Lecture 13

1 PAC Learning

1.1 Introduction

At a high level, machine learning is a way to generate functions for which we do not have easy way to write directly. Statistical element to this problem is determining how many points are needed to determine such a function. One framework is Probably approximately correct learning (PAC-learning).

1.2 Example: Jogging based on precipitation

Suppose you and your friend want to go jogging but your friend is particularly picky about the weather conditions. The weather is determined as a pair of temperature, $T \in [-20, 110]$, and precipitation, from the set $P \in \{\text{None, Mild, Heavy, Snow}\}$. Your friend either goes jogging in a particular weather or not, denoted by + for yes and - for not. We want to learn a rectangle in $T \times P$ that accurately predicts the conditions that your friend would want to jog.

Goal: Learn rectangular range \hat{R} that approximates the true region R^*

Specifically, considering samples $p \sim D$ drawn from distribution D, we want to minimize the error:

$$err(\hat{R}) \coloneqq Pr[\hat{R}(p) \neq R^*(p)]$$

We would like to find an algorithm that gives low $err(\hat{R}) < \epsilon$ with probability $1 - \delta$ for given pair (ϵ, δ)

We give this simple algorithm:

- 1. Given samples $(x_i, y_i) \sim D, i \in [m]$
- 2. Determine \hat{R} as any consistent rectangle with the above data

Let A be the region of mismatched prediction between \hat{R} and R^* . Hence,

$$\alpha \coloneqq err(\hat{R})$$

= $Pr[\hat{R}(x) = +$ and $R^*(x) = -$, or $\hat{R}(x) = -$ and $R^*(x) = +]$
= $Pr[x \in A]$

A bad outcome algorithm occurs if $\alpha \geq \epsilon$, and we want to bound the probability of this bad outcome occurring for all data points by δ . Since each point is independent and Bernoulli,

$$Pr[\text{bad event}] = (1 - \alpha)^m$$
$$\leq (1 - \epsilon)^m$$
$$\leq e^{-m\epsilon} \leq \delta$$
$$m \geq \frac{\log 1/\delta}{\epsilon}$$

This gives us a minimum number of samples we need to achieve the desired error bounds.

1.3 Definition

Let X be instance space. $c: X \to \{+1, -1\}$ be a concept (hypothesis). Let C be the concept class, collection of such functions c. Let c^* denote the target concept $c^* \in C$ which labels every $x \in X$ correctly. Let D be the target distribution over X (unlabeled) or $X \times \{+1, -1\}$ (labeled).

We denote $(x_i, y_i) \sim D, i \in [m]$ the training set. Alternatively in the unlabeled formulation, $(x_i, c^*(x_i)) \sim D, i \in [m]$.

If c^* exists, this is known as the *realizable* case, otherwise the *agnostic* case. Denote ϵ as the *error parameter* and δ as the *confidence parameter*.

Definition 1.1. We say a class C is PAC-learnable if there is an algorithm A such that for all D, ϵ, δ , there is an m as a function of C, ϵ, δ such that with m i.i.d. samples $(x_i, y_i) \sim D$, A has probability $1 - \delta$, A outputs $\hat{c} \in C$ such that

$$err(\hat{c}) = Pr[\hat{c}(x) \neq y]$$

$$\leq \min_{c \in C} err(c) + \epsilon$$

where $\min_{c \in C} err(c) = 0$ in the realizable case.

If we allow $\hat{c} \notin C$, we call this an *improper learnner*, otherwise a *proper learner*

Because classes of functions like polynomials and neural networks can universally approximate functions, $\min_{c \in C} err(c) \to 0$ for these classes.

We consider such an algorithm is efficient if $m = O(poly(1/\epsilon, 1/\delta))$