COMP 382: Reasoning about algorithms Fall 2025
November 13, 2025 Instructors: Aliakbarpour, Chida, Mamouras

Lab Worksheet 7: Max Flow (Solution)

The Project Selection Problem

The project selection problem involves choosing a subset of activities to maximize total profit
while satisfying prerequisite constraints. We are given a set P of potential projects. Each
project ¢ € P is associated with a real-valued wvalue p;, which may be positive (profit) or
negative (cost).

The relationships between projects are defined by a directed acyclic Graph (DAG) G =
(P, E), where P is the set of vertices (projects) and F is the set of directed edges (constraints).
An edge (i,j) € F represents a precedence constraint: if project i is selected, then its
prerequisite, project j, must also be selected. A subset of projects A C P is considered
feasible if it satisfies all the constraints. This means that for every constraint (i,7) € E, if
1 € A, then 7 must also be in A.

The total profit, denoted by profit(A), resulting from selecting a feasible set A is the sum of
the values of all projects included in A:

profit(A) = Zpi

i€A

The goal is to find a feasible set of projects A C P that mazimizes the total profit, profit(A).

Designing the Flow Network

We solve this problem via a reduction to the max-flow problem. The idea is to construct a
network flow from G in such a way that the minimum cut partition the graph G corresponds
to an optimal set of projects to pick.

Constructing G’ = (V' E’). We build a directed network with a new source s and sink
t, and:

1. For each i € P with p; > 0, add edge (s, %) of capacity p;.

2. For each i € P with p; < 0, add edge (i,t) of capacity —p;.

COMP 382 Lab Worksheet 7: Max Flow (Solution) Fall 2025

3. For each precedence edge (i,7) € E (“to take 7, you must take j”), add edge (i,7) of
capacity +oo'.

Question 1. Consider the example graph below and the following projects and values:
P:{A7B707D7E}7 pA:77pB:_37pC:57pD:_67pE:47

For the given graph G below, construct the network G’, run the Ford-Fulkerson algorithm
on it, and find the minimum (s — ¢)-cut.

Solution: The Ford-Fulkerson algorithm terminates, finding a maximum flow of 7 units.
This total flow is decomposed into 3 units pushed along the path s - A - C — B — ¢t
and 4 units pushed along the path s - F — D — t. From the final residual graph, we find
the minimum cut (S, 7") by partitioning the vertices into those reachable from s (set S) and
those unreachable (set T"). The partitions are S = {s, A, B,C'} and T = {E, D, t}.

We can verify this cut by examining the edges that cross between the sets: the edges from
StoT, (s,F) and (B,t), are both saturated (i.e., flow equals capacity), and the edge from
T to S, (E,C), has zero flow. This configuration confirms the maz-flow min-cut theorem, as
the capacity of the minimum cut is equal to the value of the maximum flow found.

Extracting the solution from a minimum cut

Question 2. Let C' = ZiEP:pi>0 p;. This is the maximum possible profit that one can
hope for without considering the precedent constraints. Let (S,7") be a minimum s—t cut in
G'. Define A = S\ {s}, representing the selected projects.

1. Explain why A must satisfy the precedence constraints.

Solution: Note that the graph has a finite cut by setting S = {s} and T being the rest
of vertices other than s. This cut has capacity C' < co. Precedence edges get capacity
+00, so a minimum cut never use them; hence if ¢ is on the s-side, all its prerequisites
7 must also lie on the s-side. This enforces feasibility via the cut.

!This can be implemented by setting the capacity to any number that is strictly larger than C :=
ZieP:pi>0pi, eg. C+1.

COMP 382 Lab Worksheet 7: Max Flow (Solution) Fall 2025

2. Show that the capacity of this cut is C' — .., p;.

Solution: Since the min-cut value is finite, it cannot cross any of the infinite-capacity
precedence edges from G. Thus, all edges in the cut must be the finite-capacity edges
added during the construction, namely those connecting to the source s or the sink
t. The edges contributing to the cut’s capacity are partitioned into two groups: those
(s,i) where i ¢ A and p; > 0, and those (i,t) where i € A and p; < 0. Using the
construction, one obtains:

capacity(S,T)

Z pi + Z (—=pi)

i¢A, pi>0 i€A,p;i<0
= E pi + E pi| — (E i + E Pz')
i¢ A, pi>0 i€A, p;>0 i€A, p;<0 i€A, >0
=0 - E Di -
i€A

Algorithm and Running Time

Question 3. Using a max-flow algorithm as a subroutine, provide pseudocode to solve the
project selection problem. Analyze the running time of your algorithm. You may assume
the max-flow subroutine runs in O(|V||E|*) on any graph G = (V, E).

Solution: Algorithm 1 describes the pseudocode for the project selection problem.

Algorithm 1 Project Selection via Max-Flow/Min-Cut

1:

—_ =
_= O

— = s
U = W N

Input: A set of projects P with profits p;, and a graph G = (P, E) of precedence
constraints.
Output: The optimal set of feasible projects A C P.
C <« Ziipi>0 Di
Initialize graph G’ « ({s,t} U P, ()
for each 7 € P do
if p; > 0 then
Add edge (s,17) to G' with capacity p;
else if p; < 0 then
Add edge (i,t) to G’ with capacity —p;
for each (i,7) € E do
Add edge (i,7) to G" with capacity +oo (or C'+ 1)

: Run a Max-Flow/Min-Cut algorithm on G’
: Let (5,7) be the minimum s — ¢ cut

: A S\ {s}

: return A

COMP 382 Lab Worksheet 7: Max Flow (Solution) Fall 2025

Running time. Building the graph G’ takes O(|P| + |E|) time. The resulting graph G’ has
|[V'| = |P| + 2 = O(|P]) vertices and |E’'| = O(|P| + |E|) edges. Using the Edmonds-Karp
algorithm for max-flow, the total running time is dominated by the max-flow routine, which
runs in O([V'[|E"[*) = O(|P| - (|P| + |E])?).

Proof of Correctness

Question 4 In this part, we prove the correctness of the algorithm by establishing the two
key facts: completeness and soundness.

1. (Completeness: A feasible set implies a cut.) Let A C P be any feasible set. Show that
placing A U {s} on the s-side and (P \ A) U {t} on the ¢-side yields a cut of capacity
¢ - EieA Di-

Solution: Since A is closed under prerequisites (i.e., feasible), no precedence edge
crosses the cut. Only edges of the form (s,4) with i ¢ A (and p; > 0) and (¢,¢) with
i € A (and p; < 0) can cross. Similar to what we have shown erlier, summing the
capacities gives capacity(S,7) = C — >, 4 pi-

2. (Soundness: A finite capacity cut induces a feasible set.) Let (S,T) be any (s — t)cut
with capacity at most C'. Prove that A =S\ {s} satisfies the precedence constraints.

Solution: Any cut of capacity at most C' cannot cut a precedence edge (each has
capacity +00). If the project set A were infeasible, there would exist an edge (i,j) € E
such that i € A and j ¢ A. This implies i« € S and j € T, which cuts the infinite
capacity edge (i, 7), contradicting the finite cut capacity. Thus, A must be feasible.

3. Combine the two parts to argue that a minimum cut corresponds to a maximum-profit
feasible set.

Solution: The two previous parts establish a one-to-one correspondence between fea-
sible sets A and cuts (S,7) with capacity at most C, where the capacity is related
to profit by capacity(S,T) = C — profit(A). Since C' is a constant, minimizing the
cut capacity capacity(S,T) is equivalent to maximizing the project profit profit(A).
Therefore, the s-side of any minimum cut is an optimal feasible set.

