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Lecture 16

1 Growth function, shattering and VC-dimension

Let S = {x1, . . . , xm} be a set of m points from instance space X . Let C be a concept class
over instance space X . The restriction of C to S, denoted by CS is defined to be

CS = {(c(x1), . . . , c(xm)) : c ∈ C}

where each function from S to {0, 1} is represented by an element of {0, 1}|S| (or {0, 1}m.)
While C might be infinite, it’s “effective size” might be small in the sense that the number
of functions induced by the restriction of C to any m points from X might be significantly
smaller than 2m (the obvious maximum number of such functions.) To formalize this we
defined the growth function τC : N → N as follows

τC(m) = sup
S⊆X :|S|=m

|CS| .

In words, τC(m) is the maximum number of functions from [m]to{0, 1} that can be realized
by considering restrictions of C to m-sets of points of belonging to X .

As mentioned earlier we have the trivial upper bound τC(m) ≤ 2m. However, under a simple
condition we can get a much better upper bound on τC(m). Take S ⊆ X with |S| < ∞. We
say that C shatters finite S if |CS| = 2|S|.

Example 1 (Axis-aligned rectangles). To make the notion shattering more clear take C to
be the collection of all axis-aligned rectangles in R2, i.e.

C = {[x0, x1]× [y0, y1] : x0, x1, y0, y1 with x0 ≤ x1 and y0 ≤ y1} .

It is easily verified that |CS| = 2|S| for any S ⊆ R2 with |S| ∈ {1, 2}. So C shatters
any 1 or 2-subset of R2. What about the 3-subset {(0, 0), (1, 1), (2, 2)} or the 4-subset
{(0,−1), (0, 1), (−1, 0), (1, 0)}. Can C shatter these sets?

We now define the VC-dimension of the concept class C, denoted by VCdim(C), to be the
largest m ∈ N such that there exists an S ⊆ X with |S| = m that can be shattered by C.
If for each m ∈ N there exists an S ⊆ X with |S| = m that can be shattered by C then we
define VCdim(C) = ∞.
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Example 2 (Axis-aligned rectangles (revisited)). Let us consider again the concept class C
of axis-aligned rectangles in R2. Here we have VCdim(C) = 4. In order to establish this we
need to show:

• There is a S ⊆ R2 that is shattered by C. For example, S =
{(0,−1), (0, 1), (−1, 0), (1, 0)}.

• There is not subset S of R2 with |S| ≥ 5 that is shattered by C.

Example 3 (Finite classes). If the concept class C is finite then for any finite S ⊆ X we
have clearly have

|CS| ≤ |C| = 2log2(|C|),

which implies that C cannot shatter any set with more than ⌊log2(|C|)⌋ points. Hence
VCdim(C) ≤ ⌊log2(|C|)⌋.

Note that if VCdim(C) = d then τC(m) = 2m when m ≤ d and τC(m) < 2m for all m > d.

Why are we interested in VC-dimension? We have seen earlier that finite concept classes
are PAC-learnable (via ERM.) But there are infinite concept classes that are also PAC-
learnable, e.g. the concept class consisting of axis aligned rectangles. So if the cardinality
does not distinguish learnable concept classes from non-learnable concept classes, then what
does? It turns out the its the VC-dimension of C that determines learnability.

2 Introduction to the fundamental theorem of PAC-

learning

For a concept class C the following are equivalent:

1. C has the uniform convergence property.

2. Any algorithm which selects a minimizer of the empirical risk achieves PAC-learning
on C.

3. C has finite VC-dimension.

We have already seen (1) =⇒ (2), and we will soon see (3) =⇒ (1). For (2) =⇒ (3), note
that we previously discussed a situation (see discussion on No-free-lunch theorem) where
τC(m) = 2m for every m ∈ N (i.e. VCdim() = ∞) and in which the ERM approach broke
down because the vast majority of concepts minimizing the empirical risk had true errors
which exceeded minc∈C err(c) by a positive constant ϵ > 0.

The proof of (3) =⇒ (1) has two parts:

1. Sauer’s Lemma: if VCdim(C) ≤ d then τC(m) ≤ md, and
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2. For an i.i.d. sample (X1, Y1), . . . , (Xm, Ym) with any distribution on X × {0, 1}

E

[[[
sup
c∈C

|êrr(c)− err(c)|
]]]
≈

√
log (τC(2m))

2m
.

As we shall see later, together these will imply that if we take m ≈ dϵ−2 then we will get
uniform convergence.

3 Sauer’s Lemma

Lemma 3.1 (Sauer-Shelah-Perles). If VCdim(C) ≤ d < ∞ then for all m ∈ N

τC(m) ≤
d∑

i=0

(
m

i

)
, (1)

and

τC(m) ≤ (em/d)e (2)

for all m > d+ 1.

The Sauer-Shela-Perles lemma has two immediate interesting implications:

• it improves on what we can näıvely obtain from VCdim(C) ≤ d, namely τC(m) < 2m if
m > d, and

• as the number of samples in S increases the size of the restriction CS grows polynomially
in |S| instead of exponentially in |S|.

Proof of Lemma 3.1. Here we focus on the proof on the inequality at (1), but we note in
passing that the bound at (2) maybe be established by the inequality at (1) and induction
on d. Now to establish the bound at (1) it suffices to establish

|CS| ≤ |{T ⊆ S : C shatters T}| (3)

for any finite S ⊆ X . To see this note by the definition of VC-dimension that C does not
shatter any S with |S| > d and that S has

∑d
i=0

(|S|
i

)
subsets of size not exceeding d. Now

using the bound at (3) it follows that τC(m) ≤
∑d

i=0

(
m
i

)
. We now focus on proving (3) by

using an inductive argument on |S|. For the base case, i.e. when |S| = 1, S has two possible
subsets, namely ∅ and S itself. If |CS| = 2 then ∅ (which is trivially always shattered) and S
are both shattered, hence we have

|CS| = 2 = |{T ⊆ S : C shatters T}

3



COMP 585 Lecture 16 Spring 2024

as desired. If |CS| = 1 then ∅ is shattered, but S is not shattered. Hence

|CS| = 1 = |{T ⊆ S : C shatters T}

as desired. This establishes the base case. Now for the inductive step assume (3) holds for
any S ⊆ X with |S| < m. Now consider S = {x1, . . . , xm} and let S ′ = {x2, . . . , xm}. Define

Y0 = {(y2, . . . , ym) : (0, y2, . . . , ym) ∈ CS and (1, y2, . . . , ym) ∈ CS}
and

Y1 = {(y2, . . . , ym) : (0, y2, . . . , ym) ∈ CS or (1, y2, . . . , ym) ∈ CS} ,

and observe that |CS| = |Y0|+ |Y1. We will now relate |Y0| and |Y1| to the number of subsets
of S that C can shatter. By the induction assumption we have

|Y1| = |CS′| ≤ |{T ⊆ S ′ : C shatters T}|
= |{T ⊆ S : x1 /∈ T and C shatters T}| .

Now by the defintion of Y0 we have for every (y2, . . . , ym) ∈ Y0 that there exists concepts
c1, c2 ∈ C such that c1(x1) = 0, c2(x1) = 1, and c1(xi) = c2(xi) = yi for i = 2, . . . ,m. Let C ′

consist of the pairs of such concepts, i.e. c1 and c2, as (y2, . . . , ym) ranges over Y0. Then

|Y0| = |C ′
S′| ≤ |{T ⊆ S ′ : C ′ shatters T}| .

But by the construction of C ′ we have C ′ shatters T ⊆ S ′ implies C ′ shatters {x1}∪T . Hence

|Y0| ≤ |{T ⊆ S : x1 ∈ T and C ′ shatters T}| ≤ |{T ⊆ S : x1 ∈ T and C shatters T}| .

So we have

|CS| = |Y0|+ |Y1|
≤ |{T ⊆ S : x1 ∈ T and C shatters T}|+ |{T ⊆ S : x1 /∈ T and C shatters T}|
= |{T ⊆ S : C shatters T}|

as desired.
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