1 Adaboost

- Input ϵ, δ, T
- Draw m samples, get training set $S=\left\{\left(x_{1}, y_{1}\right), \ldots,\left(x_{m}, y_{m}\right)\right\}$
- $D_{1}(i)=\frac{1}{m}$
- For $t=1, \ldots, T$
$-\hat{c}_{t} \leftarrow$ WeakLearner $\left(\epsilon^{\prime}, \delta^{\prime}\right)$
- update $D_{t+1}(i) \quad \forall i$
- output H s.t. $H(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} \hat{c}_{t}(x)\right)$

1.1 Choosing $\epsilon_{1}, \epsilon_{2}, \delta^{\prime}, m, T$

- let $\mathcal{H}_{T}=\left\{H(x)=\operatorname{sign}\left(\sum_{t=1}^{T} \alpha_{t} \hat{c}_{t}(x)\right) \mid \hat{c}_{t} \in \mathcal{C}\right\}$
- Recall êrr $(H) \leq e^{-2 \gamma^{2} T}=\epsilon_{1}$
- Assume \mathcal{H}_{T} has finite VC dimension.

$$
\begin{aligned}
& \Longrightarrow \mathcal{H}_{T} \text { satisfies uniform convergence for } m=O\left(\frac{1}{\epsilon_{2}^{2}} \operatorname{VCdim}(\mathcal{H}) \log (2 / \delta)\right) \text { samples } \\
& \Longrightarrow|\operatorname{err}(H)-\operatorname{err}(H)| \leq \epsilon_{2}
\end{aligned}
$$

- We then have:

$$
\begin{aligned}
\operatorname{err}(H) & =\operatorname{err}(H)-\operatorname{e\hat {r}}(H)+\operatorname{e\hat {r}}(H) \\
& \leq|\operatorname{err}(H)-\operatorname{err}(H)|+\mathrm{e} \hat{\mathrm{rr}} \\
& \leq \epsilon_{2}+\epsilon_{1}
\end{aligned}
$$

- Choosing $\epsilon_{1}=\epsilon_{2}=\frac{\epsilon}{2}, \operatorname{err}(H) \leq \epsilon$
- So, we have:

$$
\begin{aligned}
m & =O\left(\frac{2}{\epsilon_{2}} \operatorname{VCdim}(\mathcal{H}) \log (2 / \delta)\right) \\
e^{-2 \gamma^{2} T} & =\frac{\epsilon}{2} \Longrightarrow T=O\left(\frac{\log (2 / \epsilon)}{2 \gamma^{2}}\right)
\end{aligned}
$$

- To choose δ^{\prime}, we have the probability that the weak learner succeeds T times is $T \delta^{\prime}$. If we choose the probability of drawing enough samples from uniform convergence to be $\frac{\epsilon}{2}$, we want $T \delta^{\prime}+\frac{\epsilon}{2} \leq \delta$, and can choose $\delta^{\prime}=\frac{\delta}{2 T}$.
- To complete our discussion of our choice of m, we need to determine the VC dimension of \mathcal{H}.

1.2 VC Dimension of \mathcal{H}

To analyze the VC dimension of \mathcal{H}, we first consider the VC Dimension of halfspaces.
We consider the set of halfspaces \mathcal{G}, where we define:

$$
\begin{gathered}
c_{\alpha}(x)=\operatorname{sign}(\langle\alpha, x\rangle) \\
\mathcal{G}=\left\{c_{\alpha} \mid \alpha \in \mathbb{R}^{d}\right\}
\end{gathered}
$$

Lemma 1.1. $\operatorname{VCdim}(\mathcal{G})=d$
Proof. To prove Lemma 1.1, we need to show that \mathcal{G} shatters a set of size d and that \mathcal{G} cannot shatter any set of size $d+1$.
We begin by proving that \mathcal{G} shatters the set of unit vectors in d-dimensions. Let $S=$ $\left\{\text { unit vectors } e_{i}\right\}_{i=1}^{d}$. Create a labelling of these vectors from \mathcal{G}. This gives us:

$$
\begin{gathered}
\left\langle\alpha, e_{1}\right\rangle=y_{1} \\
\left\langle\alpha, e_{2}\right\rangle=y_{2} \\
\ldots \\
\left\langle\alpha, e_{d}\right\rangle=y_{d}
\end{gathered}
$$

Let $\alpha=\left(y_{1}, y_{2}, \ldots, y_{d}\right)$. Then, c_{α} correctly labels all the unit vectors. So, \mathcal{G} shatters the unit vectors.

Then, we show that no set of size $d+1$ can be shattered by \mathcal{G}. Given $S=\left\{x_{1}, \ldots, x_{m}\right\}$, where $x_{i} \in \mathbb{R}^{d}$ and $m>d$, we have:

$$
\sum_{i=1}^{m} a_{i} x_{i}=\overrightarrow{0} \text { for } a_{i} \in \mathbb{R}, \text { where } \exists a_{i} \neq 0
$$

Let $I^{+}=\left\{i \mid a_{i}>0\right\}$ and $I^{-}=\left\{i \mid a_{i} \leq 0\right\}$.
Then, either $\left|I^{+}\right| \neq 0$ or $\left|I^{-}\right| \neq 0$. WLOG, assume $\left|I^{-}\right| \neq 0$.

Assume $\exists w \in \mathbb{R}^{m}$ that correctly labels each x_{i}.

$$
\Longrightarrow\left\langle w, x_{i}\right\rangle \geq 0 \forall i \in\left|I^{+}\right| \text {and }\left\langle w, x_{i}\right\rangle<0 \forall i \in\left|I^{-}\right| .
$$

Then, we have:

$$
\begin{aligned}
0 & \leq \sum_{i \in\left|I^{+}\right|} a_{i}\left\langle w, x_{i}\right\rangle \\
& =\left\langle w, \sum_{i \in\left|I^{+}\right|} a_{i} x_{i}\right\rangle \\
& =\left\langle w, \overrightarrow{0}-\sum_{i \in\left|I^{-}\right|} a_{i} x_{i}\right\rangle \\
& =\left\langle w, \sum_{i \in\left|I^{-}\right|}\right| a_{i}\left|x_{i}\right\rangle \\
& =\sum_{i \in\left|I^{-}\right|}\left|a_{i}\right|\left\langle w, x_{i}\right\rangle \\
& <0
\end{aligned}
$$

Contradiction.
So, there does not exist w that correctly labels this set.
Then, consider \mathcal{G}^{\prime}, where α is defined only on the hypercube, $\{+1,-1\}^{d}$. That is, $\mathcal{G}^{\prime}=$ $\left\{c_{\alpha} \mid \alpha \in\{+1,-1\}^{d}\right\}$. Then, because $\mathcal{G}^{\prime} \subset \mathcal{G}, \operatorname{VCdim}\left(\mathcal{G}^{\prime}\right) \leq \operatorname{VCdim}(\mathcal{G})=d$.

Lemma 1.2. $V \operatorname{Cdim}(\mathcal{H}) \leq \theta\left(d_{1} T\right)$, where $d_{1}=V C d i m(C)$.
Proof. We have m points $\left(x_{1}, \ldots, x_{m}\right)$, where $x_{i} \in \mathbb{R}^{d}$. We can map each point to the algorithm's output over time as:

$$
x_{i} \xrightarrow{\hat{c} \in C}\{-1,1\}^{T} \xrightarrow{\text { halfspace, } \hat{c}_{\alpha} \in \mathcal{G}} y_{i}=\left(\hat{c}_{1}\left(x_{i}\right), \ldots, \hat{c}_{T}\left(x_{i}\right)\right)
$$

This first jump has VCdim d_{1} (that of C), and the second has VCdim T, as shown in the lemma. Intuitively, this will give us a VCdim $\in O\left(d_{1} T\right)$
To show this more comprehensively, we use Sauer's Lemma. By Sauer's Lemma, $\forall S$ of size $m,\left|R_{\mathcal{G}}(S)\right|<\left(\frac{e m}{d}\right)^{d}$, where $d=\operatorname{VCdim}(\mathcal{G})$. So, $\left|R_{C}(S)\right| \leq\left(\frac{e m}{d_{1}}\right)^{d_{1}}$.
If we fix $\left(\hat{c}_{1}, \ldots, \hat{c}_{T}\right)$, then the number of restrictions on $\left(\hat{c}_{1}\left(x_{i}\right), \ldots, \hat{c}_{T}\left(x_{i}\right)\right)$ is less than $\left(\frac{e m}{T}\right)^{T}$. Putting these together, we have that the number of restrictions on every possible combination of \hat{c}_{i} is less than $\left(\frac{e m}{T}\right)^{T}\left(\frac{e m}{d_{1}}\right)^{d_{1} T} \leq m^{(d+1) T}$.
So, for $m<\theta(d T \log (d T))$,

$$
2^{m} \leq \# \text { restrictions } \leq m^{(d+1) T}
$$

