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Lecture 21

1 Weak learning

We discuss weak learning in this lecture. In weak learning, it is sufficient to output a solution
whose error is smaller than 1/2.

Definition 1.1 (Weakly learnable). We say a concept class C is weakly learnable if there
is an algorithm A and a parameter γ ∈ (0, 1/2) such that for all distribution D and δ ∈
(0, 1), the algorithm A receives m(δ, C) samples and outputs a concept ĉ for which we have
Pr

[[[
errD(ĉ) ≥ 1

2
− γ

]]]
≤ δ.

(The function errD(·) is defined by errD(c) := Pr(x,y)∼D[[[c(x) ̸= y ]]].)

Recall that in the previous lectures, the algorithm is required to achieve a “small” error.

Definition 1.2 (Strongly learnable). We say a concept class C is strong learnable if there
is an algorithm B such that for all distribution D and δ ∈ (0, 1), the algorithm B receives
m(δ, C) samples and outputs a concept ĉ for which we have Pr[[[errD(ĉ) ≥ ε]]] ≤ δ.

Remark 1. If an algorithm outputs a concept ĉ ∈ C, we call it proper learning. On the other
hand, if an algorithm outputs a concept which may or may not be in the concept class C, we
call it improper learning. We will see an improper learning algorithm in this lecture.

We can see strong learnability trivially implies weak learnability by choosing ε < 1/2 − γ.
We are going to show that the opposite direction is also correct. That is, if there is an
algorithm A that learns C with an error less than 1/2− γ, then there is an algorithm B that
uses A to learn C with an error less than ε. The algorithm B may use more samples than
that are used in A.

Theorem 2. If a concept class C is weakly learnable, then C is also strongly learnable.

2 Weak learning ⇒ strong learning: algorithm

We present the strong learning algorithm B that uses a weak learning algorithm A as follows.
We consider the concepts whose range is ±1.
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AdaBoost algorithm:

1. Let S = {(xi, yi)}mi=1 be the training set, and let D1(i) = 1/m.

2. For t = 1, 2, . . . , T :

2.1 Run A on Dt(x, y). Get output ĉt.
The distribution Dt(x, y) is defined by

Dt(x, y) =

{
0 if (x, y) /∈ S,
Dt(i) if (x, y) = (xi, yi).

2.2 Compute εt := errDt(ĉt) = 1/2− γt.

2.3 Compute αt :=
1
2
ln(1−εt

εt
) > 0.

2.4 Define Dt+1(i) :=
Dt(i)e−αtĉt(xi)yi

Zt
, where Zt =

∑m
i=1Dt(i)e

−αtĉt(xi)yi .

3. Output ĉ(·) := sign(
∑T

t=1 αtĉt(·)).
The function sign(·) denotes the sign function.

The number of samples m and the number of iterations T have not been determined yet. In
Step 2b, we can calculate ε because Dt is known. Also, we have that γt ≥ γ for all t.

It is the first time in this course that we have seen an algorithm output a concept that may
not be in the concept class.

3 The empirical error of the output concept

In the remaining lecture, we are going to compute the empirical error of ĉ associated with
the sample set S. We have the following result.

Lemma 3.1. Let ˆerrS(ĉ) be the empirical error of the output concept ĉ defined by
1
|S|

∑
(xi,yi)∈S 1{ĉ(xi )̸=yi}, where 1 denotes the indicator. It holds that errS(ĉ) ≤ e−2Tγ2

.

Before proving Lemma 3.1, we first give the following identities and inequalities related to
Dt and Zt.

Fact 3.2.

Dt(i) = D1(i)
t−1∏
t=1

e−αj ĉj(xi)yi

Zj

=
1

m

e−
∑t−1

j=1 αj ĉj(xi)yj∏t−1
j=1 Zj

. (1)

Fact 3.3. Let F (x) :=
∑T

j1
αj ĉj(x). Plug it into Eq. (1) and set i = T + 1. We have

DT+1(i) =
e−yiF (xi)

m
∏T

j=1 Zj

. (2)
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Note that yiF (xi) ≤ 0 corresponds to the event that there is a mislabeling for (xi, yi).

Fact 3.4.
1{yiF (xi)≤0} ≤ e−yiF (xi). (3)

Proof. • If yiF (xi) > 0, then 1{yiF (xi)≤0} = 0. And we have 0 ≤ ea for all a ∈ R.

• If yiF (xi) ≤ 0, then 1{yiF (xi)≤0} = 1. And we have 1 ≤ ea for all a ≥ 0.

Fact 3.5. The value of Zt in terms of error is given by

Zt = eαtεt + e−αt(1− εt) (4)

Proof.

Zt =
∑
i∈S

Dt(i)e
−αtĉt(xi)yi

=
∑

i:yi ̸=ĉt(xi)

Dt(i)e
αt +

∑
i:yi=ĉt(xi)

Dt(i)e
−αt

(Seperate correct and not correct labeling.)

= errDt(ĉt)e
αt + (1− errDt(ĉt))e

−αt

(Definition of err(·).)
= eαtεt + e−αt(1− εt)

(Reword error.)

Combining the above, we are going to prove Lemma 3.1.
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Proof of Lemma 3.1.

ˆerrS(ĉ) =
1

|S|
∑
i∈S

1{ĉ(xi )̸=yi} (By definition.)

=
1

m

∑
i∈S

1{sign(
∑

t αtĉt) ̸=yi} (ĉt := sign(
∑
t

αtĉt).)

=
1

m

∑
i

1{F (xi)yi≤0} (Reword mislabeling.)

≤ 1

m

∑
i

e−yiF (xi) (By Eq. (3).)

≤ 1

m

∑
i

DT+1(i)m
T∏

j=1

Zj (By Eq. (2.))

≤
T∏

j=1

Zj (Sum over a distribution = 1.)

=
T∏
t=1

eαtεt + e−αt(1− εt) (By Eq. (4).)

=
T∏
t=1

2
√

εt(1− εt) (By Def. of αt in Step 2c.)

=
T∏
t=1

2

√
(
1

2
− γt))(1−

1

2
+ γt) (By Def. of εt in Step 2b.)

=
T∏
t=1

2

√
(
1

4
− γ2

t )) =
T∏
t=1

√
(1− 4γ2))

≤
T∏
t=1

e−4γ2
t /2 (By 1− x < e−x.)

= e−2
∑

t γ
2
t

≤ e−2Tγ2

(By γt ≥ γ.)
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