
Homework 4 - Part b

Problem 1. (20 points) [Outputting a Particular MST]

Consider the scenario where we have a weighted graph $G = (V, E)$ where the weights of the edges are not necessarily unique. Kruskal's algorithm can return different spanning trees for the same input graph G , depending on how it breaks ties in edge costs when the edges are sorted. Prove that for each minimum spanning tree T of G , there is a way to sort the edges of G in Kruskal's algorithm so that the algorithm returns T .

Problem 2. (30 points) [Single-Vertex Degree Constrained MST]

Let $G = (V, E)$ be an undirected, connected graph where each edge $e \in E$ has a positive weight $w(e)$. We are given a specific vertex $v \in V$ and a positive integer maximum degree $r \geq 1$. The goal is to find a Spanning Tree T of G that minimizes the total weight $\sum_{e \in T} w(e)$, subject to the constraint that the degree of v in T , denoted $\deg_T(v)$, must be at most r .

Design an efficient algorithm that receives the graph G (as an adjacency list), the vertex v , and the constraint r , and outputs the minimum spanning tree subject to the constraint $\deg_T(v) \leq r$. If no spanning tree satisfies the degree constraint (e.g., G is a degree s -star and $r < s$ for the center vertex), state that it is “Impossible”.

Hint: The degree constraint $\deg_T(v) \leq r$ prevents direct application of standard MST algorithms. A constrained MST must use $k \leq r$ of the edges incident to v . To find the optimal set of k edges, consider introducing a positive penalty λ to the weight of every edge incident to v :

$$w'(e) = \begin{cases} w(e) + \lambda & \text{if } v \in e \\ w(e) & \text{if } v \notin e \end{cases}$$

Observe how Kruskal's algorithm behaves with these modified weights.