COMP 382: Reasoning about algorithms Fall 2025
December 4, 2025 Instructors: Aliakbarpour, Chida, Mamouras

Lab Worksheet 8: NP-Completeness

Subset Sum

We are given a multiset of integers Z = {z1,...,2,} and a target T' € Z. The question is
whether there exists an index set I C {1,...,n} such that >, , 2z = T". Despite its simple
statement, this problem is computationally intractable in general.

Proof of NP-completeness

Our goal is to prove that Subset Sum is NP-complete. The proof has two steps.

1. Show that Subset Sum is in NP.

2. Show Subset Sum is NP-hard via a polynomial-time reduction from the NP-complete
problem 3-SAT.

3-SAT Problem. Recal from lecture: Given a 3-CNF formula with variables zq,...,x,
and clauses (1, ..., C),, each clause having exactly three literals, decide whether there exists
a truth assignment satisfying all clauses.

Connecting 3-SAT and Subset Sum. The strength of Subset Sum is that many different
constraints can be encoded simultaneously by using different digit positions in a large-base
number system. Each digit represents one constraint.

For example, suppose we include in our multiset two numbers z; = 1000 and 2z, = 1000, and
assume all other z; are either at least 10000 or together sum to less than 1000. If we make

1

COMP 382 Lab Worksheet 8: NP-Completeness Fall 2025

the thousands digit of the target T" equal to exactly 1000, then any solution I to the Subset
Sum instance must include exactly one of z; or z5: including none gives 0 in that digit;
including both gives 2000. This ability to force “choose exactly one” is precisely what allows
us to reduce 3-SAT to Subset Sum. We can use this structure to ensure literals are selected
consistently, meaning that x; and —z; are in fact not equal.

A second key idea is that we can also allow multiple acceptable values in a digit, by adding
slack numbers. For instance, if a certain digit of the target is 3, and our construction allows
a chosen subset to contribute 1, 2, or 3 from the “meaningful” numbers, we can add two
slack numbers that each contribute 1 in that digit so that 1, 2, or 3 can all be “completed”
up to the target value 3. This flexibility lets us express constraints of the form “at least one
of these contributions must be present”, because although slack numbers can fill in missing
contributions, they can only fill in a limited amount. In the 3-SAT reduction, this is exactly
how we ensure that every clause has at least one satisfied literal: each clause digit can be
brought up to its target value using at most two slack numbers, so the chosen subset must
provide at least one literal-contribution.

These two mechanisms are what make it possible to reduce 3-SAT to Subset Sum.

Construction for the 3-SAT to Subset Sum Reduction

We now outline the structure of the reduction and ask you to complete the missing pieces.
Consider a 3-SAT instance with literals{z1, ..., z,, =21,..., "z, } and clauses C,...,C,, .
We will construct a Subset Sum instance in base B = 10.!

Digits. Each constructed number will have exactly n + m digits. Each digit encodes one
constraint:

e Variable digits: the first n digits ensure that for every variable x;, we choose exactly
one of x; or —x; to be true.

e Clause digits: the last m digits ensure that each clause has at least one satisfied

literal.

Numbers. For each literal ¢, we construct a number z(¢). Denote
29 1= 2(x;), Zoi—1 1= 2(—xy).

For each clause C}, we also create two slack numbers s;; and s;9. These allow clause digits
to reach their target value even when the selected literals contribute less than the target.

LA larger base works as well; the crucial requirement is that no carries occur.

COMP 382 Lab Worksheet 8: NP-Completeness Fall 2025

Interpretation. We construct a target number T with n 4+ m digits. A subset [is a
solution if and only if

If z(¢) is selected in the sum (its index is in I), then we interpret ¢ as being set to TRUE;
otherwise it is FALSE.

Part 1: Enforcing the variable constraint (digit 7).

For each i € {1,...,n}, digit i enforces that: “Exactly one of z(x;) or z(—z;) is selected”.
This implies that between x; and —x; one of them is TRUE and the other one is FALSE.

To enforce this, fill in the ¢-th digit entries below.

Hint: Try assigning values to z9; and z9;_1. What happens if the subset includes: neither,
exactly one, or both? Which of these should match the target digit?

Number Digit ¢

z(z;) []
z(—z;) []

Any other number D

Target T' D

Part 2: Enforcing the clause constraint (digit n + j).

For each clause C; = (¢1V{3V{3), digit (n+7) ensures: “At least one literal in C; is selected.”
Each literal ¢, that appears in the clause contributes to digit (n + j). Complete the table:

Hint: Set the i-th digit of T" such that selecting no true literal makes it impossible to hit
the target digit. Using the slack variables if any of the literals are True, it should be possible
to hit the target digit.

Number Digit n+ j (clause digit)

2(61)
z(()
z(s
s;1 (slack 1)
s;2 (slack 2)

H

H

H

H

H

Any other number

i

Target T’

COMP 382 Lab Worksheet 8: NP-Completeness Fall 2025

Mini Example: Fill in the literal numbers and the target. We use base B = 10 with
n = 2 variables (z1,x2) and a single clause C} = (x1 V x3 V —x5). There are n +m = 3 digits
per number: (dy, ds | d3), where d; enforces “exactly one of x; or —z1,” dy enforces “exactly
one of x5 or —xe,” and ds enforces that C is satisfied (with two slack numbers sy 1, 512).

Number d; dy d3 (clause Cf)

2@) [[L]
2(-er) L] [L]
2(w2) D D D
d(~an) [L L]
51,1 D D D
512 L L L]
Target T D D D

Given one satisfying assignment here and the corresponding subset-sum solution [:

Assignment: x; = I:‘, Ty = I:‘, I =

Proof of correctness

Next we focus on the proof of correctness. We show a one-to-one correspondence between
satisfying assignments of the 3-SAT instance and solutions to the constructed SUBSET SuM
instance.

(= direction) Assume the 3-SAT instance is a YES instance; that is, there exists a truth
assignment that satisfies all clauses. Show that the constructed Subset Sum instance has a
subset [whose numbers sum exactly to the target 7'.

COMP 382 Lab Worksheet 8: NP-Completeness Fall 2025

(< direction) Assume the constructed SUBSET SUM instance admits a subset I such that
> rer 2k = T'. Prove that the 3-SAT instance is a YES instance.

Conclusion. You have shown that a satisfying assignment of 3-SAT corresponds exactly
to a subset summing to the target 7', and vice versa. Thus, 3-SAT reduces to SUBSET SUM,
proving the problem is NP-hard. Since Subset Sum is also in NP, it is NP-complete.

COMP 382 Lab Worksheet 8: NP-Completeness Fall 2025

Job Scheduling on Identical Machines

You run a small compute cluster with two identical machines. A queue of jobs J = {1,...,n}
has processing times py,...,p,. You want to assign each job to one of the two machines so
that the finishing time (the time when the last machine stops) is as small as possible. This
objective is called the makespan. Even this simple-looking problem hides computational
hardness.

Decision version of two-machine job scheduling We are given positive integers
P1,---,Pn, and a target makespan K € Z.y. Can we schedule the jobs on two identical
machines so that the makespan is at most K7 Equivalently, is there a partition of the jobs
into two sets A and B such that

> p <K and) p; < K?

JjEA JjEB

Proof of NP-completeness

Our goal is to prove that the decision version of two-machine job scheduling is NP-complete.
The proof has two steps.

1. Show that job scheduling on two machines is in NP.

2. The problem is NP-hard via a polynomial-time reduction from the NP-complete prob-
lem PARTITION.

Partition Problem. Given positive integers as,...,a, with total sum S =). a;, decide
whether there exists an index set I C {1,...,n} such that) .., a; = S/2. For the purpose
of this worksheet, we assume this problem is NP-complete. This can be proved by showing
a polynomial reduction from SUBSET-SUM.

Construct the reduction. Given an instance (ay,...,a,) of PARTITION, define the cor-
responding scheduling instance (p1,...,py; K) for two machines. Specify each p; and K.
Briefly argue that mapping is computable in polynomial time.

COMP 382 Lab Worksheet 8: NP-Completeness Fall 2025

Proof of correctness.

Next we focus on the proof of correctness. We show a one and one correspondence between
the solutions of these two problems.

(= direction) Assume the PARTITION instance is a YES instance; that is, there exists I with

Y ics @ = S/2. Show that the constructed scheduling instance has a schedule of makespan
<K.

(< direction). Assume the scheduling instance admits a schedule with makespan < K.
Prove that the PARTITION instance is a YES instance.

Conclusion. You have shown an NP-complete problem (PARTITION) can be reduced to
the decision version of job scheduling. Hence, job scheduling is NP-hard. Since the problem
is also in NP, it is NP-complete.

