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Lecture 23

1 Learning Boolean Conjunctions

In this lecture, we revisit the problem of learning conjunctions, when there was no noise
in the data. The algorithm started with a hypothesis consisting of a conjunction of all 2n
literals; thus it begins with a hypothesis that always predicts 0. Then, for every positive
example (a, 1), it deletes the literals present in its hypothesis, which causes this example to
be classified as negative. As long as sufficiently many examples are used, this algorithm is
guaranteed to produce a hypothesis with an error at most ε.

This algorithm does not work when there is noise in the data. For instance, if a negative
example was observed with label 1 (due to noise), the algorithm may drop several literals
from the hypothesis that are required. The decisions made by the algorithm are not robust
as they are based on a single example. We will design a more robust algorithm for learning
conjunctions. To begin with, let us continue to assume that the data we receive is noise-free;
later, we’ll discuss how this more robust algorithm can also be used when the data is noisy.

Let y(i) = h⋆(x(i)) be the target conjunction and let h be a literal that appears in y. We
will use the notation h(x(i)) = 1 to indicate that the literal h evaluates to 1 (true) on the
instance x(i) ∈ X. For any literal h that is present in the target conjunction, it holds that
Prx∼D[x1,z = 0 ∧ h⋆(x) = 1] = 0. We would like to identify all such literals and put them
in the output hypothesis. Of course, it is only important to do this for literals that have
a significant probability mass of being false under the distribution. Let us make this idea
more concrete.

• A literal z is said to be significant if Prx∼D[x1,z = 0] = Pr0(z) ≥ ε
8n

• A literal z is harmful if Prx∼D[x1,z = 0 ∧ h⋆(x) = 1] = Pr01(z) ≥ ε
8n

We want to prove the following lemma:

Lemma 1.1. If H contains all significant but not harmful z’s =⇒ err(h) ≤ ε

Proof. First, notice that all harmful literals are also significant. Let h be a hypothesis that
is a conjunction of all literals that are significant, but not harmful. Let us analyze the error
of h.
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err(h) = Prx∼D[h(x) ̸= h⋆(x)]

= Prx∼D[h(x) = 0 ∧ h⋆(x) = 1] + Prx∼D[h(x) = 1 ∧ h⋆(x) = 0]

≤ ε

2
=

ε

4
+

ε

4

where we have set (1) Prx∼D[h(x) = 0 ∧ h⋆(x) = 1] ≤ ε
4
, and (2) Prx∼D[h(x) = 1 ∧ h⋆(x) =

0] ≤ ε
4

To prove (1) notice that

Given h(x) = 0, ∃z ∈ h s.t. x1,z = 0 ∧ z /∈ h⋆, h⋆(x) = 1

Prx∼D[h(x) = 0 ∧ h⋆(x) = 1] ≤ Prx∼D[∃z ∈/∈ h⋆x1,z = 0 ∧ h⋆(x) = 1]

≤
∑
z

Prx∼D[x1,z = 0 ∧ h⋆(x) = 1]

≤
∑

z∈h/∈h⋆

Pr01(z) ≤
∑
z∈h

Pr01(z)

≤ ε

8n
(2n) ≤ ε
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To prove (2) notice that

∃z ∈ h⋆ s.t. x1,z = 0 ∧ z ∈ h⋆ ∧ z /∈ h

This implies that z can not be harmful and since it is removed from h, it implies that z is
insignificant

Prx∼D[h(x) = 1 ∧ h⋆(x) = 0] ≤ Prx∼D[∃z is on insignificant , z ∈ h⋆s.tx1,z = 0 ∧ h(x) = 1]

≤
∑
z

Pr[x1,z = 0]

≤ ε

8n
(2n) ≤ ε
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2 Statistical Query Model

For a concept class C, we say C is realizable (and efficiently) learnable in the statistical
query model if and only if there exists an algorithm A that for all ε,D, receives ε and makes
χ1, · · · , χt queries to the oracle and receives P̂χ,τ , then algorithm A outputs ĉ ∈ C such that
err(ĉ) ≤ ε. A statistical query is a tuple, (χ, τ), where χ : X × 0, 1 → 0, 1 is a boolean
function that takes as input an instance x ∈ X and a target y ∈ 0, 1 (one of the two possible
labels of the instance), and τ is the tolerance parameter.

For the next lecture, we will prove that learning an algorithm in the statistical
query model implies the learnability in the PAC setting with noise.
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