Lecture 12

Linear regression

Suppose we have an unknown vector $\beta^{\star} \in \mathbb{R}^{d}$. We observe linear observation of β^{*} of the form:

Assume ε_{i} 's are zero-mean and in $\operatorname{sub} G\left(\sigma^{2}\right)$

$$
\begin{aligned}
Y & =X \beta^{R^{n x d}}+\varepsilon \\
{\left[\begin{array}{c}
Y_{1} \\
\vdots \\
Y_{n}
\end{array}\right] } & =\left[\begin{array}{c}
x_{1}- \\
\vdots \\
x_{n}
\end{array}\right]\left[\begin{array}{c}
\beta^{*}
\end{array}\right]+\left[\begin{array}{c}
\varepsilon_{1} \\
\vdots \\
\varepsilon_{n}
\end{array}\right]
\end{aligned}
$$

Fix design, we assume X is fixed.
[Another interesting regime is when x_{i} 's are random.]

Goal 1
find $\hat{\beta}$ such that $\hat{\beta}$ is close to β
what does close mean?

- small distance to $\hat{\beta}$ and β^{*} say $\|\hat{\beta}-\beta\|_{2}^{2}$ is small
- small "de-noising objective $Y=X \hat{\beta}$ is similar to $Y^{*}=X \beta^{*}$

$$
\begin{aligned}
& \frac{1}{n} \sum_{i=1}^{n}\left(\left\langle x_{i}, \hat{\beta}\right\rangle-\left\langle x_{i}, \beta^{*}\right\rangle\right)^{2} \\
& =\frac{1}{n}\left\|x \hat{\beta}-x \beta^{\star}\right\|_{2}^{2}
\end{aligned}
$$

clearly, we donot have β^{*}. Thus, it is difficult to measure the quality of $\hat{\beta}$. What we usually do is to pick a "proxy" quantity for these measurses and find $\hat{\beta}$ that minimize then.

While a great deal of effort is dedicated to finding solutions. It is always important to look back and see the solution we have found via optimizing the proxy is indeed a good solution for the original objective as well.

Solution
$\hat{\beta} \in \underset{\beta}{\operatorname{argmin}}\|X \beta-Y\|_{2}^{2}$

$$
=\arg _{\beta} \min \frac{1}{n} \sum_{i 51}^{n}\left(\left\langle x_{i}, \beta\right\rangle-y_{i}\right)^{2}
$$

the gradient of $\|X \beta-Y\|_{2}^{2}=0$

$$
\begin{aligned}
\|x \beta-Y\|_{2}^{2}= & \left(\beta^{\top} X^{\top}-y^{\top}\right) \cdot(X \beta-Y) \\
= & \beta^{\top} X^{\top} X \beta-2 \beta^{\top} X^{\top} Y+Y^{\top} Y \\
\Rightarrow \quad & x^{\top} X \beta=X^{\top} Y \\
\Rightarrow \quad & \beta=\underbrace{\left(X^{\top} X\right)^{\top} X^{\top} Y}
\end{aligned}
$$

pseudoinverse
[not the focus of thin lecture]

Given Sub-Gaussianity assumption on ε, what can we say about the error of $\hat{\beta}$?
Can we exploit any structure in X ? such as low rank X ? or sparsity of β^{\star} ? since β^{*} is an arg min in we have:

$$
\begin{equation*}
\|X \hat{\beta}-Y\|_{2}^{2} \leq\left\|X \beta^{*}-Y\right\|_{2}^{2}=\|\varepsilon\|_{2}^{2} \tag{1}
\end{equation*}
$$

on the other hand:

$$
\begin{align*}
\|x \hat{\beta}-Y\|_{2}^{2} & =\left\|X \hat{\beta}-X \beta^{*}-\varepsilon\right\|_{2}^{2} \\
& =\left\|x \hat{\beta}-X \beta^{*}\right\|_{2}^{2}-2\left\langle\varepsilon \cdot x \hat{\beta}-X \beta^{*}\right\rangle+\|\varepsilon\|_{2}^{2} \tag{2}
\end{align*}
$$

(1), (2) $\Rightarrow \frac{1}{n}\left\|x \hat{\beta}-x \beta^{*}\right\|_{2}^{2} \leq \frac{2}{n}\left\langle\varepsilon \cdot x \hat{\beta}-x \beta^{*}\right\rangle$ (basic inequality)

$$
\begin{array}{r}
\Rightarrow \quad\left\|X \hat{\beta}-X \beta^{*}\right\|_{2} \leq 2<\varepsilon, \frac{X \hat{\beta}-X \beta^{*}>}{\| X \hat{\beta}-X \beta^{*}}> \\
\quad \leq 2 \sup _{\beta}<\varepsilon, \frac{X \beta-X \beta^{*}}{N X \beta-X \beta^{*} \|_{2}}>\nless *
\end{array}
$$

\rightarrow does not on $\hat{\beta}$ any more.

Let $U=\left[u_{1}, \ldots, u_{r}\right]$ be a matrix with orthonormal columns a basis for column space of X
(where r is the rank of $X^{\top} x$)
$\frac{X \beta-X \beta^{*}}{\left\|X \beta-X \beta^{*}\right\|_{2}}$ is a vector in column space of X

Hence, it can be written in the basis u_{i} 's $\exists a: \frac{X \beta-X \beta^{*}}{\left\|X \beta-X \beta^{*}\right\|}=\frac{u a}{\|a\|}$

Let $v=U^{\top} \varepsilon \Rightarrow v_{i}=\left\langle u_{i}, \varepsilon\right\rangle$

$$
\Rightarrow \quad v_{i}=\sum_{j=1}^{n} \quad u_{i j} \cdot \varepsilon_{j}
$$

$$
\Rightarrow \quad v_{i} \in \operatorname{Sub} G\left(\sum u_{i j}^{2} \sigma^{2}\right) \in \operatorname{Sub} G\left(\sigma^{2}\right)
$$

$$
\begin{aligned}
& \left\|x \hat{\beta}-x \beta^{*}\right\|_{2} \leq 2 \quad \sup _{\|a\| \leq 1}<\varepsilon, U_{a}> \\
& \leq 2 \sup _{\|a\| \leq 1}<U^{\top} \varepsilon, a> \\
& =2\left\|U^{\top} \varepsilon\right\| \\
& \Rightarrow \frac{1}{n}\left\|X \hat{\beta}-X \beta^{*} n_{2}^{2} \leq 4\right\| U^{\top} \varepsilon \|_{2}^{2} \\
& U \in R^{n \times r} \\
& U^{\top} \cdot \varepsilon=\left[\begin{array}{c}
u_{1}- \\
\vdots \\
u_{r}-
\end{array}\right]\left[\begin{array}{l}
\\
\varepsilon
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\mathbb{E}_{\varepsilon} & {\left[\frac{1}{n}\left\|x \beta-x \beta^{*}\right\|_{2}^{2}\right] \leq \frac{4}{n} E_{\varepsilon}\left[\left\|U^{\top} \varepsilon\right\|_{2}^{2}\right] } \\
= & \frac{4}{n} E\left[\sum_{i=1}^{r} v_{i}^{2}\right] \leq \frac{4}{n} \sum_{i=1}^{r} E\left[v_{i}^{2}\right] \\
& \leq \frac{4}{n} \sum_{i=1}^{r}(\sqrt{2} \sigma)^{2} \leq \theta\left(\frac{r \sigma^{2}}{n}\right)
\end{aligned}
$$

depends on r not d

$$
r \leq \min \{n, d\}
$$

Sparsity

Consider the case where all but k coordinate of β^{*} is zero.

$$
B_{0}^{d}(k):=\left\{x \in \mathbb{R}^{d} \cdot\|x\|_{0} \leq k\right\}
$$

\rightarrow unit ball
we also pick $\hat{\beta}$ from B. (k)

$$
\hat{\beta}=\arg \min _{\beta \in B_{0}^{d}(k)}^{n}\|\beta-Y\|_{2}^{2}
$$

Now we focus on bounding

$$
\left\|X \hat{\beta}-X \beta^{*}\right\|_{2}^{2}
$$

Earlier, we have shown

$$
\begin{aligned}
& \| x \hat{\beta}-X \beta^{*} \eta_{2} \leq 2<\varepsilon, \frac{x \hat{\beta}-x \beta^{*}}{\left\|x \hat{\beta}-x \beta^{*}\right\|_{2}} \\
&\left.\leq 2 \sup _{\beta \in B_{0}^{d}(k)}<\varepsilon, \frac{x\left(\beta-\beta^{*}\right)}{\left\|x\left(\beta-\beta^{*}\right)\right\|_{2}}\right\rangle
\end{aligned}
$$

Now $\beta-\beta^{*}$ is a vector in \mathbb{R}^{d} with at most $2 k$ non-zero entries Let S denote the set of indices that are not zero. we know $|s| \leq 2 k$
we can continue our bound by:

$$
\begin{aligned}
& 2 \sup _{\beta \in \beta_{0}^{d}(k)}<\varepsilon, \frac{X\left(\beta-\beta^{*}\right)}{\left\|x\left(\beta-\beta^{*}\right)\right\|_{2}}> \\
& \leq 2 \max _{s \leq[d]} \sup \quad a_{s}<\varepsilon, \frac{\left.X a_{s}\right\rangle}{\left\|x a_{s}\right\|} \\
& |s| \leq 2 k \quad L
\end{aligned}
$$

where a_{i} is zero for all $i \notin S$

Note that $X a_{s}$ lies in the column space of X_{S} restricted to columns that are in S.

$$
\left[\left.\right|_{x} ^{1,2,3}\right]\left[\int_{a=\beta-\beta^{*}}^{\sum_{2}^{2}} \quad\right. \text { for exampk }
$$

Let $U_{s}=\left[u_{1}, \ldots, u_{r}\right]$ be a matrix where its columns form an orthonormal basis for the column space of X_{s}.
here $r \leq 2 k$
with a very similar argument as before

$$
\begin{aligned}
&\left\|X \hat{\beta}-X \beta^{*}\right\|_{2} \leq 2 \max _{s \leq[\alpha]}\left\|U_{s}^{\top} \varepsilon\right\|_{2} \\
&|s| \leq 2 k \\
& \Rightarrow E_{s}\left[\frac{1}{n}\left\|X \hat{\beta}-X \beta^{*}\right\|_{2}^{2}\right] \leq 2 \mathbb{E}_{s}\left[\max _{\substack{s \leq d d] \\
|s| \leq 2 k}} U_{s}^{\top} \varepsilon \|_{2}^{2}\right] \\
& \leq \theta\left(\frac{\sigma^{2} k \log (d)}{n}\right)
\end{aligned}
$$

next lecture

