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Lecture 15

1 Uniform convergence

Recall that a class C has the uniform convergence property if ∀ϵ, δ ∈ (0, 1) and any distribu-
tion D over X × {0, 1} there exists an m ∈ N (depending on ϵ and δ, but not D) such that
if (X1, Y1), . . . (Xm, Ym) are m i.i.d. samples with distributionD, then

Pr[[[ |êrr(c)− err(c)| ≤ ϵ ∀c ∈ C ]]] > 1− δ,

where

êrr(c) =
|{i ∈ [m] : c(Xi) ̸= Yi}|

m
and

err(c) = Pr(X,Y )∼D[[[c(X) ̸= Y ]]]

are the empirical and expected error of c ∈ C, respectively.

Theorem 1. Suppose that class C over instance space X has the uniform convergence (UC)
property. Then C is agnostic-PAC learnable via the ERM algorithm. More precisely, given
ϵ, δ ∈ (0, 1) there exists an m ∈ N such that for any distribution D on X × {0, 1}

Pr(X1,Y1),...(Xm,Ym)∼Dm

[[[
err (cERM) ≤ +min

c∈C
err(c) + ϵ

]]]
≥ 1− δ.

for any cERM ∈ C satisfying êrr (cERM) = minc∈C êrr(c)

Proof. Since C has the UC property there exists an m ∈ N such that

Pr(X1,Y1),...,(Xm,Ym)∼Dm

[[[
|êrr(c)− err(c)| ≤ ϵ

2
∀c ∈ C

]]]
> 1− δ. (1)

Now let cERM be any member of C minimizing the empirical risk, i.e.

êrr (cERM) = min
c∈C

êrr(c)

1



COMP 585 Lecture 15 Spring 2024

and let c∗ be any member of C minimizing the true risk, i.e.

err (c∗) = min
c∈C

err(c).

Then we have

err (cERM)− err (c∗) = err (cERM)− êrr (cERM) + êrr (cERM)− êrr (c∗) + êrr (c∗)− err (c∗) .

But êrr (cERM) − êrr (c∗) < 0 since cERM is a minimizer of the empirical risk. Therefore it
follows

Pr(X1,Y1),...,(Xn,Yn)∼Dn[[[ êrr (cERM)− err (c∗) ≤ ϵ]]]

≥ Pr(X1,Y1),...,(Xn,Yn)∼Dn[[[err (cERM)− êrr (cERM) + êrr (c∗)− err (c∗) ≤ ϵ]]]

≥ Pr(X1,Y1),...,(Xn,Yn)∼Dn

[[[
err (cERM)− êrr (cERM) ≤

ϵ

2
and êrr (c∗)− err (c∗) ≤ ϵ

2

]]]
≥ 1− δ

as desired, where the final inequality follows from the the inequality at (1).

2 Overfitting

Although we are guaranteed to have agnostic-PAC learnability when C has the UC property,
it is possible that if C is very “rich” then we might overfit the data leading to a situation
where one or more hypotheses in C that are minimizers of the empirical error, nevertheless
have a true which is error significantly larger than minc∈C err(c). For example, if C is set
of indicator functions of all measurable subsets of [0, 1] and D is taken to be the joint
distribution of (X, Y ) where X ∼ U [0, 1] and Y = 1 w.p. 1. Then clearly minc∈C err(c) = 0.
But given “training sample” (X1, Y1), . . . , (Xm, Ym), the hypothesis ĉ satisfying ĉ(X1) =
ĉ(X2) = · · · ĉ(Xm) = 1 and ĉ(x) = 0 for all x ∈ [0, 1] \ {X1, . . . , Xm} minimizes the empirical
risk but has

err(ĉ) = Pr(X,Y ),(X1,Y1),...,(Xm,Ym)∼Dm+1[[[ ĉ(X) ̸= Y ]]]

= Pr(X,Y ),(X1,Y1),...,(Xm,Ym)∼Dm+1[[[X /∈ {X1, . . . , Xm}]]] = 1,

where the final equality follows by the fact that the marginal distribution of D on the first
coordinate is continuous (more precisely uniform on [0, 1].)

3 PAC-learnability of finite classes

The following theorem establishes that ERM “works”, i.e., choosing any minimizer of the
empirical risk is a PAC learning algorithm for concept class C, in the realizable case when C
is finite.
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Theorem 2. Let C be a finite concept class over instance space X , then C is agnostic-PAC
learnable via ERM.

Proof. Given ϵ, δ ∈ (0, 1), take m to be an integer no less than log(|C|/δ)/ϵ and let
(X1, Y1), . . . , (Xm, Ym) be an i.i.d. sample with some distribution D. Since we’re in the
realizable case we assume there is some c∗ ∈ C with err (c∗) = 0. Our goal is to show the
probability that ERM fails is small. More precisely, we want to show that any member of
C which is minimizer of the empirical risk, say ĉ, satisfies Pr[[[err (ĉ) < ϵ]]] ≥ 1 − δ. Now let
Cb = {c ∈ C : err(c) > ϵ} denote the collection of “bad” hypotheses. We want to show that
the probability of any member of Cb being a minimizer of the emprical risk is small. To see
this take any c ∈ Cb and note that

Pr[[[ êrr (c) = 0]]] ≤ (1− ϵ)m ≤ e−mϵ.

Using the union bound it now follows that

Pr[[[∃c ∈ C with err(c) > ϵ and êrr(c) = 0]]] = Pr[[[∃c ∈ Cb with êrr(c) = 0]]]

≤ |Cb|e−mϵ

≤ |C|e−mϵ ≤ δ.

where first inequality is a consequnece of the union bound and the final inequality follows
from m ≥ log(|C|/δ)/ϵ. Since we’re in the realizable case we know that the any empirical
risk minimizer ĉ ∈ C has êrr(ĉ)) = 0, therefore it follows that ERM will produce a hypothesis
having true error at most ϵ with probability at least 1− δ.

In the agnostic case it is also possible to show that ERM is a PAC learning algorithm for
C when C is finite. To show this one first establishes that any finite concept class C has the
UC property via the result of Problem 1 (below) and then applies Theorem 1.

Problem 1. Suppose C is a finite class and

m = O

(
log |C|/δ

ϵ2

)
.

Then for all c ∈ C we have |êrr(c)− err(c)| < ϵ/2 with probability at least 1− δ.

4 No free lunch theorem

Let X be some instance space and for some m ∈ N let x1, . . . , x2m be distinct points on X .
Let C be concept class consisting of all possible labellings of x1, . . . , x2m. Note that |C| = 22m.
Now fix some concept c∗ ∈ C and let D be the joint distribution of (X, c∗(X)) where X is
taken to be a random variable with uniform distribution on {x1, . . . , x2m}.
Take T = {(Xi, Yi) : i ∈ [m]} to be m i.i.d. random variables with distribution D (WLOG
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assume distinct Xi’s are distinct) and let

P = {c ∈ C : êrr(c) = 0}

denote the set of “promising” concepts. Note that |P| = 2m since each c ∈ P is determined
on the set {X1, . . . , Xm} by the condition that êrr(c) = 0. But how many concepts in P
have true error less than ϵ? Let

M = {c ∈ C : err(c) > ϵ and êrr(c) = 0}

denote the set of “misleading” concepts. We want to show that the fraction of promising
concepts that are misleading is large. Let C be a uniform random concept in P . We have

E[[[ |M|]]] = E

[[[
|P| |M|

|P|

]]]
= 2mPr[[[err(C) > ϵ]]]

= 2mPr

[[[
2m∑
i=1

1{C(xi) ̸=c∗(xi)} > 2mϵ

]]]

= 2m

(
1−Pr

[[[
2m∑
i=1

1{C(xi )̸=c∗(xi)} ≤ 2m

{
1

2
−
(
1

2
− ϵ

)}]]])

≥ 2m

[
1− exp

(
−
8m2

(
1
2
− ϵ
)2

2m

)]

= 2m

[
1− exp

(
−4m

(
1

2
− ϵ

)2
)]

where the final inequality follows by Hoeffding’s bound. Now taking ϵ ≤ 1
4
and m ≥ 20 it

follows that E[[[ |M|]]] ≥ (0.99)2m, i.e. on average greater than 99% of the promising concepts
are misleading.
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