
COMP 382: Reasoning about algorithms Fall 2025

November 13, 2025 Instructors: Aliakbarpour, Chida, Mamouras

Lab Worksheet 7: Max Flow (Solution)

The Project Selection Problem

The project selection problem involves choosing a subset of activities to maximize total profit
while satisfying prerequisite constraints. We are given a set P of potential projects. Each
project i ∈ P is associated with a real-valued value pi, which may be positive (profit) or
negative (cost).

The relationships between projects are defined by a directed acyclic Graph (DAG) G =
(P,E), where P is the set of vertices (projects) and E is the set of directed edges (constraints).
An edge (i, j) ∈ E represents a precedence constraint: if project i is selected, then its
prerequisite, project j, must also be selected. A subset of projects A ⊆ P is considered
feasible if it satisfies all the constraints. This means that for every constraint (i, j) ∈ E, if
i ∈ A, then j must also be in A.

The total profit, denoted by profit(A), resulting from selecting a feasible set A is the sum of
the values of all projects included in A:

profit(A) =
∑
i∈A

pi

The goal is to find a feasible set of projects A ⊆ P that maximizes the total profit, profit(A).

Designing the Flow Network

We solve this problem via a reduction to the max-flow problem. The idea is to construct a
network flow from G in such a way that the minimum cut partition the graph G corresponds
to an optimal set of projects to pick.

Constructing G′ = (V ′, E ′). We build a directed network with a new source s and sink
t, and:

1. For each i ∈ P with pi ≥ 0, add edge (s, i) of capacity pi.

2. For each i ∈ P with pi < 0, add edge (i, t) of capacity −pi.

1

COMP 382 Lab Worksheet 7: Max Flow (Solution) Fall 2025

3. For each precedence edge (i, j) ∈ E (“to take i, you must take j”), add edge (i, j) of
capacity +∞1.

Question 1. Consider the example graph below and the following projects and values:

P = {A,B,C,D,E}, pA = 7, pB = −3, pC = 5, pD = −6, pE = 4,

For the given graph G below, construct the network G′, run the Ford-Fulkerson algorithm
on it, and find the minimum (s− t)-cut.

Solution: The Ford-Fulkerson algorithm terminates, finding a maximum flow of 7 units.
This total flow is decomposed into 3 units pushed along the path s → A → C → B → t
and 4 units pushed along the path s→ E → D → t. From the final residual graph, we find
the minimum cut (S, T) by partitioning the vertices into those reachable from s (set S) and
those unreachable (set T). The partitions are S = {s, A,B,C} and T = {E,D, t}.
We can verify this cut by examining the edges that cross between the sets: the edges from
S to T , (s, E) and (B, t), are both saturated (i.e., flow equals capacity), and the edge from
T to S, (E,C), has zero flow. This configuration confirms the max-flow min-cut theorem, as
the capacity of the minimum cut is equal to the value of the maximum flow found.

A

B

D

C

Es t

0/7

3/5

4/4
3/3

4/
6

0/∞

3/∞

0/∞

4/∞

Extracting the solution from a minimum cut

Question 2. Let C :=
∑

i∈P :pi>0 pi. This is the maximum possible profit that one can
hope for without considering the precedent constraints. Let (S, T) be a minimum s–t cut in
G′. Define A := S \ {s}, representing the selected projects.

1. Explain why A must satisfy the precedence constraints.

Solution: Note that the graph has a finite cut by setting S = {s} and T being the rest
of vertices other than s. This cut has capacity C <∞. Precedence edges get capacity
+∞, so a minimum cut never use them; hence if i is on the s-side, all its prerequisites
j must also lie on the s-side. This enforces feasibility via the cut.

1This can be implemented by setting the capacity to any number that is strictly larger than C :=∑
i∈P : pi>0 pi, e.g. C + 1.

2

COMP 382 Lab Worksheet 7: Max Flow (Solution) Fall 2025

2. Show that the capacity of this cut is C −
∑

i∈A pi.

Solution: Since the min-cut value is finite, it cannot cross any of the infinite-capacity
precedence edges from G. Thus, all edges in the cut must be the finite-capacity edges
added during the construction, namely those connecting to the source s or the sink
t. The edges contributing to the cut’s capacity are partitioned into two groups: those
(s, i) where i /∈ A and pi ≥ 0, and those (i, t) where i ∈ A and pi < 0. Using the
construction, one obtains:

capacity(S, T) =
∑

i/∈A, pi≥0

pi +
∑

i∈A, pi<0

(−pi)

=

 ∑
i/∈A, pi≥0

pi +
∑

i∈A, pi≥0

pi

 − (∑
i∈A, pi<0

pi +
∑

i∈A, pi≥0

pi

)
= C −

∑
i∈A

pi .

Algorithm and Running Time

Question 3. Using a max-flow algorithm as a subroutine, provide pseudocode to solve the
project selection problem. Analyze the running time of your algorithm. You may assume
the max-flow subroutine runs in O(|V | |E|2) on any graph G = (V,E).

Solution: Algorithm 1 describes the pseudocode for the project selection problem.

Algorithm 1 Project Selection via Max-Flow/Min-Cut

1: Input: A set of projects P with profits pi, and a graph G = (P,E) of precedence
constraints.

2: Output: The optimal set of feasible projects A ⊆ P .
3: C ←

∑
i: pi>0 pi

4: Initialize graph G′ ← ({s, t} ∪ P, ∅)
5: for each i ∈ P do
6: if pi > 0 then
7: Add edge (s, i) to G′ with capacity pi
8: else if pi < 0 then
9: Add edge (i, t) to G′ with capacity −pi
10: for each (i, j) ∈ E do
11: Add edge (i, j) to G′ with capacity +∞ (or C + 1)

12: Run a Max-Flow/Min-Cut algorithm on G′

13: Let (S, T) be the minimum s− t cut
14: A← S \ {s}
15: return A

3

COMP 382 Lab Worksheet 7: Max Flow (Solution) Fall 2025

Running time. Building the graph G′ takes O(|P | + |E|) time. The resulting graph G′ has
|V ′| = |P |+ 2 = O(|P |) vertices and |E ′| = O(|P |+ |E|) edges. Using the Edmonds-Karp
algorithm for max-flow, the total running time is dominated by the max-flow routine, which
runs in O(|V ′||E ′|2) = O(|P | · (|P |+ |E|)2).

Proof of Correctness

Question 4 In this part, we prove the correctness of the algorithm by establishing the two
key facts: completeness and soundness.

1. (Completeness: A feasible set implies a cut.) Let A ⊆ P be any feasible set. Show that
placing A ∪ {s} on the s-side and (P \ A) ∪ {t} on the t-side yields a cut of capacity
C −

∑
i∈A pi.

Solution: Since A is closed under prerequisites (i.e., feasible), no precedence edge
crosses the cut. Only edges of the form (s, i) with i /∈ A (and pi > 0) and (i, t) with
i ∈ A (and pi < 0) can cross. Similar to what we have shown erlier, summing the
capacities gives capacity(S, T) = C −

∑
i∈A pi.

2. (Soundness: A finite capacity cut induces a feasible set.) Let (S, T) be any (s− t)cut
with capacity at most C. Prove that A = S \ {s} satisfies the precedence constraints.

Solution: Any cut of capacity at most C cannot cut a precedence edge (each has
capacity +∞). If the project set A were infeasible, there would exist an edge (i, j) ∈ E
such that i ∈ A and j /∈ A. This implies i ∈ S and j ∈ T , which cuts the infinite
capacity edge (i, j), contradicting the finite cut capacity. Thus, A must be feasible.

3. Combine the two parts to argue that a minimum cut corresponds to a maximum-profit
feasible set.

Solution: The two previous parts establish a one-to-one correspondence between fea-
sible sets A and cuts (S, T) with capacity at most C, where the capacity is related
to profit by capacity(S, T) = C − profit(A). Since C is a constant, minimizing the
cut capacity capacity(S, T) is equivalent to maximizing the project profit profit(A).
Therefore, the s-side of any minimum cut is an optimal feasible set.

4

