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1 PAC Learning

1.1 Introduction

At a high level, machine learning is a way to generate functions for which we do not have
easy way to write directly. Statistical element to this problem is determining how many
points are needed to determine such a function. One framework is Probably approximately
correct learning (PAC-learning).

1.2 Example: Jogging based on precipitation

Suppose you and your friend want to go jogging but your friend is particularly picky about
the weather conditions. The weather is determined as a pair of temperature, T ∈ [−20, 110],
and precipitation, from the set P ∈ {None, Mild, Heavy, Snow}. Your friend either goes
jogging in a particular weather or not, denoted by + for yes and − for not. We want to learn
a rectangle in T × P that accurately predicts the conditions that your friend would want to
jog.

Goal: Learn rectangular range R̂ that approximates the true region R∗
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Specifically, considering samples p ∼ D drawn from distribution D, we want to minimize
the error:

err(R̂) := Pr[R̂(p) ̸= R∗(p)]

We would like to find an algorithm that gives low err(R̂) < ϵ with probability 1−δ for given
pair (ϵ, δ)

We give this simple algorithm:

1. Given samples (xi, yi) ∼ D, i ∈ [m]

2. Determine R̂ as any consistent rectangle with the above data

Let A be the region of mismatched prediction between R̂ and R∗. Hence,

α := err(R̂)

= Pr[R̂(x) = + and R∗(x) = −, or R̂(x) = − and R∗(x) = +]

= Pr[x ∈ A]

A bad outcome algorithm occurs if α ≥ ϵ, and we want to bound the probability of this bad
outcome occurring for all data points by δ. Since each point is independent and Bernoulli,

Pr[bad event] = (1− α)m

≤ (1− ϵ)m

≤ e−mϵ ≤ δ

m ≥ log 1/δ

ϵ

This gives us a minimum number of samples we need to achieve the desired error bounds.

2



COMP 585 Lecture 13 Spring 2024

1.3 Definition

Let X be instance space. c : X → {+1,−1} be a concept (hypothesis). Let C be the concept
class, collection of such functions c. Let c∗ denote the target concept c∗ ∈ C which labels
every x ∈ X correctly. Let D be the target distribution over X (unlabeled) or X ×{+1,−1}
(labeled).

We denote (xi, yi) ∼ D, i ∈ [m] the training set. Alternatively in the unlabeled formulation,
(xi, c

∗(xi)) ∼ D, i ∈ [m].

If c∗ exists, this is known as the realizable case, otherwise the agnostic case. Denote ϵ as the
error parameter and δ as the confidence parameter.

Definition 1.1. We say a class C is PAC-learnable if there is an algorithm A such that for
all D, ϵ, δ, there is an m as a function of C, ϵ, δ such that with m i.i.d. samples (xi, yi) ∼ D,
A has probability 1− δ, A outputs ĉ ∈ C such that

err(ĉ) = Pr[ĉ(x) ̸= y]

≤ min
c∈C

err(c) + ϵ

where minc∈C err(c) = 0 in the realizable case.

If we allow ĉ /∈ C, we call this an improper learnner, otherwise a proper learner

Because classes of functions like polynomials and neural networks can universally approxi-
mate functions, minc∈C err(c) → 0 for these classes.

We consider such an algorithm is efficient if m = O(poly(1/ϵ, 1/δ))
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