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1 Review

First, let’s recall the necessary preliminaries from what we discussed in previous lectures.

1. The VC-dimension, d = V Cdim(C) of a concept class C is the maximal size of a set S that can be
shattered by C.

2. A particular concept class has Uniform Convergence iff ∀ ϵ, δ ∈ (0, 1)∃m s.t. Pr[sup
c∈C

|err(c) − ˆerr(c)| <

ϵ] ≥ 1− δ

3. If C has finite VC-dimension, C has uniform convergence.

And an important lemma followed:

Lemma 1. For class C with growth function τC(m) (or briefly stated, τ(m)) for all distributions, D and pa-
rameters ϵ, δ and sample sets S of size m:

Pr[∀c ∈ C| ˆerrS(c)− err(c)| < ϵ] > 1− δ

is satisfied when

ϵ =
4 +

√
log(τ(2m))

δ ∗
√
2m

And this gives us the sample complexity for m. Last class, we began the proof and arrived at the following:

E[sup
c∈C

|err(c)− ˆerrS(c)|] ≤ ES,S′Eσ∈u{1,−1}[ sup
z∈CS∪S′

1

m
|

m∑
i=1

σi(1{zi ̸= yi} − 1{z′i ̸= y′i})|]

where CS∪S′ is the set of (z, z’) such that there exists a concept c ∈ C such that c(x) = z, c(x’) = z’

2 Continuation of Proof

Let A(σi) = σi(1{zi ̸= yi} − 1{z′i ̸= y′i}). Note that E[A(σi] = 0. So,

Pr

[
|

m∑
i=1

A(σi)| > mα

]
= Pr

[
1

m
|

m∑
i=1

A(σi)| − E[A(σi)] > α

]
≤ 2e−2mα2

Thus, we can now use union bound:

∀z ∈ CS∪S′Pr

[
∃z :

1

m
|

m∑
i=1

A(σi)| − E[A(σi)] > α

]
≤ 2τ(2m)e−2mα2

And we use the lemma found in the next section with a = 1
sqrt2m , b = τ(2m) to bound the probability above

by:
2 +

√
log(τ(2m))√
2m

and by bounding this expression above by ϵ, our Lemma is proved. Next, let’s take a look at the lemma used
to make this final conclusion.

1



Lemma 2. X is a random variable and x′ is a scalar. Suppose ∃a > 0, b > e s.t. ∀t Pr[|X−x′| > t] ≤ 2be−t2/a2

then,
E[|X − x′|] ≤ a(2 +

√
log b

The proof goes as follows:

E[|X − x′|] =
∫
t

Pr[|X − x′| > t]dt

≤
∞∑
i=0

f(ti−1)(ti − ti−1)

≤
∞∑
i=0

f(ti−1)(ti)

≤ t0 ∗ 1 +
∞∑
i=1

f(ti−1)(ti)

≤ t0 +

∞∑
i=i

Pr[|X − x′| > ti−1](ti)

Choosing ti = a(i+
√
log b) ⇐⇒ t2i

a2
= −i2 − 2i

√
log b− log b

≤ a
√

log b+ 2ab

∞∑
i=1

(i+
√
log b)e−(i−1)

≤ a
√

log b+ 2ab

∫ ∞

i+
√
log b

xe−(x−1)2dx

Substitutingx− 1 = y

≤ a
√
log b+ 4ab

∫ ∞

√
log b

y − e−y2

dy

≤ a
√

log b+

[
−e−y2

2

]∞

√
log b

≤ a
√

log b+
2ab

b

≤ a(2 +
√

log b as desired.

And so as this lemma is confirmed, Lemma 1 must hold.

3 Learning in the Presence of Noise

An important observation to make at this point is aside from the realizable case, we never assumed deterministic
data to prove any of our results so far. Now we introduce a new setting where we still have pairs (x, f(x)) but
instead of observing f(x) we observe l(x) as defined here:

l(x) =

{
f(x) with prob. 1− η

1− f(x) with prob. η

Using this, we can redefine PAC learnability for this type of noise.

Definition 1. We say c is PAC learnable in the presence of noise iff ∃ an algorithm such that for all ϵ, δ, η
the algorithm outputs ĉ such that:

err(ĉ) ≤ minc∈Cerr(c) + ϵ

We end class with the following two observations. First, if we denote p := Pr(x,y) D[c(x) ̸= f(x)] then by
the law of total probability, err(c) = (1 − p)η + p(1 − η) = p + η − 2pη. Second, if η < 1/2 minimizing err(c)
w.r.t. f(x) is equivalent to minimizing err(c) w.r.t. l(x). This concluded the 3/21 lecture.
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