Lecture 13 PAC Leanning.

$$err(\hat{R}) = \Pr[\hat{R} \text{ mislabel } p]$$

$$= \Pr[\left(\Pr \in R \text{ and } p \notin \hat{R}\right)\right]$$

$$= \Pr\left[\left(\Pr \in R \text{ and } p \notin \hat{R}\right)\right]$$

$$\Pr \left[\left(p \notin R \text{ and } p \in \hat{R}\right)\right]$$

$$D \text{ is arbitrary but fix.}$$

$$while D can be potentially unusual / irregular, the notion of error is also defined based on the same D.$$

$$Solution:$$

$$Algorithm:$$

$$i = Draw \text{ m samples (for sufficiently large)}$$

$$2 = \text{set } \hat{R} \text{ to be a rectargk that}$$

correctly label all the sample points

$$err(\mathbf{A}) = \Pr[\mathbf{p} \in A] = D(A)$$

 $\mathbf{p} = \mathbf{D}$

by our definition of
$$\hat{R}$$
, there is no sample
point in $A := R \Delta \hat{R}$

If
$$err(\hat{R}) > E \Rightarrow D(A) > E$$

How likely it is to not see any sample
from A?

Ideally, we want: $Pr[\# samples in A = 0] \leq \delta$ $\int_{a}^{D} \int_{a}^{m} (independent)$ $= (I - D(A)) \leq (I - E)^{m} (somples)$ $\leq e^{m} set m = \frac{log V_{s}}{E}$ => Hence, with probability at least 1-8 $err(\hat{R}) \leq \varepsilon$. efficient) # samples = $O(\frac{\log 1/6}{\varepsilon})$ time O(m)

Well behaved target class

Probably Approximately Correct (PAC)
x instance space set of all instances
(input space / domain)
c:
$$X \rightarrow \{+1, -1\}$$
 concept a function to label elements
C concept class a collection of labeling functions
c* longet class a collection of labeling functions
c* longet concept c* EC and label all instances
correctly
D torget distribution distribution over instances
sample / training data set { < x_1, c*(x_1) >
< < x_1, c*(x_2) >
< < x_1, c*(x_2) >
< < x_1, c*(x_1)>

+ distribution free setting samples drawn from an arbitrary distribution. but error is measured according to the same distribution. some papers focus on specific class of distributions such as Gaussims. + We say we are in the realizable case if there exists a concept EEC that label all the instances in the domain perfectly The goal is to find an unknown target concept c in a known concept class using labeled some -find ĉ in C with small error w.h. prob. - Efficiency: # samples. E time

PAC learning (Probably Approximately correct)
Suppose that we have a concept class C
over X. We say that C is PAC learnable
if there exists on algorithm A s.t:

$$\forall c CC, \forall D over X, \forall E, 6 C(0, 0.5]$$

A receives E, 8, and samples $\langle x_{1}, c(x_{1}) \rangle$
..., $\langle x_{n}, c(x_{n}) \rangle$ where x_{1} 's are iid
camples from D. proper
[CC]
Then, u. p. $\geq 1-5$, A outputs \hat{c} s.t.
err (\hat{c}) $\leq \hat{c}$.
The probability is taken over the randomness
in the samples and any internal coin
flips of A.

+ Usually efficiency means : sample complexity & time complexity = O(ploy(1/2, 1/2))+ E = error parameter S 5 confidence parameter These two parameters capture two kinds of error: E: small discrepancy between concepts is not detectable. 6: with some small probability, the sample set is not representative of reality.