Lecture 16
definitions
Restrictions
Growth function
$V C$ dimension

- finite VC dim \Rightarrow Uniform Convergena (Par tI)
- Sauer-Shelah - Merles Lemma

Def. Restriction of C to S

Let S be a set of m points in domain $X . S=\left\{x_{1}, \ldots, x_{m}\right\}$

The restriction of C to S is the set of functions from S to $\{0,1\}$ that can be derived from C.

$$
C_{s}:\left\{\left(c\left(x_{1}\right), c\left(x_{2}\right), \ldots, c\left(x_{m}\right)\right) \mid c \in C\right\}
$$

where we represent each function from S to $\{0,1\}$ as a vector in $\{0.1\}^{|5|}$
 or $\{0,1\}^{m}$

$$
C=\left\{R_{1}, R_{2}, R_{3}\right\}
$$

assign positive label to points inside the rectangle
Restrictions: $\left\{\begin{array}{lll}x_{1} & x_{2} & x_{3} \\ + & + & ,-) \\ (+, & - & +)\end{array}\right.$
while C might have infinitely many hypotheses, its "effective size" is small
def. growth function
Let C be a concept class. Then, the growth function of C, denoted $\tau_{C}: N \rightarrow N$, is defined as:

$$
\tau_{C}(m)=\max _{s \subset X:|s|=m}\left|C_{s}\right|
$$

$\tau_{C}(m) \approx$ number of functions from s to $\{0,1\}^{m}$ that can be obtained by $c \in C$.

- with no assumption, we know $\left|C_{s}\right|$ is bounded by $2^{|s|}=2^{m}$
del. shattering

A Class C shatters a finite set S if the restriction of C to S is the set of all functions from C to $\{0,1\}$. That is $\left|C_{s}\right|=2^{|s|}=2^{m}$

Example $\quad C=$ axis-aligned rectangles $e^{x_{1}}$
δ

$$
(+,+)
$$

$(+,-)$
$(-,+)$

$$
(-,-)
$$

How about 3 points?
x_{1}

- x_{2}
- x_{3}

Can you label them with

$$
(+,-,+)
$$

C does not shatter this S.
How about
4 points?
what we have shown earlier indicates: if C shatters S, we $\frac{\text { cannot }}{2}$ learn with $1 s 1 / 2=\frac{m}{2}$ samples.

Def. VC Dimension

The $V C$ dimension of a concept class C, denoted by $V C \operatorname{dim}(C)$, is the maximal size of a set S that can be shattered by C.

If C can shatter sets of arbitrary large size, we say $V C \operatorname{dim}(C)=\infty$

Example 1:
VC dim (Axis-aligned rectangle) $=4$

We need to show:

- there is a set of size 4 that is shattered.
- No set of size 5 is shattered.

Example 2: finite classes:

$$
\left|C_{s}\right| \leq|C|=2^{\log |C|}
$$

C cannot shatter any set of size larger than $\log |c|$

$$
V C \operatorname{dim}(|C|) \leq \log |C|
$$

$$
\begin{aligned}
& \text { If } r_{c} \operatorname{dim}(c)=d \\
& \forall m \leq d \Rightarrow \tau_{c}(m) \leq 2^{m} \\
& \forall m>d \quad \Rightarrow \quad z_{c}(m)<2^{m}
\end{aligned}
$$

VC dimension

- infinite classes can still be PAC-leannable.
\Rightarrow size is not determinant of learnability.

So, what is then?

VC -dim of C characterizes its learnability!

The fundamental theorem of $P A C$ learning
for a concept class C of $c: x \rightarrow\{-1,+1\}$ with 0.1 loss function, the following are equivalent:

- C has uniform convergence.
- Any ERM is a successful agnostic PAC learner
- It has a finite VCdim.
what have left to show is:
finite vcdim \Rightarrow Uniform convergence.

(2) last time we have shown if $V C>2 m$ ER does not work with m samples.

$$
\begin{aligned}
& E R M \text { work } \Rightarrow V C<m \\
& \text { with } m \text { samples }
\end{aligned}
$$

Proot of (3) has two steps
(1) Saner's Lemma:

If $\quad V C \operatorname{dim}(c) \leq d$:

$$
Z_{C}(m) \leq m
$$

(2) $\quad 151=m$

$$
c \in C:|\operatorname{err}(c)-\operatorname{err}(c)| \approx \sqrt{\frac{\log \left(z_{c}(2 m)\right)}{2 m}}
$$

$m \approx \frac{d}{\varepsilon^{2}} \Longrightarrow$ unifurm convergence

Sawer-Shelah_Perles Lemma

If $V C \operatorname{dim}(C) \leq d<\infty$, then

$$
\forall m \quad \tau_{C}(m) \leq \sum_{i=0}^{d}\binom{m}{i}
$$

22 In particular, if $m>d+1$,

$$
\varepsilon_{c}(m) \leq\left(\frac{e m}{d}\right)^{d}
$$

why is this interesting?

- better than what we can naively imply from $V C$: for $m \geqslant d \quad \tau_{c}(m)<2^{m}$

As the number of samples increases the size of the restriction of C to S (the sample set) grows polynomially not exponentially $\left(2^{\mid s 1}\right)$.

Proof of SSP

Here we focus on the proof of I

Part 2/ can be proven via part 1 and induction on d.

Proof. It suffices to show ie. $\left|C_{T}\right|_{s}{ }^{|T|}$ \uparrow $\forall S\left|C_{S}\right|<\mid\{T \subseteq S \mid C$ shatters $T\} \mid$ is always shattered

By definition of VC dim. C does not shatter any set of size $>d$.
A set s has $\sum_{i=0}^{d}\binom{|s|}{i}$ subsets of size $<d$.
Hence, $\quad k \Rightarrow \tau_{C}(m) \leq \sum_{i=0}^{d}\binom{m}{i}$

Now, we focus on proving t by an inductive argument on the size of $S:|S|=m$.

Base case: $m=1$
S has one element \leadsto S has two subsets: ϕ, S two possible restriction: (0), (1)
if $\left|C_{S}\right|=2 \Rightarrow$ both S and ϕ are shattered

$$
k: 2=2
$$

if $\left|C_{s}\right|=1 \Rightarrow \phi$ is shattered S is not shattered

$$
k: \quad 1=1
$$

inductive step
Assume $*$ holds for any set of size <m we want to prove * for m.

Consider $S=\left\{x_{1}, x_{2}, \ldots, x_{m}\right\}$
Let s^{\prime} denote $\left\{x_{2}, x_{3}, \ldots, x_{m}\right\}$.

$$
\begin{aligned}
& Y_{1}:=\left\{\left(y_{2}, y_{3}, \ldots, y_{m}\right) \mid\right. \\
& \left.\left(0, y_{2}, \ldots, y_{m}\right) \in C_{s} \vee\left(1, y_{2}, \ldots, y_{m}\right) \in C_{s}\right\} \\
& Y_{0}=\left\{\left(y_{2}, \ldots, y_{m}\right) \mid\right. \\
& \left.\left(0, y_{2}, \ldots, y_{m}\right) \wedge\left(1, y_{2}, \ldots, y_{m}\right) \in C_{s}\right\}
\end{aligned}
$$

Observe $\quad\left|C_{s}\right|=\left|Y_{0}\right|+\left|Y_{1}\right|$

Now, we want to relate $\left|Y_{0}\right|$ and $\left|Y_{1}\right|$ to the \# subsets that C can shatter

By induction assumption:
$\left|Y_{1}\right|=\left|C_{S^{\prime}}\right| \leq \mid\left\{T \leq S^{\prime} \mid C\right.$ shatters $\left.T\right\} \mid$

$$
=\mid\left\{T \leqslant s \mid x_{1} \notin T \text { and } C \text { shatters } T\right\} \mid
$$

$\forall \quad\left(y_{2}, \ldots, y_{m}\right) \in Y$.
3 a pair of concepts c_{1}, c_{2} s.t

$$
\begin{aligned}
& c_{1}\left(x_{1}\right)=1, \quad c_{1}\left(x_{2}\right)=y_{2}, \ldots, c_{1}\left(x_{m}\right)=y_{m} \\
& c_{2}\left(x_{1}\right)=0, \quad c_{2}\left(x_{2}\right)=y_{2}, \ldots, c_{2}\left(x_{m}\right)=y_{m}
\end{aligned}
$$

differ only in x_{1}

Let C^{\prime} be the set of cell of these pairs.

$$
\left|Y_{0}\right|=\left|C_{s^{\prime}}^{\prime}\right|=\mid\left\{T \subseteq S^{\prime} \mid C^{\prime} \text { shatters } T\right\}
$$

C^{\prime} can also shatters $T \cup\{x$,

$$
=\mid\left\{T \leq S \mid x, \in T \text { and } C^{\prime} \text { shatters } T\right\}
$$

$\leq \mid\{T \leq S \mid x, \in T$ and C shatter) $T\}$

$$
\begin{aligned}
\left|C_{S}\right| & =\mid Y_{0} \overline{\left|+\left|Y_{1}\right|\right.} \\
& =\mid\left\{T \subseteq S \mid x_{1} \in T \text { and } C \text { shatters } T\right\} \\
& +\mid\left\{T \subseteq S \mid x_{1} \notin T \text { and } C \text { shatters } T| |\right. \\
& =\mid\{T \subseteq S \mid C \text { shatters } T\} \mid
\end{aligned}
$$

