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Lecture 21

1 Fundamental Theorem of PAC Learning

In this lecture, we aim to prove one of the implications of the fundamental theorem of PAC
learning. We aim to show that,

Theorem 1. A Finite VCdim implies Uniform Convergence.

Recall that the definition of uniform convergence is:

∀ε, δ; ε ∈ [0, 1],∃m(ε, δ, C) s.t. Pr

[
sup
c∈C

|err(c)− êrr(c)| < ε

]
≥ 1− δ

With a VCdim = d, it has been shown that the best bound on the value of m(ε, δ, C) are

m = O
(

d log(1/ε)+log(1/δ)
ε

)
for the realizable case and m = O

(
d+log(1/δ)

ε2

)
for the agnostic case.

In this lecture, we will show a weaker version of this, specifically that m = O
(

d
(δε)2

log
(

d
δε

))
We start with the following lemma.

Lemma 1.1. For a concept class C, with growth function τC(m), we have that for all distri-
butions D and parameters ε, δ, and sample set S of size m:

∀ε, δ; ε ∈ [0, 1],∃m(ε, δ, C) s.t. Pr

[
sup
c∈C

|err(c)− ˆerr(c)| < ε

]
≥ 1− δ,

implies that

ε =
4 +

√
log(τ(2m))

δ
√
2m

=
4 +

√
log(m

d
)

√
2m

,

using Sauer lemma to bound the growth function as τ(2m) ≤
(
2me
d

)d ≈ md. This also implies

the number of samples needed is of the order m = O
(

d
(δε)2

log
(

d
δε

))
To prove Lemma 1.1, we need to recall the following:

1. Jensen’s inequality. For all convex functions f(E[x]) ≤ E[f(x)].

1



COMP 585 Lecture 21 Spring 2024

2. If Pr[x, y] = Pr[y, x] then Ex,y[f(x, y)] = Ey,x[f(y, x)].

3. Given σ = {σ1, · · · , σn} ∀aA ≤ f(σi) =⇒ A ≤ Eσ[f(σ)]

And the following lemma:

Lemma 1.2. Let X be a random variable and x′ ∈ R be a scalar and assume that there
exists a > 0 and b ≥ e such that for all t ≥ 0 we have Pr[|X − x′| > t] ≤ 2be−t2/a2. Then,
E[|X − x′|] ≤ a(2 +

√
log(b)).

Proof. We will show

ES∼Dm

[
sup
c∈C

|err(c)− êrr(c)|
]
≤

4 +
√
log(m

d
)

√
2m

which implies Lemma 1.1 by markvov’s inequality.

ES∼Dm

[
sup
c∈C

|err(c)− êrr(c)|
]
= ES∼Dm

[
sup
c∈C

|ES′∼Dm [êrrS′(c)]− êrrS(c)|
]

≤ ES,S′∼Dm

[
sup
c∈C

|êrrS′(c)− êrrS(c)|
]

≤ ES,S′∼Dm

[
sup
c∈C

1

m

∣∣∣∣∣
m∑
i=1

1c(x′
i )̸=y′i

− 1c(xi )̸=yi

∣∣∣∣∣
]

≤ ES,S′∼Dm

[
sup
c∈C

1

m

∣∣∣∣∣
m∑
i=1

σi1c(x′
i) ̸=y′i

− 1c(xi )̸=yi

∣∣∣∣∣
]

∀σi ∈ {−1,+1}m

≤ ES,S′∼DmEσi∈{−1,+1}m

[
sup
c∈C

1

m

∣∣∣∣∣
m∑
i=1

σi1c(x′
i) ̸=y′i

− 1c(xi )̸=yi

∣∣∣∣∣
]

Let us restrict the class C to CS∪S′ defined as

CS∪S′ = {z = (z1, · · · zm, z′1 · · · z′m)|∃c ∈ C s.t.c(xi) = zi ∧ c(x′
i) = z′i, }

then we have

≤ ES,S′∼DmEσi∈{−1,+1}m

[
sup
c∈C

1

m

∣∣∣∣∣
m∑
i=1

σi1z′i ̸=y′i
− 1zi ̸=yi

∣∣∣∣∣
]

Next, fix S and S ′, and since we restrict ourselves to the class CS∪S′ . Then, we replace the
supremum with a maximum over the restricted class. Therefore,

ES,S′∼DmEσi∈{−1,+1}m

[
sup
c∈C

1

m

∣∣∣∣∣
m∑
i=1

σi1z′i ̸=y′i
− 1zi ̸=yi

∣∣∣∣∣
]
= Eσi∈{−1,+1}m

[
max

c∈CS∪S′

1

m

∣∣∣∣∣
m∑
i=1

σi1z′i ̸=y′i
− 1zi ̸=yi

∣∣∣∣∣
]

Fix some c ∈ CS∪S′ and denote θc =
∑m

i=1 σi1z′i ̸=y′i
− 1zi ̸=yi . Since E[θc] = 0 and θc is an

average of independent variables, each of which takes values in [−1, 1], we have by Hoeffding’s
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inequality that for every ε > 0,

Pr[|θc| > ε] ≤ 2 exp(−2mε2).

Applying the union bound over c ∈ CS∪S′ , we obtain that for any ε > 0,

Pr

[
max

c∈CS∪S′
|θc| > ε

]
≤ 2|C| exp(−2mε2).

Finally, using Lemma 1.2 we get

E

[
max

c∈CS∪S′
|θc|

]
≤

4 +
√

log(|C|)√
2m

.

Combining all with the definition of the growth function τC from previous lecture, we have
shown that

ES∼Dm

[
sup
c∈C

|err(c)− êrr(c)|
]
≤

4 +
√
log(τC(2m))√
2m

.
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