Lecture 21

1 Fundamental Theorem of PAC Learning

In this lecture, we aim to prove one of the implications of the fundamental theorem of PAC learning. We aim to show that,

Theorem 1. A Finite VCdim implies Uniform Convergence.

Recall that the definition of uniform convergence is:

$$\forall \varepsilon, \delta; \quad \varepsilon \in [0, 1], \exists m(\varepsilon, \delta, \mathcal{C}) \quad \text{s.t.} \quad \Pr\left[\sup_{c \in \mathcal{C}} |\operatorname{err}(c) - \operatorname{err}(c)| < \varepsilon\right] \ge 1 - \delta$$

With a VCdim = d, it has been shown that the best bound on the value of $m(\varepsilon, \delta, C)$ are $m = O\left(\frac{d\log(1/\varepsilon) + \log(1/\delta)}{\varepsilon}\right)$ for the realizable case and $m = O\left(\frac{d + \log(1/\delta)}{\varepsilon^2}\right)$ for the agnostic case. In this lecture, we will show a weaker version of this, specifically that $m = O\left(\frac{d}{(\delta\varepsilon)^2}\log\left(\frac{d}{\delta\varepsilon}\right)\right)$ We start with the following lemma.

Lemma 1.1. For a concept class C, with growth function $\tau_{\mathcal{C}}(m)$, we have that for all distributions \mathcal{D} and parameters ε, δ , and sample set S of size m:

$$\forall \varepsilon, \delta; \quad \varepsilon \in [0, 1], \exists m(\varepsilon, \delta, \mathcal{C}) \quad s.t. \quad \Pr\left[\sup_{c \in \mathcal{C}} |\operatorname{err}(c) - \widehat{\operatorname{err}}(c)| < \varepsilon\right] \ge 1 - \delta,$$

implies that

$$\varepsilon = \frac{4 + \sqrt{\log(\tau(2m))}}{\delta\sqrt{2m}} = \frac{4 + \sqrt{\log(\frac{m}{d})}}{\sqrt{2m}}$$

using Sauer lemma to bound the growth function as $\tau(2m) \leq \left(\frac{2me}{d}\right)^d \approx m^d$. This also implies the number of samples needed is of the order $m = O\left(\frac{d}{(\delta\varepsilon)^2}\log\left(\frac{d}{\delta\varepsilon}\right)\right)$

To prove Lemma 1.1, we need to recall the following:

1. Jensen's inequality. For all convex functions $f(\mathbb{E}[x]) \leq \mathbb{E}[f(x)]$.

Lecture 21

- 2. If $\Pr[x, y] = \Pr[y, x]$ then $\mathbb{E}_{x,y}[f(x, y)] = \mathbb{E}_{y,x}[f(y, x)].$
- 3. Given $\sigma = \{\sigma_1, \cdots, \sigma_n\} \quad \forall aA \le f(\sigma_i) \implies A \le \mathbb{E}_{\sigma}[f(\sigma)]$

And the following lemma:

Lemma 1.2. Let X be a random variable and $x' \in \mathbb{R}$ be a scalar and assume that there exists a > 0 and $b \ge e$ such that for all $t \ge 0$ we have $Pr[|X - x'| > t] \le 2be^{-t^2/a^2}$. Then, $\mathbb{E}[|X - x'|] \le a(2 + \sqrt{\log(b)}).$

Proof. We will show

$$\mathbb{E}_{S \sim \mathcal{D}^m} \left[\sup_{c \in \mathcal{C}} |\operatorname{err}(c) - \operatorname{err}(c)| \right] \le \frac{4 + \sqrt{\log(\frac{m}{d})}}{\sqrt{2m}}$$

which implies Lemma 1.1 by markvov's inequality.

$$\mathbb{E}_{S\sim\mathcal{D}^{m}}\left[\sup_{c\in\mathcal{C}}\left|\operatorname{err}(c)-\operatorname{e\hat{r}r}(c)\right|\right] = \mathbb{E}_{S\sim\mathcal{D}^{m}}\left[\sup_{c\in\mathcal{C}}\left|\mathbb{E}_{S'\sim\mathcal{D}^{m}}\left[\operatorname{e\hat{r}r}_{S'}(c)\right]-\operatorname{e\hat{r}r}_{S}(c)\right|\right]$$

$$\leq \mathbb{E}_{S,S'\sim\mathcal{D}^{m}}\left[\sup_{c\in\mathcal{C}}\left|\operatorname{e\hat{r}r}_{S'}(c)-\operatorname{e\hat{r}r}_{S}(c)\right|\right]$$

$$\leq \mathbb{E}_{S,S'\sim\mathcal{D}^{m}}\left[\sup_{c\in\mathcal{C}}\left|\operatorname{e\hat{r}r}_{i}\right|\right] \mathbb{E}_{i=1}\left[\mathbb{E}_{c(x'_{i})\neq y'_{i}}-\mathbb{E}_{c(x_{i})\neq y_{i}}\right]\right]$$

$$\leq \mathbb{E}_{S,S'\sim\mathcal{D}^{m}}\left[\sup_{c\in\mathcal{C}}\left|\operatorname{e\hat{r}r}_{i}\right|\right] \mathbb{E}_{i=1}\left[\operatorname{e}_{c(x'_{i})\neq y'_{i}}-\mathbb{E}_{c(x_{i})\neq y_{i}}\right]\right] \quad \forall \sigma_{i} \in \{-1,+1\}^{m}$$

$$\leq \mathbb{E}_{S,S'\sim\mathcal{D}^{m}}\mathbb{E}_{\sigma_{i}\in\{-1,+1\}^{m}}\left[\operatorname{sup}_{c\in\mathcal{C}}\left|\operatorname{e\hat{r}r}_{i}\right|\right] \mathbb{E}_{i=1}\left[\operatorname{e}_{c(x'_{i})\neq y'_{i}}-\mathbb{E}_{c(x_{i})\neq y_{i}}\right]$$

Let us restrict the class \mathcal{C} to $\mathcal{C}_{S\cup S'}$ defined as

$$\mathcal{C}_{S\cup S'} = \{ z = (z_1, \cdots z_m, z'_1 \cdots z'_m) | \exists c \in \mathcal{C} \quad \text{s.t.} c(x_i) = z_i \land c(x'_i) = z'_i, \}$$

then we have

$$\leq \mathbb{E}_{S,S'\sim\mathcal{D}^m} \mathbb{E}_{\sigma_i\in\{-1,+1\}^m} \left[\sup_{c\in\mathcal{C}} \frac{1}{m} \left| \sum_{i=1}^m \sigma_i \mathbb{1}_{z'_i\neq y'_i} - \mathbb{1}_{z_i\neq y_i} \right| \right]$$

Next, fix S and S', and since we restrict ourselves to the class $C_{S\cup S'}$. Then, we replace the supremum with a maximum over the restricted class. Therefore,

$$\mathbb{E}_{S,S'\sim\mathcal{D}^m}\mathbb{E}_{\sigma_i\in\{-1,+1\}^m}\left[\sup_{c\in\mathcal{C}}\frac{1}{m}\left|\sum_{i=1}^m\sigma_i\mathbb{1}_{z_i\neq y_i'}-\mathbb{1}_{z_i\neq y_i}\right|\right] = \mathbb{E}_{\sigma_i\in\{-1,+1\}^m}\left[\max_{c\in\mathcal{C}_{S\cup S'}}\frac{1}{m}\left|\sum_{i=1}^m\sigma_i\mathbb{1}_{z_i\neq y_i'}-\mathbb{1}_{z_i\neq y_i'}\right|\right]$$

Fix some $c \in \mathcal{C}_{S \cup S'}$ and denote $\theta_c = \sum_{i=1}^m \sigma_i \mathbb{1}_{z'_i \neq y'_i} - \mathbb{1}_{z_i \neq y_i}$. Since $\mathbb{E}[\theta_c] = 0$ and θ_c is an average of independent variables, each of which takes values in [-1, 1], we have by Hoeffding's

inequality that for every $\varepsilon > 0$,

$$\Pr[|\theta_c| > \varepsilon] \le 2\exp(-2m\varepsilon^2).$$

Applying the union bound over $c \in \mathcal{C}_{S \cup S'}$, we obtain that for any $\varepsilon > 0$,

$$\Pr\left[\max_{c\in\mathcal{C}_{S\cup S'}}|\theta_c|>\varepsilon\right] \le 2|\mathcal{C}|\exp(-2m\varepsilon^2).$$

Finally, using Lemma 1.2 we get

$$\mathbb{E}\left[\max_{c\in\mathcal{C}_{S\cup S'}}|\theta_c|\right] \leq \frac{4+\sqrt{\log(|\mathcal{C}|)}}{\sqrt{2m}}.$$

Combining all with the definition of the growth function τ_C from previous lecture, we have shown that

$$\mathbb{E}_{S \sim \mathcal{D}^m} \left[\sup_{c \in \mathcal{C}} |\operatorname{err}(c) - \operatorname{err}(c)| \right] \le \frac{4 + \sqrt{\log(\tau_C(2m))}}{\sqrt{2m}}.$$

_	_	٦.
		L