
COMP 382: Reasoning about algorithms Fall 2025

December 4, 2025 Instructors: Aliakbarpour, Chida, Mamouras

Lab Worksheet 8: NP-Completeness (Solution)

Subset Sum

We are given a multiset of integers Z = {z1, . . . , zn} and a target T ∈ Z. The question is
whether there exists an index set I ⊆ {1, . . . , n} such that

∑
i∈I zi = T . Despite its simple

statement, this problem is computationally intractable in general.

Proof of NP-completeness

Our goal is to prove that Subset Sum is NP-complete. The proof has two steps.

1. Show that Subset Sum is in NP.

A certificate is a subset I. In O(n) time we can sum
∑

i∈I zi and check if it equals T .
Hence the problem is in NP.

2. Show Subset Sum is NP-hard via a polynomial-time reduction from the NP-complete
problem 3-SAT.

3-SAT Problem. Recal from lecture: Given a 3-CNF formula with variables x1, . . . , xn

and clauses C1, . . . , Cm, each clause having exactly three literals, decide whether there exists
a truth assignment satisfying all clauses.

Connecting 3-SAT and Subset Sum. The strength of Subset Sum is that many different
constraints can be encoded simultaneously by using different digit positions in a large-base
number system. Each digit represents one constraint.

For example, suppose we include in our multiset two numbers z1 = 1000 and z2 = 1000, and
assume all other zi are either at least 10000 or together sum to less than 1000. If we make
the thousands digit of the target T equal to exactly 1000, then any solution I to the Subset
Sum instance must include exactly one of z1 or z2: including none gives 0 in that digit;
including both gives 2000. This ability to force “choose exactly one” is precisely what allows
us to reduce 3-SAT to Subset Sum. We can use this structure to ensure literals are selected
consistently, meaning that xi and ¬xi are in fact not equal.

1



COMP 382 Lab Worksheet 8: NP-Completeness (Solution) Fall 2025

A second key idea is that we can also allow multiple acceptable values in a digit, by adding
slack numbers. For instance, if a certain digit of the target is 3, and our construction allows
a chosen subset to contribute 1, 2, or 3 from the “meaningful” numbers, we can add two
slack numbers that each contribute 1 in that digit so that 1, 2, or 3 can all be “completed”
up to the target value 3. This flexibility lets us express constraints of the form “at least one
of these contributions must be present”, because although slack numbers can fill in missing
contributions, they can only fill in a limited amount. In the 3-SAT reduction, this is exactly
how we ensure that every clause has at least one satisfied literal: each clause digit can be
brought up to its target value using at most two slack numbers, so the chosen subset must
provide at least one literal-contribution.

These two mechanisms are what make it possible to reduce 3-SAT to Subset Sum.

Construction for the 3-SAT to Subset Sum Reduction

We now outline the structure of the reduction and ask you to complete the missing pieces.
Consider a 3-SAT instance with literals{x1, . . . , xn, ¬x1, . . . ,¬xn} and clauses C1, . . . , Cm .
We will construct a Subset Sum instance in base B = 10.1

Digits. Each constructed number will have exactly n +m digits. Each digit encodes one
constraint:

• Variable digits: the first n digits ensure that for every variable xi, we choose exactly
one of xi or ¬xi to be true.

• Clause digits: the last m digits ensure that each clause has at least one satisfied
literal.

Numbers. For each literal ℓ, we construct a number z(ℓ). Denote

z2i := z(xi), z2i−1 := z(¬xi).

For each clause Cj, we also create two slack numbers sj,1 and sj,2. These allow clause digits
to reach their target value even when the selected literals contribute less than the target.

Interpretation. We construct a target number T with n + m digits. A subset I is a
solution if and only if ∑

k∈I

zk = T.

If z(ℓ) is selected in the sum (its index is in I), then we interpret ℓ as being set to TRUE;
otherwise it is FALSE.

1A larger base works as well; the crucial requirement is that no carries occur.

2



COMP 382 Lab Worksheet 8: NP-Completeness (Solution) Fall 2025

Part 1: Enforcing the variable constraint (digit i).

For each i ∈ {1, . . . , n}, digit i enforces that: “Exactly one of z(xi) or z(¬xi) is selected”.
This implies that between xi and ¬xi one of them is TRUE and the other one is FALSE.

To enforce this, fill in the i-th digit entries below.

Hint: Try assigning values to z2i and z2i−1. What happens if the subset includes: neither,
exactly one, or both? Which of these should match the target digit?

Solution:

Number Digit iii (variable digit)

z(xi) 1

z(¬xi) 1

Any other number 0

Target T 1

Part 2: Enforcing the clause constraint (digit n+ j).

For each clause Cj = (ℓ1∨ℓ2∨ℓ3), digit (n+j) ensures: “At least one literal in Cj is selected.”
Each literal ℓr that appears in the clause contributes to digit (n+ j). Complete the table:

Hint: Set the i-th digit of T such that selecting no true literal makes it impossible to hit
the target digit. Using the slack variables if any of the literals are True, it should be possible
to hit the target digit.

Solution: Without slack variables, the clause digit might sum to 1, 2, or 3 depending on
how many literals of the clause are chosen. But we want a fixed target digit, say 3. Slack
numbers help “fill in” the difference: by one or two. However, they cannot fill in all three
that is needed to hit the target because only two slack numbers exist.

Number Digit n+ jn+ jn+ j (clause digit)

z(ℓ1) 1

z(ℓ2) 1

z(ℓ3) 1

sj,1 (slack 1) 1

sj,2 (slack 2) 1

Any other number 0

Target T 3

3



COMP 382 Lab Worksheet 8: NP-Completeness (Solution) Fall 2025

Mini Example: Fill in the literal numbers and the target. We use base B = 10 with
n = 2 variables (x1, x2) and a single clause C1 = (x1 ∨ x2 ∨¬x2). There are n+m = 3 digits
per number: (d1, d2 | d3), where d1 enforces “exactly one of x1 or ¬x1,” d2 enforces “exactly
one of x2 or ¬x2,” and d3 enforces that C1 is satisfied (with two slack numbers s1,1, s1,2).
Solution:

Number d1 d2 d3 (clause C1)

z(x1) 1 0 1

z(¬x1) 1 0 0

z(x2) 0 1 1

z(¬x2) 0 1 1

s1,1 0 0 1

s1,2 0 0 1

Target T 1 1 3

Given one satisfying assignment here and the corresponding subset-sum solution I:

Assignment: x1 = T , x2 = F , I = {z(x1), z(¬x2), s1,1}

Proof of correctness

Next we focus on the proof of correctness. We show a one-to-one correspondence between
satisfying assignments of the 3-SAT instance and solutions to the constructed Subset Sum
instance.

(⇒ direction) Assume the 3-SAT instance is a YES instance; that is, there exists a truth
assignment that satisfies all clauses. Show that the constructed Subset Sum instance has a
subset I whose numbers sum exactly to the target T .

Solution: For each variable xi, if xi = TRUE we include z(xi) in I, and if xi = FALSE we
include z(¬xi) in I. Thus, in variable digit i, the sum is exactly 1, matching Ti = 1.

Now consider any clause Cj = (ℓ1∨ ℓ2∨ ℓ3). Because the assignment satisfies the formula, at
least one literal is TRUE. Each TRUE literal contributes 1 in clause digit (n+ j). If exactly
r ∈ {1, 2, 3} of the clause’s literals are true, then we add 3− r of the clause’s slack numbers,

4



COMP 382 Lab Worksheet 8: NP-Completeness (Solution) Fall 2025

each contributing 1 in digit (n + j). Since at most two slacks exist, this fully reaches the
required Tn+j = 3.

Thus, in every digit,
∑

k∈I zk matches T , and no carries occur since B ≥ 10. Therefore the
Subset Sum instance is a YES instance.

(⇐ direction) Assume the constructed Subset Sum instance admits a subset I such that∑
k∈I zk = T . Prove that the 3-SAT instance is a YES instance.

Solution: Consider digit i (a variable digit). Only z(xi) and z(¬xi) contribute a 1 in this
digit. Since Ti = 1, the sum in digit i must also be 1. Thus exactly one of z(xi) or z(¬xi)
is selected. We define the corresponding truth assignment: xi = TRUE if z(xi) ∈ I and
xi = FALSE if z(¬xi) ∈ I.

Next consider clause digit (n + j). The slack numbers contribute at most 2 in this digit.
Because Tn+j = 3, the clause literals must contribute at least 1. Thus at least one literal
in clause Cj has its corresponding number selected into I, meaning that literal is TRUE
under the assignment. Hence every clause contains at least one TRUE literal, so the truth
assignment satisfies the 3-SAT formula.

Conclusion. You have shown that a satisfying assignment of 3-SAT corresponds exactly
to a subset summing to the target T , and vice versa. Thus, 3-SAT reduces to Subset Sum,
proving the problem is NP-hard. Since Subset Sum is also in NP, it is NP-complete.

5



COMP 382 Lab Worksheet 8: NP-Completeness (Solution) Fall 2025

Job Scheduling on Identical Machines

You run a small compute cluster with two identical machines. A queue of jobs J = {1, . . . , n}
has processing times p1, . . . , pn. You want to assign each job to one of the two machines so
that the finishing time (the time when the last machine stops) is as small as possible. This
objective is called the makespan. Even this simple-looking problem hides computational
hardness.

Decision version of two-machine job scheduling We are given positive integers
p1, . . . , pn, and a target makespan K ∈ Z>0. Can we schedule the jobs on two identical
machines so that the makespan is at most K? Equivalently, is there a partition of the jobs
into two sets A and B such that∑

j∈A

pj ≤ K and
∑
j∈B

pj ≤ K?

Proof of NP-completeness

Our goal is to prove that the decision version of two-machine job scheduling is NP-complete.
The proof has two steps.

1. Show that job scheduling on two machines is in NP.

To prove NP-completeness we need to show a certificate for a YES instance of the
problem exists for which we can be verified in polynomial time. If set B and A are
provided, we can compute the makespan in O(n) time, and check whether it is at most
K or not. Thus, the problem is in NP.

2. The problem is NP-hard via a polynomial-time reduction from the NP-complete prob-
lem Partition.

Partition Problem. Given positive integers a1, . . . , an with total sum S =
∑

i ai, decide
whether there exists an index set I ⊆ {1, . . . , n} such that

∑
i∈I ai = S/2. For the purpose

of this worksheet, we assume this problem is NP-complete. This can be proved by showing
a polynomial reduction from Subset-Sum.

Construct the reduction. Given an instance (a1, . . . , an) of Partition, define the cor-
responding scheduling instance (p1, . . . , pn;K) for two machines. Specify each pj and K.
Briefly argue that mapping is computable in polynomial time.

Solution: Set pj := aj for all j. Let S =
∑

j aj and set K := S/2. We copy the n numbers
and compute S (a single pass), then set K = S/2. This can be done in linear time in n.

6



COMP 382 Lab Worksheet 8: NP-Completeness (Solution) Fall 2025

Proof of correctness.

Next we focus on the proof of correctness. We show a one and one correspondence between
the solutions of these two problems.

(⇒ direction) Assume the Partition instance is a YES instance; that is, there exists I with∑
i∈I ai = S/2. Show that the constructed scheduling instance has a schedule of makespan

≤ K.

Solution: Assign the jobs corresponding to indices in I to machine 1 and the remaining
jobs to machine 2. Their loads are S/2 and S/2, so the makespan is S/2 = K.

(⇐ direction). Assume the scheduling instance admits a schedule with makespan ≤ K.
Prove that the Partition instance is a YES instance.

Solution: Let the two machine loads be L1 and L2 with L1, L2 ≤ K. Since L1 + L2 =∑
j pj = S, we must have L1 = L2 = K = S/2. The set of jobs on either machine then gives

a subset summing to S/2, which is a valid partition.

Conclusion. You have shown an NP-complete problem (Partition) can be reduced to
the decision version of job scheduling. Hence, job scheduling is NP-hard. Since the problem
is also in NP, it is NP-complete.

7


