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Lecture 14

1 PAC Learning (Continued)

1.1 Recap

From the previous lecture, we defined PAC-learnability as the following:

Definition 1.1. We say a class C is PAC-learnable if there is an algorithm A such that for
all D, ϵ, δ, there is an m as a function of C, ϵ, δ such that with m i.i.d. samples (xi, yi) ∼ D,
A has probability 1− δ, A outputs ĉ ∈ C such that

err(ĉ) = Pr[ĉ(x) ̸= y]

≤ min
c∈C

err(c) + ϵ

where minc∈C err(c) = 0 in the realizable case.

1.2 Example: Boolean conjunctions

Let X = {0, 1}n be the set of boolean vectors, and let xi be literal variable on the ith
boolean, i ∈ [n] and x̄i is the negation operation on that literal (Which we also consider as
a literal). ∧ denotes the conjunction (”and”) operation between literals.

Let concept class C consist of functions h : X → {0, 1} constructed
from conjunction and negation operations (Set of conjunction functions).

Example: n = 3, x = (x1, x2, x3), h(x) = x1 ∧ x̄2. Then h(1, 0, 1) = 1, h(0, 0, 1) = 0

Goal: We want to learn unknown function h from samples (xi, h(xi)) ∼ D, i ∈ [m]

This problem is realizable because h is consistent (Due to being a function).

Algorithm:

1. Begin with ĥ(x) = x1 ∧ x̄1 ∧ . . . xn ∧ x̄n.
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2. For each sample xi, if h(xi) = 1, we remove inconsistent literals from ĥ. Otherwise, we
ignore.

3. Output ĥ

Example: Given ĥ(x) = x2 ∧ x3 ∧ x̄4 and sample ⟨(1, 0, 1, 0), 1⟩, the algorithm would modify
ĥ to ĥ(x) = x3 ∧ x̄4 as the x2 term is inconsistent.

Goal: Given ϵ, δ we want to find sample size m such that

Pr[err(ĥ) ≥ ϵ] ≤ δ

As we only remove inconsistent literals, ĥ from the algorithm will never have removed literals
from the true realizable h. Hence if h(x) = 0 then ĥ(x) = 0 as well so that ĥ always labels
true 0 outputs correctly (Does not have false positives). Therefore ĥ can only make mistake
in the case that ĥ = 0 but h(x) = 1 (False negatives). This means that there is some literal
z in ĥ that is still inconsistent with h. Denote h

∣∣
z
(x) as the evaluation of the function only

on the literal z. Then the aforementioned inconsistency can be denoted as ĥ
∣∣
z
(x) = 0 but

h
∣∣
z
(x) = 1.

err(ĥ) = Prx∼D[h(x) ̸= ĥ(x)]

= Prx∼D[∃literal z ∈ ĥ s.t. hath
∣∣
z
(x) = 0, but h

∣∣
z
(x) = 1]

≤
∑
z∈ĥ

Prx∼D[ĥ
∣∣
z
(x) = 0, but h

∣∣
z
(x) = 1], by union bound

≤
∑
z∈ĥ

p(z)

Where we denote p(z) as the probability of literal z being inconsistent. We consider z to be
bad if p(z) ≥ ϵ

2n
. If we have no bad literals, i.e. p(z) < ϵ

2n
for each z

err(ĥ) ≤
∑
z∈ĥ

p(z)

< 2n(
ϵ

2n
) = ϵ

Which gives the desired ϵ-bound. For the δ-bound, in order for err(ĥ) ≥ ϵ, there must be at
least one bad z, p(z) ≥ ϵ

2n
. For such a bad literal to survive the algorithm, its inconsistency

must not have arisen in any of the m samples. Since at each sample we have p(z) probability
of encountering the inconsistency of z, it has survival probability 1−p(z) per sample. Hence,
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Pr[err(ĥ) ≥ ϵ] = Pr[∃bad literal z]

≤ 2nPr[bad literal z survives m samples], union bound

≤ 2n(1− ϵ

2n
)m

≤ 2ne−
ϵm
2n ≤ δ

Solving for m gives the following bound

m ≥ 2n

ϵ
log (

2n

δ
)

m = O(
n

ϵ
log (

n

δ
))

So the above algorithm shows this problem is PAC-learnable, i.e. algorithm output ĥ has
1− δ probability of err(ĥ) < ϵ.

2 Uniform Convergence and Empirical Risk Minimiza-

tion (ERM)

2.1 ERM

In both previous examples of PAC-learning, our algorithm’s output is made to be consistent
with the samples in the training set. This approach is called Empirical Risk Minimization

Definition 2.1. An algorithm is empirical risk minimization (ERM) if and only if for a
training set T ∼ Dn it outputs a concept c such that c = argminc∈C errT (c)

2.2 Uniform Convergence

Definition 2.2. We say for a class C has uniform convergence if and only if for each ϵ, δ > 0
∃m (A function of ϵ, δ) that such that for any distribution D

PrT∼Dm [∀c ∈ C : |err(c)− errT (ĉ)| >= ϵ] ≤ δ

where T is the training set

Uniform convergence implies via ERM agnostic PAC-learnability, in other words with prob-
ability 1− δ and optimal choice from ERM c∗
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errT (c
∗) ≤ errT (c)

< err(c) + ϵ

< min
c∈C

err(c) + ϵ

The minc∈C err(c) is called the approximation error that depends only on the hypothesis
(concept) class C, while ϵ is the estimation error. A richer and more complex C decreases
the approximation error but often increases the estimation error.
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