈ |I+| and ⟨w, xi⟩ < 0 ∀i ∈ |I−|.

Then, we have:

0 ≤
∑
i∈|I+|

ai⟨w, xi⟩

= ⟨w,
∑
i∈|I+|

aixi⟩

= ⟨w, 0⃗−
∑
i∈|I−|

aixi⟩

= ⟨w,
∑
i∈|I−|

|ai|xi⟩

=
∑
i∈|I−|

|ai|⟨w, xi⟩

< 0

Contradiction.

So, there does not exist w that correctly labels this set.

Then, consider G ′, where α is defined only on the hypercube, {+1,−1}d. That is, G ′ =
{cα|α ∈ {+1,−1}d}. Then, because G ′ ⊂ G, VCdim(G ′) ≤ VCdim(G) = d.

Lemma 1.2. VCdim(H) ≤ θ(d1T ), where d1 = VCdim(C).

Proof. We have m points (x1, ..., xm), where xi ∈ Rd. We can map each point to the
algorithm’s output over time as:

xi
ĉ∈C−−→ {−1, 1}T halfspace, ĉα∈G−−−−−−−−−→ yi = (ĉ1(xi), ..., ĉT (xi))

This first jump has VCdim d1 (that of C), and the second has VCdim T , as shown in the
lemma. Intuitively, this will give us a VCdim ∈ O(d1T )

To show this more comprehensively, we use Sauer’s Lemma. By Sauer’s Lemma, ∀S of size
m, |RG(S)| < ( em

d
)d, where d = VCdim(G). So, |RC(S)| ≤ ( em

d1
)d1 .

If we fix (ĉ1, ..., ĉT ), then the number of restrictions on (ĉ1(xi), ..., ĉT (xi)) is less than ( em
T
)T .

Putting these together, we have that the number of restrictions on every possible combina-
tion of ĉi is less than ( em

T
)T ( em

d1
)d1T ≤ m(d+1)T .

So, for m < θ(dT log(dT )),

2m ≤ # restrictions ≤ m(d+1)T
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