COMP 585 Spring 2024
Probabilistic Toolkit for Learning and Computing Instructor: Maryam Aliakbarpour
March 5th, 2024 Scriber: Jason S. Lenderman

Lecture 15

1 Uniform convergence

Recall that a class C has the uniform convergence property if Ve, 6 € (0,1) and any distribu-
tion D over X x {0,1} there exists an m € N (depending on € and ¢, but not D) such that
if (X1,Y1),...(Xom,Y.m) are m ii.d. samples with distributionD, then

Pr[lert(c) —err(c)| < eVce(C] >1—,

where

o Hielm)e(x) £ i}

err(c) -

and

err(c) = Prix y)up[c(X) # Y]
are the empirical and expected error of ¢ € C, respectively.

Theorem 1. Suppose that class C over instance space X has the uniform convergence (UC)
property. Then C is agnostic-PAC learnable via the ERM algorithm. More precisely, given
€,0 € (0,1) there exists an m € N such that for any distribution D on X x {0,1}

Pr(Xl7Y1)7"-(Xm7Y7rL)NDm ler’r (CERM) S +n"lelél 6TT(C> + E:I 2 ]' - 6

for any cppy € C satisfying err(cpgy) = Mineec err(c)

Proof. Since C has the UC property there exists an m € N such that

.....

Now let cppy be any member of C minimizing the empirical risk, i.e.

ert (cgpyy) = min érr(c)
ceC
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and let ¢* be any member of C minimizing the true risk, i.e.

o
err (¢*) = min err(c).

Then we have
err (cppy) — err () = err (cgrag) — €IT (Cgry) + €T (Cppry) — 1T (¢7) + @It (¢*) — err (¢¥) .

But ert (cgppy) — €T (¢*) < 0 since cgpy is a minimizer of the empirical risk. Therefore it
follows

Prix, vi),...(Xn,vn)~Dn [ €T (cryp) — €11 (c*) < €]

= Pr(X17Y1)7~~~’(Xn7Yn)NDn[err (cprM) — ert (cprM) + ert (c") —err(c’) < E]

> Prx, vi),....(Xn,Yn)~D" [err (cgru) — €T (Cpry) < 5 and err (¢*) —err (¢) < 5]
>1-9
as desired, where the final inequality follows from the the inequality at (1). ]

2 Overfitting

Although we are guaranteed to have agnostic-PAC learnability when C has the UC property,
it is possible that if C is very “rich” then we might overfit the data leading to a situation
where one or more hypotheses in C that are minimizers of the empirical error, nevertheless
have a true which is error significantly larger than min.ccerr(c). For example, if C is set
of indicator functions of all measurable subsets of [0,1] and D is taken to be the joint
distribution of (X,Y) where X ~ UJ0,1] and Y = 1 w.p. 1. Then clearly min.cc err(c) = 0.
But given “training sample” (Xi,Y1),...,(Xm,Y:m), the hypothesis ¢ satisfying ¢(X;) =
¢(Xy) =---¢é(X,,) =1and é(x) =0 forall x € [0,1]\ {X1, ..., X,,} minimizes the empirical
risk but has

err(é) = Pr(X,Y),(X1,Yl),...,(Xm,Ym)NDm+1[é(X) 7£ Y]
= Prixv) x1,1), (X Vo) o0mtt [ X € { X0, X} = 1,

where the final equality follows by the fact that the marginal distribution of D on the first
coordinate is continuous (more precisely uniform on [0, 1].)

3 PAC-learnability of finite classes

The following theorem establishes that ERM “works”, i.e., choosing any minimizer of the
empirical risk is a PAC learning algorithm for concept class C, in the realizable case when C
is finite.
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Theorem 2. Let C be a finite concept class over instance space X, then C is agnostic-PAC
learnable via ERM.

Proof. Given ¢,6 € (0,1), take m to be an integer no less than log(|C|/d)/e and let
(X1,Y1), ..., (X, Ys) be an iid. sample with some distribution D. Since we're in the
realizable case we assume there is some ¢* € C with err (¢*) = 0. Our goal is to show the
probability that ERM fails is small. More precisely, we want to show that any member of
C which is minimizer of the empirical risk, say ¢, satisfies Pr[err (¢) < ¢] > 1 —§. Now let
Cp = {c € C : err(c) > €} denote the collection of “bad” hypotheses. We want to show that
the probability of any member of C, being a minimizer of the emprical risk is small. To see
this take any ¢ € C, and note that
Prlerr(c) =0] < (1—€e)™ <e ™

Using the union bound it now follows that

Pr[3c € C with err(c) > € and ért(c) = 0] = Pr[3c € C, with ert(c) = 0]
< ’Cb‘efme
< |Cle™™e <.

where first inequality is a consequnece of the union bound and the final inequality follows
from m > log(|C|/d)/e. Since we're in the realizable case we know that the any empirical
risk minimizer ¢ € C has ert(¢)) = 0, therefore it follows that ERM will produce a hypothesis
having true error at most € with probability at least 1 — 9. O]

In the agnostic case it is also possible to show that ERM is a PAC learning algorithm for
C when C is finite. To show this one first establishes that any finite concept class C has the
UC property via the result of Problem 1 (below) and then applies Theorem 1.

Problem 1. Suppose C is a finite class and
o (2ET).

€2

Then for all ¢ € C we have |ert(c) — err(c)| < €/2 with probability at least 1 — .

4 No free lunch theorem

Let X be some instance space and for some m € N let zy, ..., x5, be distinct points on X
Let C be concept class consisting of all possible labellings of z1, . . ., Ta,,. Note that |C| = 22™.
Now fix some concept ¢* € C and let D be the joint distribution of (X, ¢*(X)) where X is
taken to be a random variable with uniform distribution on {1, ..., zom}.

Take T' = {(X;,Y:) : i € [m]} to be m i.i.d. random variables with distribution D (WLOG
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assume distinct X;’s are distinct) and let
P ={ceC:err(c) =0}

denote the set of “promising” concepts. Note that [P| = 2™ since each ¢ € P is determined
on the set {Xy,...,X,,} by the condition that érr(c) = 0. But how many concepts in P
have true error less than €7 Let

M ={ceC:err(c) > e and err(c) = 0}

denote the set of “misleading” concepts. We want to show that the fraction of promising
concepts that are misleading is large. Let C' be a uniform random concept in P. We have

Bfiv] - B[Pl

= 2"Pr[err(C) > €]

2m
— 9MPy [Z ﬂ{c($i)¢c*($i)} > 2m€]

i=1

2m
1 1
=2"11-P Lo (e ter (wr < 2 S
r[; {Cla#e (@)} = m{2 (2 6)}])
- o (1 _ o)’
> om 1_exp<_w>]
m

e G)

where the final inequality follows by Hoeffding’s bound. Now taking e < % and m > 20 it
follows that E[|M]] > (0.99)2™, i.e. on average greater than 99% of the promising concepts
are misleading.
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