Lecture 14

1 PAC Learning (Continued)

1.1 Recap

March 29th, 2024

From the previous lecture, we defined *PAC-learnability* as the following:

Definition 1.1. We say a class C is PAC-learnable if there is an algorithm A such that for all D, ϵ, δ , there is an m as a function of C, ϵ, δ such that with m i.i.d. samples $(x_i, y_i) \sim D$, A has probability $1 - \delta$, A outputs $\hat{c} \in C$ such that

$$err(\hat{c}) = Pr[\hat{c}(x) \neq y]$$
$$\leq \min_{c \in C} err(c) + \epsilon$$

where $\min_{c \in C} err(c) = 0$ in the realizable case.

1.2 Example: Boolean conjunctions

Let $X = \{0,1\}^n$ be the set of boolean vectors, and let x_i be literal variable on the *ith* boolean, $i \in [n]$ and \bar{x}_i is the negation operation on that literal (Which we also consider as a literal). \land denotes the conjunction ("and") operation between literals.

Let concept class Cconsist of functions h: X \rightarrow $\{0,1\}$ constructed operations (Set from conjunction and negation of conjunction functions).

Example:
$$n = 3$$
, $x = (x_1, x_2, x_3)$, $h(x) = x_1 \wedge \bar{x}_2$. Then $h(1, 0, 1) = 1$, $h(0, 0, 1) = 0$

Goal: We want to learn unknown function h from samples $(x^i, h(x^i)) \sim D, i \in [m]$

This problem is realizable because h is consistent (Due to being a function). Algorithm:

1. Begin with $\hat{h}(x) = x_1 \wedge \bar{x}_1 \wedge \ldots x_n \wedge \bar{x}_n$.

- 2. For each sample x^i , if $h(x^i) = 1$, we remove inconsistent literals from \hat{h} . Otherwise, we ignore.
- 3. Output \hat{h}

Example: Given $\hat{h}(x) = x_2 \wedge x_3 \wedge \bar{x}_4$ and sample $\langle (1, 0, 1, 0), 1 \rangle$, the algorithm would modify \hat{h} to $\hat{h}(x) = x_3 \wedge \bar{x}_4$ as the x_2 term is inconsistent.

Goal: Given ϵ, δ we want to find sample size m such that

$$Pr[err(\hat{h}) \ge \epsilon] \le \delta$$

As we only remove inconsistent literals, \hat{h} from the algorithm will never have removed literals from the true realizable h. Hence if h(x) = 0 then $\hat{h}(x) = 0$ as well so that \hat{h} always labels true 0 outputs correctly (Does not have false positives). Therefore \hat{h} can only make mistake in the case that $\hat{h} = 0$ but h(x) = 1 (False negatives). This means that there is some literal z in \hat{h} that is still inconsistent with h. Denote $h|_z(x)$ as the evaluation of the function only on the literal z. Then the aforementioned inconsistency can be denoted as $\hat{h}|_z(x) = 0$ but $h|_z(x) = 1$.

$$err(\hat{h}) = Pr_{x \sim D}[h(x) \neq \hat{h}(x)]$$

= $Pr_{x \sim D}[\exists \text{literal } z \in \hat{h} \text{ s.t. } hath|_{z}(x) = 0, \text{ but } h|_{z}(x) = 1]$
$$\leq \sum_{z \in \hat{h}} Pr_{x \sim D}[\hat{h}|_{z}(x) = 0, \text{ but } h|_{z}(x) = 1], \text{ by union bound}$$

$$\leq \sum_{z \in \hat{h}} p(z)$$

Where we denote p(z) as the probability of literal z being inconsistent. We consider z to be bad if $p(z) \ge \frac{\epsilon}{2n}$. If we have no bad literals, i.e. $p(z) < \frac{\epsilon}{2n}$ for each z

$$\begin{split} err(\hat{h}) &\leq \sum_{z \in \hat{h}} p(z) \\ &< 2n(\frac{\epsilon}{2n}) = \epsilon \end{split}$$

Which gives the desired ϵ -bound. For the δ -bound, in order for $err(\hat{h}) \geq \epsilon$, there must be at least one bad $z, p(z) \geq \frac{\epsilon}{2n}$. For such a bad literal to survive the algorithm, its inconsistency must not have arisen in any of the m samples. Since at each sample we have p(z) probability of encountering the inconsistency of z, it has survival probability 1-p(z) per sample. Hence,

$$\begin{split} Pr[err(\hat{h}) \geq \epsilon] &= Pr[\exists \text{bad literal } z] \\ &\leq 2nPr[\text{bad literal } z \text{ survives } m \text{ samples}], \text{ union bound} \\ &\leq 2n(1-\frac{\epsilon}{2n})^m \\ &\leq 2ne^{-\frac{\epsilon m}{2n}} \leq \delta \end{split}$$

Solving for m gives the following bound

$$\begin{split} m &\geq \frac{2n}{\epsilon} \log{(\frac{2n}{\delta})} \\ m &= O(\frac{n}{\epsilon} \log{(\frac{n}{\delta})}) \end{split}$$

So the above algorithm shows this problem is PAC-learnable, i.e. algorithm output \hat{h} has $1 - \delta$ probability of $err(\hat{h}) < \epsilon$.

2 Uniform Convergence and Empirical Risk Minimization (ERM)

2.1 ERM

In both previous examples of PAC-learning, our algorithm's output is made to be consistent with the samples in the training set. This approach is called *Empirical Risk Minimization*

Definition 2.1. An algorithm is empirical risk minimization (ERM) if and only if for a training set $T \sim D^n$ it outputs a concept c such that $c = \arg \min_{c \in C} err_T(c)$

2.2 Uniform Convergence

Definition 2.2. We say for a class C has uniform convergence if and only if for each $\epsilon, \delta > 0$ $\exists m \ (A \ function \ of \ \epsilon, \delta) \ that \ such \ that \ for \ any \ distribution \ D$

$$Pr_{T\sim D^m}[\forall c \in C : |err(c) - err_T(\hat{c})| > = \epsilon] \le \delta$$

where T is the training set

Uniform convergence implies via ERM agnostic PAC-learnability, in other words with probability $1 - \delta$ and optimal choice from ERM c^*

$$err_T(c^*) \le err_T(c)$$

$$< err(c) + \epsilon$$

$$< \min_{c \in C} err(c) + \epsilon$$

 ϵ

The $\min_{c \in C} err(c)$ is called the *approximation error* that depends only on the hypothesis (concept) class C, while ϵ is the *estimation error*. A richer and more complex C decreases the approximation error but often increases the estimation error.