
COMP 585 Spring 2024

Probabilistic Toolkit for Learning and Computing Instructor: Maryam Aliakbarpour

March 28, 2024 Scriber: Yu-Ching Shen

Lecture X

1 PAC in statistical query model

In the statistical query model, a PAC learning algorithm can access an oracle that returns
the expectation value of some functions. But the oracle is under some “noise”. It does
not answer the true expectation value but a value up to an additive error. The goal of the
algorithm is to learn the target concept by using the oracle. We formally define the problem
as follows.

Definition 1.1 (PAC learning in statistical query model). Let X be the instance space, C be
the concept class, c∗ : X → {−1, 1} ∈ C be the target concept, and D be a distribution over
X × {−1, 1} satisfying that y = c∗(x) if (x, y) ∼ D.

Let PX := E(x,y)∼D[[[X(x, y)]]] associated with the function X : X × {−1, 1} → {−1, 1}. In
the statistical query model, there is an oracle O first receives a tolerant parameter τ ∈ R,
and a function X, then O answers P̂X such that |P̂X − PX | ≤ τ for all X.

An algorithm A queries the oracle O on τ and X1, X2, . . . , Xt, and then receives
P̂1, P̂2, . . . , P̂t. The algorithm A outputs a concept ĉ such that err(ĉ) ≤ ε.

(The function err(·) is defined by err(c) := Pr(x,y)∼D[[[c(x) ̸= y]]].)

We list some remarks on the query model below.

Remark 1. In the query model, the algorithm A does not draw samples from D.

Remark 2. In the query model, we require the algorithm to output a concept with a small
error with probability one. This is because the answer from the oracle has an error smaller
than the tolerant parameter with certainty.

Remark 3. There are two kinds of algorithms in the query model. The first is non-adaptive
algorithms, which decide the queries X1, X2, . . . , Xt in advance. The second is adaptive
algorithms, which can choose Xi depending on P̂X1 , P̂X2 , . . . , P̂Xi−1

. Our analysis later works
for both cases.

1

COMP 585 Lecture X Spring 2024

2 PAC in the presence of noise

Now, we consider the PAC learning in the standard model with noise. An algorithm samples
instances (x, y)’s from a “noisy” distribution D′, where c∗(x) is flipped with probability
η ∈ (0, 1/2). We define the problem formally as follows.

Definition 2.1. Let X , C, c∗, and D be the same in Definition 1.1. Let η ∈ (0, 1/2) and D′

be a noisy distribution over X ×{−1, 1}, where the marginal distribution over X is same as
D, and y = c∗(x) with probability 1− η and y = −c∗(x) with probability η. An algorithm B
draws samples from D′ and tries to outputs a concept ĉ such that err(ĉ) ≤ ε with probability
1− δ.

We are going to show that PAC learning in the statistical query model implies PAC learning
in the standard model with noise in the next section.

3 Statistical query model ⇒ standard model with noise

Assume that the algorithm in the oracle model A solves PAC learning problem with the
parameter τ , and the functions X1, X2, . . . , Xt. If the algorithm in the standard model B
can compute the corresponding value P̂X1 , P̂X2 , . . . P̂Xt , then B can solve the problem by
running A with P̂X1 , P̂X2 , . . . P̂Xt . Next, we are going to show that P̂X can be computed
by sampling instances from D′. In other words, we are going to show that we can estimate
E(x,y)∼D[[[X(x, y)]]] up to an additive error τ by sampling (x, y) ∼ D′.

We have that

E[[[X(x, y)]]] = E
[[[
X(x, 1) · 1{c∗(x)=1}

]]]
+ E

[[[
X(x,−1) · 1{c∗(x)=−1}

]]]
= E

[[[
X(x, 1) · 1 + c∗(x)

2

]]]
+ E

[[[
X(x,−1) · 1− c∗(x)

2

]]]
=

1

2

(
E[[[X(x, 1)]]] + E[[[X(x,−1)]]]

)
+

1

2

(
E[[[X(x, 1) · c∗(x)]]]− E[[[X(x,−1) · c∗(x)]]]

)
.

(1)

The randomness in Equation (1) comes from D. The first line separates the cases y =
c∗(x) = 1 and y = c∗(x) = −1. And 1{·} denotes the indicator. The second line replaces the
indicator with c∗ by finding 1 = ±1 when c∗ = 0 or 1. The third line separates the terms
dependent on c∗(x) and the terms independent of c∗(x).

After splitting y = 1 and y = −1, Equation (1) does not explicitly depend on y. The first
term of the third line of Equation (1) is independent of c∗(x), and hence can be estimated by
sampling from DX , where DX denote the marginal distribution of D over X . To calculate the
second term, we need to know c∗(x). So, our goal now is to estimate Ex∼DX [[[X(x,±1) · c∗(x)]]]
by sampling from the noisy distribution. To simplify the notation, we rewrite the above goal
below.

2

COMP 585 Lecture X Spring 2024

Goal 1. Let φ : X → {−1, 1} be a function independent of y. Estimate Ex∼DX [[[φ(x) · c∗(x)]]]
up to an additive error τ with probability 1− δ by sampling (x, y) ∼ D′.

Consider the value E(x,y)∼D′[[[φ(x) · y]]]. We have

E[[[φ(x) · y]]] =1 ·Pr[[[φ(x) = 1 and y = 1]]] + (−1) ·Pr[[[φ(x) = 1 and y = −1]]]

+ (−1) ·Pr[[[φ(x) = −1 and y = 1]]] + 1 ·Pr[[[φ(x) = −1 and y = −1]]]

=Pr[[[φ(x) = y]]]−Pr[[[φ(x) ̸= y]]]. (2)

Equation (2) holds for all distributions.

Then, we insert the value c∗(x) into Pr[[[φ(x) = y]]]. We have

Pr[[[φ(x) = y]]] = Pr[[[φ(x) = c∗(x) and c∗(x) = y]]] +Pr[[[φ(x) ̸= c∗(x) and c∗(x) ̸= y]]]

= Pr[[[φ(x) = c∗(x)]]] ·Pr[[[c∗(x) = y]]] +Pr[[[φ(x) ̸= c∗(x)]]] ·Pr[[[c∗(x) ̸= y]]]

= Pr[[[φ(x) = c∗(x)]]](1− η) + (1−Pr[[[φ(x) = c∗(x)]]])η

= (1− 2η)Pr[[[φ(x) = c∗(x)]]]) + η. (3)

Equation (3) holds for all distributions. The second line holds because the flip occurring in
the noisy distribution is independent of how we choose x such that φ(x) equals some value.

Similarly, we have

Pr[[[φ(x) ̸= y]]] = Pr[[[φ(x) ̸= c∗(x) and c∗(x) = y]]] +Pr[[[φ(x) = c∗(x) and c∗(x) ̸= y]]]

= Pr[[[φ(x) ̸= c∗(x)]]] ·Pr[[[c∗(x) = y]]] +Pr[[[φ(x) = c∗(x)]]] ·Pr[[[c∗(x) ̸= y]]]

= Pr[[[φ(x) ̸= c∗(x)]]](1− η) + (1−Pr[[[φ(x) ̸= c∗(x)]]])η

= (1− 2η)Pr[[[φ(x) ̸= c∗(x)]]]) + η. (4)

Now Equation (3) and (4) does not explicitly depend on y. Combining Equation (2), (3),
and (4), we have

E(x,y)∼D′[[[φ(x) · y]]] = (1− 2η)
(
Pr[[[φ(x) = c∗(x)]]]−Pr[[[φ(x) ̸= c∗(x)]]]

)
. (5)

By similar argument in the Equation (2), we have

Ex∼DX [[[φ(x) · c∗(x)]]] =
(
Pr[[[φ(x) = c∗(x)]]]−Pr[[[φ(x) ̸= c∗(x)]]]

)
. (6)

Combining Equation (5) and (6), we have

Ex∼DX [[[φ(x) · c∗(x)]]] =
1

1− 2η
E(x,y)∼D′[[[φ(x) · y]]]. (7)

Finally, we get the result that we want: to expressEx∼DX [[[φ(x) · c∗(x)]]] in terms of (x, y) ∼ D′.

Now we can presents the algorithm that estimates PX1 , PX2 , . . . , PXt .

1. Inputs: X1, X2, . . . , Xt.

3

COMP 585 Lecture X Spring 2024

2. Draw m = O(log(t/δ)
τ2

) samples (xj, yj) from D′.

3. For i = 1, 2, . . . , t, compute

P̂Xi
:=

1

m

m∑
j=1

1

2

(
Xi(xj,+1) +Xi(xj,−1)

)
+

1

m

m∑
j=1

1

2
· 1

1− 2η

(
Xi(xj, 1) · yj −Xi(xj,−1) · yj

)
. (8)

.

4. Output P̂X1 , P̂X2 , . . . P̂Xt .

By Hoeffding bound, each term in Equation (8) has additive error within O(τ) with proba-
bility 1−O(δ/t), and then by union bound, |P̂Xi

−PXi
| ≤ τ with probability 1−O(δ/t). We

can use the same samples for each in[t] because (xj, yj)’s are independent in each iteration.

Again, use union bound over all i ∈ [t]. We have that for all i ∈ [t], |P̂Xi
− PXi

| ≤ τ with
probability 1−O(δ). We conclude the discussion with the following theorem.

Theorem 4. If there is an algorithm A that solves PAC learning in the statistical query
model, then there is an algorithm B that solves PAC learning in the standard model with
noise.

4 PAC learning with unknown noise

In the previous section, we need to know the value η to estimate PX . Does the algorithm
still work when η is unknown? The answer is yes. We can guess a value of η′. As long as η′

is close to η, the algorithm has a good approximation. We have∣∣∣E[[[φ(x) · c∗(x)]]]− 1

1− 2η′
E[[[φ(x) · y]]]

∣∣∣ = ∣∣∣(1

1− 2η
− 1

1− 2η′
)
E[[[φ(x) · y]]]

∣∣∣ ≤ ∣∣∣(1

1− 2η
− 1

1− 2η′
)∣∣∣.

(9)
The inequality holds because E[[[φ(x) · y]]] ∈ [−1,+1]. Let η0 be the maximum of η and let

∆ := Θ
(

τ
(1−2η0)2

)
. If |η−η′| ≤ ∆, we have

∣∣∣(1
1−2η

− 1
1−2η′

)∣∣∣ ≤ Θ(τ). (The complete derivation

can be found in Section 5.4.3 in An Introduction to Computational Learning Theory by
Michael Kearns and Umesh Vazirani.) And hence the error of empirical E[[[φ(x) · c∗(x)]]] is
upper bounded by Θ(τ).

To find a η′ which is ∆-close to η, we try η′ = 0,∆, 2∆, . . . , η0. For each trial η′, we get an

output ĉ′. We can verify weather ĉ′ is that we want by checking weather Pr
[[[
ĉ′(x) ̸= y

]]]
is

∆-close to η′.

Notice that we compute P̂X by estimating 1
1−2η′

E[[[X(x,±1) · y]]]. When η′ goes larger, we

need a more accurate estimation on E[[[X(x,±1) · y]]], and hence we need more samples. As
a result, trying η′ from 0 and increasing η′ is more efficient than other ways.

4

	PAC in statistical query model
	PAC in the presence of noise
	Statistical query model standard model with noise
	PAC learning with unknown noise

