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Lecture 21

1 Fundamental Theorem of PAC Learning

In this lecture, we aim to prove one of the implications of the fundamental theorem of PAC
learning. We aim to show that,

Theorem 1. A Finite VCdim implies Uniform Convergence.
Recall that the definition of uniform convergence is:
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With a VCdim = d, it has been shown that the best bound on the value of m(e,d,C) are

m =0 <d1°g 1/8);10‘%(1/5 > for the realizable case and m = O <%2(1/5)> for the agnostic case.

In this lecture, we will show a weaker version of this, specifically that m = O ( 5 log ( ))

We start with the following lemma.

Lemma 1.1. For a concept class C, with growth function 7c(m), we have that for all distri-
butions D and parameters €,9, and sample set S of size m.:

Ve,d; e€[0,1],3m(e,d,C) s.t. Pr {sup lerr(c) — err(c)| < e

ceC

>1 -,

implies that
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the number of samples needed is of the order m = O <(5 5 log (% )

using Sauer lemma to bound the growth function as 7(2m) < (

) ~ m®. This also implies

To prove Lemma 1.1, we need to recall the following:

1. Jensen’s inequality. For all convex functions f(E[z]) < E[f(x)].
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2. If Pr[z,y| = Prly, | then E, ,[f(z,y)] = E,.[f(y, )]
3. Given 0 = {0y, ,0,} VaA < f(o;) = A <E,[f(0)]

And the following lemma:

Lemma 1.2. Let X be a random variable and ' € R be a scalar and assume that there
exists a > 0 and b > e such that for all t > 0 we have Pr{|X — 2| > t] < 2be~"*/%. Then,

E[|X — 2'|] < a(2+ +/log(h)).
Proof. We will show
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which implies Lemma 1.1 by markvov’s inequality.
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Let us restrict the class C to Csug defined as

/
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then we have
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Next, fix S and S’, and since we restrict ourselves to the class Csus:. Then, we replace the

supremum with a maximum over the restricted class. Therefore,
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Fix some ¢ € Cgug and denote 0, = > 1", 0ilr sy — 1y, Since E[f.] = 0 and 0, is an
average of independent variables, each of which takes values in [—1, 1], we have by Hoeffding’s
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inequality that for every ¢ > 0,
Pr[|0.| > €] < 2exp(—2me?).
Applying the union bound over ¢ € Cgs, we obtain that for any € > 0,

Pr [ max |0.] > e| < 2|C|exp(—2me?).
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Finally, using Lemma 1.2 we get

e[ 0] <« - VIEIED
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Combining all with the definition of the growth function 7o from previous lecture, we have

shown that
} < 4+ /log(1c(2m))
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