Today's Lecture

Sub-Gaussian

·Adapted from Sasha Rakhlin's

Rictain notres)

what random variables behave similar to Gaussian? we saw in the last lecture: $Pr\left[2 > t\right] \simeq \mathcal{O}\left(\frac{1}{t}e^{-t/2}\right)$ Sub- Gaussian random variables mimic the same behavior. 4 We say X is a sub-Gaussian random variable with variance proxy (a.k.a. variance factor or sub-Gaussianity parameter) k^2 iff $Pr[\|X\|_{2} t] \leq 2 exp(-t^{2}/k^{2})$ our notation $X \in$ $sub G(K)$

The following properties one equivalent.
\n*k*_i's appearing below different from each other by
\nat most an absolute constant factor.
\n1) For all
$$
t \ge 0
$$
 (tail)
\n
\n*P*_c $[|X| \ge t \le 2 \exp(-t^2/k^2)$
\n2) for all $p \ge 1$ (moment)
\n $\|X\|_{L^p} = (E[X|^{p}])^{\frac{1}{p}} \le K_2 \sqrt{P}$
\n3) $|\lambda| \le \frac{1}{K_1} \sum_{\lambda \ge 1} \sum_{\lambda \ge 1} \frac{1}{K_1} \sqrt{1 + \sum_{\lambda \ge 1} \frac{1}{K_2} \sqrt{P}}$
\n4) $E[e^{\frac{X^2}{K_1} \lambda^2} \le e^{\frac{X^2}{K_1} \lambda^2}$
\n5) $\forall \lambda \in \mathbb{R}$ (*i* $\frac{f(X^2)}{K_1} \le 2$

 $E\left[e^{\lambda X}\right] \leq e^{\frac{r^{2} \lambda^{2}}{2}}$ which one is the main one? all are correct. In the literature, you may see various versions. We stick to the definition in the Vershynin's $book.$ When we say $x \in SubG(K^2)$ we mean. NG Sub G[O[k']] Examples $+$ 2 \sim $N(0,1)$ Pr [$|z| \ge t$] \le 2 e $Z \in subGCH(11)$ $1 - V(0, \sigma^2)$ =7 Sub $G(\theta(\sigma^1))$

Bernouli / Radancuher $\overline{\mathbf{t}}$ ν . p. $X = \begin{cases} +1 \\ 1 \end{cases}$ $u \cdot p$ $\frac{1}{2}$ $\frac{\lambda}{2}$ $\frac{\lambda}{2}$ $\frac{\lambda^2}{2}$ $\begin{array}{c} \lambda X \\ J = \frac{1}{2} e^{\lambda} \end{array}$ $E\left[$ e we hope to Show \leq $\frac{1}{2}$ ∞ $2k$ $=\frac{1}{7}$ $\sum_{k=1}^{7}$ $-\neq \lambda$ $(2k)$ λL ∞ \overline{e} \leq 2 $(\lambda$ $\overline{z^k k!}$ $k = 0$ $\lambda^{1}/2$ \overline{X} E \int e $1 \leq e$ XE sub G(1) b_j $\left(\xi \right)$

* bounded variables $a \leq b$ first : $Y := \begin{cases} a & y_2 \\ b & y \end{cases}$ $\frac{1}{2}$ \Rightarrow centered $Y:3Y - E[Y]$ $\left\{\n \begin{array}{c}\n b-a \\
\hline\n 2\n \end{array}\n\right.$ $\frac{1}{2}$ by rescaling $Y = (b-a) X$ (like a Ber) \Rightarrow Y' G Sub G (cb-a)²) In fact for any bounded r.v. Z in $\left[-\frac{b\cdot a}{2}, \frac{b-a}{2} \right]$, if $E[z], 0, \omega c$ have: $765ubG(\underline{b-a}^2)(\frac{1}{4})$

Hockfding lemma Suppose X is a zero-mean r.v in [a, b] $E[\lambda X] \leq exp(\frac{\lambda^{2}ln\lambda}{8}) \quad \forall \lambda \in R.$ \Rightarrow X is in Sub $C(\underline{b-a})^2$) (with a slightly more compilicated proof that we omit here.)

ter two independent x, esub G(o,) and X, E subc $(c₁)$ \Rightarrow X₁ X₂ E sub G(\sim ²+ σ ²) (prove it for the problem set) $x_i \wedge x_j$, x_i , x_k , $x_i \wedge x_j$, $x_i \wedge x_j$, x_i , x_i , x_j , x_i , x_j , x_i , x_j , x_i , x_j , x \Rightarrow $\sum X_i$ \in Sub G ($\sum \alpha_i^{2}$) + X; are zero-mean $r. v.$ in $[a,b]$ ΣX_i is in Sub $G(n \cdot b-a)^2$ $\overline{\mathbf{8}}$ by Huetfding lemma. 1

Hoeffding bound Let $x_1, ..., x_n$ be n i.i.d $r.v.$ in range $[a, b]$ $Pr\left[\left|\frac{\sum X_i - E[X_i]}{n}\right| \ge \frac{\varepsilon}{\sqrt{\varepsilon}}\right] \le 2e^{-\theta(\frac{\varepsilon n}{\sqrt{b\cdot\omega}})}$ $\frac{\rho_{\text{root}} f. \quad Y_i = X_i - E[X_i]}{in \left[a - E[X_i], b - E[X_i]\right]}$ $\frac{n}{\Rightarrow \sum_{i=1}^{n} Y_i}$ \sim sub G $(n \cdot \frac{(b-a)}{8})$ $\Rightarrow Pr\left[\sum_{n}x_{i}-E[X_{i}]\right]\geq E\int = Pr\left[\left|\sum_{n}Y_{i}\right|\right]\geq En\right]$ \leq 2 exp $\left(-\frac{8e^{2}h}{(b-1)^{2}}\right)$

Some proofs regarding the definitions Integral identity of expectation for
non-negative nandom variables! Y20 $E[Y] = \int_{0}^{\infty} Pr[Y > t] dt$ $D \Rightarrow Q$
E[IXI^P] = \int_{0}^{∞} Pr [IXI^P > t] dt $= \int_{0}^{\infty} P_{r} [1x1 \ge \sqrt[6]{t}] dt$ change of variable $u = \sqrt[t]{t} \Rightarrow t = u^{\rho} \Rightarrow \frac{dt}{du} = \rho u^{\rho+1}$ $= \int_{0}^{\infty} Pr [\vert \lambda \vert \geq u]$. $p u^{p-1}$ du

 $\frac{1}{b_3}$ $\frac{1}{c_3}$ \int_{0}^{∞} $\frac{1}{c_3}$ $\frac{$ another change of variable $2 = \frac{u^2}{k_1^2}$ \Rightarrow $k_1 \sqrt{z} = u$ \Rightarrow $\frac{du}{dz} = \frac{k_1}{2} \frac{1}{\sqrt{2}}$ $=$ \int_{0}^{∞} $\frac{z^{p}}{p}$ $\frac{z^{p}}{p}$ $\frac{p}{z}$ $\frac{p}{z}$ $\frac{1}{z}$ $\frac{dz}{z}$ $= K_1^P \int_{0}^{\infty} e^{-Z} \rho \sqrt{z} dx$ $= p k_1^p \int_{0}^{\infty} e^{-z} (z) dz$ = pk_{1}^{p} , $\Gamma(\frac{p_{1}}{2})$ = $pk_{1}^{p}(\frac{p_{1}}{2})^{p_{1}}$ $(E[N]^p]) \leq \frac{p}{\sqrt{2}} k \sqrt{p} < 1.06 k \sqrt{p}$ \Rightarrow

for $\lambda > 0$ $(5) \Rightarrow 0$ $Pr[X \ge t] = Pr[e^{\lambda X} \ge e^t]$ \leq in $\frac{1}{\lambda}$ of $\frac{-t\lambda}{\lambda}$ \in $\left[\frac{e^{-t\lambda}}{\lambda}\right]$ markov ξ in $\frac{k_5\lambda^2-t\lambda}{2}$ = $\frac{t^2}{4k_5}$ $\lambda > 0$ $\lambda = \frac{t}{2k_5}$ For the rest of proofs see Vershynin's book.

Is sub-Gaussia tail always describe the behaviup uf a r.v. well? $w \cdot p \cdot 1 - \frac{1}{k}i$ for some $X = \begin{cases} 0 \\ +k \\ -k \end{cases}$ W.P. 1/2 large k $w \cdot \rho.$ $\frac{1}{2k}$ $\frac{1}{k}$ $\frac{1}{k}$ $\frac{0}{k}$ E[X] = 0, $Var[X] = k^2 + k^2 + k^2 + 2k^2 = 1$ Suppose we have n i.i.d copy of X: $Pr[X_{1F} \cdot S X_{n} = 0] = \frac{(1 - \frac{1}{k^{2}})^{n}}{\sum_{k=0}^{n} e^{-\frac{1}{k^{2}}}$ or $\frac{N}{k^2}$ $\frac{n}{k^2}$ for any $t > 0$ Pr $[ZX_i]_{2}t$ S R $[3: X_i \neq 0]$ almost \leq 1 - Pr [$X_{12}...X_{n}$] \cong $\frac{n}{k^{2}-1}$ \in for $n = k$

using sub-Gansssanity of bounded rondom variables: $X \in$ Sub $G(\theta(k))$ => Pr [$|Z X_i|$ > t] < exp (-0 $(\frac{t}{r}^{2})$) for $nsk \leq exp(\frac{\theta(\frac{t}{k})}{k})$ for small t, this is almost 1. Hoeffding gives us a very bad upper bound on the probability.

Is every randon variable subG(K) for some longe k? Nope. Let $Z \sim N(v,1)$ Consider Z² centered
The MGF of Z²-1 is $E\left[e^{h(z^{2}-1)}\right]$ $\frac{1}{\sqrt{2T}}\int_{-\infty}^{\infty} e^{\lambda (z^2-1)} e^{-z^2/2} dz$ = $\frac{e^{-\lambda}}{\sqrt{2\pi}} \int_{-\infty}^{\infty} e^{-2\lambda} \frac{1-2\lambda}{\alpha} dz$

 $\frac{e^{-\lambda}}{\sqrt{1-2\lambda}} \leq e$ $\begin{array}{rcl}\n\lambda' & & & \lambda^2 & \\
\lambda' & & & \\
\hline\n& & & & \\
\hline$ \geq Ly unbounded if for $|\Lambda| \leq \frac{1}{4}$: Z is behaving like a sub-Gaussian