Lecture 15

1 Uniform convergence

Recall that a class C has the uniform convergence property if $\forall \epsilon, \delta \in (0, 1)$ and any distribution D over $\mathcal{X} \times \{0, 1\}$ there exists an $m \in \mathbb{N}$ (depending on ϵ and δ , but not D) such that if $(X_1, Y_1), \ldots, (X_m, Y_m)$ are m i.i.d. samples with distribution D, then

$$\Pr[|\widehat{\operatorname{err}}(c) - \operatorname{err}(c)| \le \epsilon \,\,\forall c \in \mathcal{C}] > 1 - \delta,$$

where

$$\widehat{\operatorname{err}}(c) = \frac{|\{i \in [m] : c(X_i) \neq Y_i\}|}{m}$$

and

$$\operatorname{err}(c) = \mathbf{Pr}_{(X,Y)\sim D}[c(X) \neq Y]$$

are the empirical and expected error of $c \in C$, respectively.

Theorem 1. Suppose that class C over instance space X has the uniform convergence (UC) property. Then C is agnostic-PAC learnable via the ERM algorithm. More precisely, given $\epsilon, \delta \in (0, 1)$ there exists an $m \in \mathbb{N}$ such that for any distribution D on $X \times \{0, 1\}$

$$\mathbf{Pr}_{(X_1,Y_1),\dots(X_m,Y_m)\sim D^m}\left[\operatorname{err}(c_{ERM}) \leq +\min_{c\in\mathcal{C}}\operatorname{err}(c) + \epsilon\right] \geq 1-\delta.$$

for any $c_{ERM} \in \mathcal{C}$ satisfying $\widehat{err}(c_{ERM}) = \min_{c \in \mathcal{C}} \widehat{err}(c)$

Proof. Since \mathcal{C} has the UC property there exists an $m \in \mathbb{N}$ such that

$$\mathbf{Pr}_{(X_1,Y_1),\dots,(X_m,Y_m)\sim D^m} \left[\left| \widehat{\operatorname{err}}(c) - \operatorname{err}(c) \right| \le \frac{\epsilon}{2} \ \forall c \in \mathcal{C} \right] > 1 - \delta.$$
(1)

Now let $c_{\rm ERM}$ be any member of ${\cal C}$ minimizing the empirical risk, i.e.

$$\widehat{\operatorname{err}}\left(c_{\operatorname{ERM}}\right) = \min_{c \in \mathcal{C}} \widehat{\operatorname{err}}(c)$$

and let c^* be any member of C minimizing the true risk, i.e.

$$\operatorname{err}(c^*) = \min_{c \in \mathcal{C}} \operatorname{err}(c).$$

Then we have

$$\operatorname{err}\left(c_{\mathrm{ERM}}\right) - \operatorname{err}\left(c^{*}\right) = \operatorname{err}\left(c_{\mathrm{ERM}}\right) - \widehat{\operatorname{err}}\left(c_{\mathrm{ERM}}\right) + \widehat{\operatorname{err}}\left(c_{\mathrm{ERM}}\right) - \widehat{\operatorname{err}}\left(c^{*}\right) + \widehat{\operatorname{err}}\left(c^{*}\right) - \operatorname{err}\left(c^{*}\right).$$

But $\widehat{\text{err}}\left(c_{\text{ERM}}\right)-\widehat{\text{err}}\left(c^*\right)<0$ since c_{ERM} is a minimizer of the empirical risk. Therefore it follows

$$\begin{aligned} \mathbf{Pr}_{(X_1,Y_1),\dots,(X_n,Y_n)\sim D^n} \Big[\widehat{\operatorname{err}} (c_{\operatorname{ERM}}) - \operatorname{err} (c^*) &\leq \epsilon \Big] \\ &\geq \mathbf{Pr}_{(X_1,Y_1),\dots,(X_n,Y_n)\sim D^n} \Big[\operatorname{err} (c_{\operatorname{ERM}}) - \widehat{\operatorname{err}} (c_{\operatorname{ERM}}) + \widehat{\operatorname{err}} (c^*) - \operatorname{err} (c^*) &\leq \epsilon \Big] \\ &\geq \mathbf{Pr}_{(X_1,Y_1),\dots,(X_n,Y_n)\sim D^n} \Big[\operatorname{err} (c_{\operatorname{ERM}}) - \widehat{\operatorname{err}} (c_{\operatorname{ERM}}) &\leq \frac{\epsilon}{2} \quad \text{and} \quad \widehat{\operatorname{err}} (c^*) - \operatorname{err} (c^*) &\leq \frac{\epsilon}{2} \Big] \\ &\geq 1 - \delta \end{aligned}$$

as desired, where the final inequality follows from the the inequality at (1).

2 Overfitting

Although we are guaranteed to have agnostic-PAC learnability when \mathcal{C} has the UC property, it is possible that if \mathcal{C} is very "rich" then we might *overfit* the data leading to a situation where one or more hypotheses in \mathcal{C} that are minimizers of the empirical error, nevertheless have a true which is error significantly larger than $\min_{c \in \mathcal{C}} \operatorname{err}(c)$. For example, if \mathcal{C} is set of indicator functions of all measurable subsets of [0,1] and D is taken to be the joint distribution of (X,Y) where $X \sim U[0,1]$ and Y = 1 w.p. 1. Then clearly $\min_{c \in \mathcal{C}} \operatorname{err}(c) = 0$. But given "training sample" $(X_1, Y_1), \ldots, (X_m, Y_m)$, the hypothesis \hat{c} satisfying $\hat{c}(X_1) =$ $\hat{c}(X_2) = \cdots \hat{c}(X_m) = 1$ and $\hat{c}(x) = 0$ for all $x \in [0,1] \setminus \{X_1, \ldots, X_m\}$ minimizes the empirical risk but has

$$\operatorname{err}(\hat{c}) = \mathbf{Pr}_{(X,Y),(X_1,Y_1),\dots,(X_m,Y_m)\sim D^{m+1}}[\hat{c}(X)\neq Y]$$

= $\mathbf{Pr}_{(X,Y),(X_1,Y_1),\dots,(X_m,Y_m)\sim D^{m+1}}[X\notin\{X_1,\dots,X_m\}] = 1,$

where the final equality follows by the fact that the marginal distribution of D on the first coordinate is continuous (more precisely uniform on [0, 1].)

3 PAC-learnability of finite classes

The following theorem establishes that ERM "works", i.e., choosing any minimizer of the empirical risk is a PAC learning algorithm for concept class C, in the realizable case when C is finite.

Theorem 2. Let C be a finite concept class over instance space X, then C is agnostic-PAC learnable via ERM.

Proof. Given $\epsilon, \delta \in (0,1)$, take *m* to be an integer no less than $\log(|\mathcal{C}|/\delta)/\epsilon$ and let $(X_1, Y_1), \ldots, (X_m, Y_m)$ be an i.i.d. sample with some distribution *D*. Since we're in the realizable case we assume there is some $c^* \in \mathcal{C}$ with $\operatorname{err}(c^*) = 0$. Our goal is to show the probability that ERM fails is small. More precisely, we want to show that any member of \mathcal{C} which is minimizer of the empirical risk, say \hat{c} , satisfies $\Pr[\operatorname{err}(\hat{c}) < \epsilon] \geq 1 - \delta$. Now let $\mathcal{C}_b = \{c \in \mathcal{C} : \operatorname{err}(c) > \epsilon\}$ denote the collection of "bad" hypotheses. We want to show that the probability of any member of \mathcal{C}_b being a minimizer of the empirical risk is small. To see this take any $c \in \mathcal{C}_b$ and note that

$$\Pr[\widehat{\operatorname{err}}(c) = 0] \le (1 - \epsilon)^m \le e^{-m\epsilon}.$$

Using the union bound it now follows that

$$\mathbf{Pr}[\exists c \in \mathcal{C} \text{ with } \operatorname{err}(c) > \epsilon \text{ and } \widehat{\operatorname{err}}(c) = 0] = \mathbf{Pr}[\exists c \in \mathcal{C}_b \text{ with } \widehat{\operatorname{err}}(c) = 0]$$
$$\leq |\mathcal{C}_b|e^{-m\epsilon}$$
$$\leq |\mathcal{C}|e^{-m\epsilon} \leq \delta.$$

where first inequality is a consequence of the union bound and the final inequality follows from $m \ge \log(|\mathcal{C}|/\delta)/\epsilon$. Since we're in the realizable case we know that the any empirical risk minimizer $\hat{c} \in \mathcal{C}$ has $\widehat{\operatorname{err}}(\hat{c}) = 0$, therefore it follows that ERM will produce a hypothesis having true error at most ϵ with probability at least $1 - \delta$.

In the agnostic case it is also possible to show that ERM is a PAC learning algorithm for C when C is finite. To show this one first establishes that any finite concept class C has the UC property via the result of Problem 1 (below) and then applies Theorem 1.

Problem 1. Suppose C is a finite class and

$$m = O\left(\frac{\log |\mathcal{C}|/\delta}{\epsilon^2}\right).$$

Then for all $c \in \mathcal{C}$ we have $|\widehat{\operatorname{err}}(c) - \operatorname{err}(c)| < \epsilon/2$ with probability at least $1 - \delta$.

4 No free lunch theorem

Let \mathcal{X} be some instance space and for some $m \in \mathbb{N}$ let x_1, \ldots, x_{2m} be distinct points on \mathcal{X} . Let \mathcal{C} be concept class consisting of all possible labellings of x_1, \ldots, x_{2m} . Note that $|\mathcal{C}| = 2^{2m}$. Now fix some concept $c^* \in \mathcal{C}$ and let D be the joint distribution of $(X, c^*(X))$ where X is taken to be a random variable with uniform distribution on $\{x_1, \ldots, x_{2m}\}$.

Take $T = \{(X_i, Y_i) : i \in [m]\}$ to be m i.i.d. random variables with distribution D (WLOG

Lecture 15

assume distinct X_i 's are distinct) and let

$$\mathcal{P} = \{ c \in \mathcal{C} : \widehat{\operatorname{err}}(c) = 0 \}$$

denote the set of "promising" concepts. Note that $|\mathcal{P}| = 2^m$ since each $c \in \mathcal{P}$ is determined on the set $\{X_1, \ldots, X_m\}$ by the condition that $\widehat{\operatorname{err}}(c) = 0$. But how many concepts in \mathcal{P} have true error less than ϵ ? Let

$$\mathcal{M} = \{ c \in \mathcal{C} : \operatorname{err}(c) > \epsilon \text{ and } \widehat{\operatorname{err}}(c) = 0 \}$$

denote the set of "misleading" concepts. We want to show that the fraction of promising concepts that are misleading is large. Let C be a uniform random concept in \mathcal{P} . We have

$$\begin{aligned} \mathbf{E}[|\mathcal{M}|] &= \mathbf{E}\left[|\mathcal{P}|\frac{|\mathcal{M}|}{|\mathcal{P}|}\right] \\ &= 2^{m}\mathbf{Pr}[\operatorname{err}(C) > \epsilon] \\ &= 2^{m}\mathbf{Pr}\left[\sum_{i=1}^{2m} \mathbb{1}_{\{C(x_{i}) \neq c^{*}(x_{i})\}} > 2m\epsilon\right] \\ &= 2^{m}\left(1 - \mathbf{Pr}\left[\sum_{i=1}^{2m} \mathbb{1}_{\{C(x_{i}) \neq c^{*}(x_{i})\}} \le 2m\left\{\frac{1}{2} - \left(\frac{1}{2} - \epsilon\right)\right\}\right]\right) \\ &\geq 2^{m}\left[1 - \exp\left(-\frac{8m^{2}\left(\frac{1}{2} - \epsilon\right)^{2}}{2m}\right)\right] \\ &= 2^{m}\left[1 - \exp\left(-4m\left(\frac{1}{2} - \epsilon\right)^{2}\right)\right] \end{aligned}$$

where the final inequality follows by Hoeffding's bound. Now taking $\epsilon \leq \frac{1}{4}$ and $m \geq 20$ it follows that $\mathbf{E}[|\mathcal{M}|] \geq (0.99)2^m$, i.e. on average greater than 99% of the promising concepts are misleading.