
COMP 382: Reasoning about algorithms Fall 2025

October 30, 2025 Instructors: Aliakbarpour, Chida, Mamouras

Lab Worksheet 6: Minimum Spanning Trees (Solution)

The Cycle Property

A fundamental concept in MST algorithms is the Cycle Property.

Cycle Property: For any cycle C in the graph, if the weight of an edge e of C is strictly
greater than the weight of any other edge in C, then e cannot belong to any Minimum

Spanning Tree (MST).

Question 1: Understanding the Cycle Property. Suppose you have an MST T . If
you add any edge e /∈ T to T , it creates a unique cycle C.

1. Explain why the new graph T ∪ {e} contains exactly one cycle.

Solution: A spanning tree T is connected and acyclic. When a new edge e is added to
T , the two endpoints of e are already connected by a unique simple path in T . Adding
e between these two endpoints completes this path into a cycle. Since T was acyclic,
no other cycles are formed.

2. Let us prove the cycle property by contradiction. Let e ∈ C be the edge with the
maximum weight in the cycle C; that is, w(e) > w(e′) for all e′ ∈ C \ {e}. Suppose e
belongs to a minimum spanning tree T . Explain how one can construct another span-
ning tree T ′ whose total weight is strictly smaller than that of T , thereby contradicting
the assumption that T is an MST.

Solution: Note that T is a spanning tree, so if we remove one edge from T , it will be
split into two connected components, each containing exactly one endpoint of e.

Now, consider the path P := C \ {e}, which connects the two endpoints of e through
the cycle C.

Clearly, this path will cross the cut formed by the connected components of T \ {e} at
some point, say at edge e′. If we add e′ to T \{e}, it will reconnect the two components
since it is a cut edge.

We can use e′ to perform an edge exchange. Consider

T ′ := T \ {e} ∪ {e′}.

1

COMP 382 Lab Worksheet 6: Minimum Spanning Trees (Solution) Fall 2025

Since e′ reconnects the two connected components created by removing e, T ′ is con-
nected and has |V | − 1 edges. Thus, it is a spanning tree.

The weight of T ′ is
W (T ′) = W (T)− w(e) + w(e′).

Since w(e) > w(e′), the term w(e′) − w(e) is strictly negative. Therefore, W (T ′) <
W (T), which contradicts the initial assumption that T was a minimum spanning tree.

Second Best Minimum Spanning Tree

The goal of this problem is to find a spanning tree that has the second-smallest total edge
weight. Before we begin, let G = (V,E) be a connected, weighted, undirected graph,
and let T be a minimum spanning tree (MST) of G. The weight of a spanning tree T
is denoted W (T). A second best minimum spanning tree is a spanning tree S such that
W (S) = min{W (T ′) | T ′ is a spanning tree and W (T ′) > W (T)}. Note that even if there
are multiple minimum spanning trees, none of them are considered a second best minimum
spanning tree. The second best minimum spanning tree must have a weight that is strictly
larger than W (T).

The Second Best MST Is One-Edge-Flip Away

We now explore a crucial claim: A second best MST can always be found by taking an
arbitrary MST, T , and swapping a single edge. That is, T ′ := T \ {e′} ∪ {e} for some e′ ∈ T
and e /∈ T . Our goal here is to argue about the existence of these two edges e and e′.

Question 2: The Edge Exchange. Let S be a second best MST that has themaximum
overlap with T , meaning the size of the set T ∩ S is maximized over all second best MSTs.
Since S ̸= T , and it has |V | − 1 edges, there must be an edge in S that does not belong to
T . Let’s take call this edge e. When you add e to the MST T , it creates a unique cycle C
in T ∪ {e}.

1. Prove that there must exist an edge e′ ∈ C such that e′ ∈ C such that e′ /∈ S and
adding e′ to S and removing e from it creates another spanning tree.

Solution: Assume that e is an edge between two vertices u and v. Since e /∈ T and T
is connected, there must exist a path P between u and v within T . Note that e does
not belong to this path.

Now, since S is a spanning tree, removing e from S will split it into two connected
components: one containing u and the other containing v. This naturally defines a cut
on G. The path P connects a vertex from one component to a vertex in the other, so
it must cross this cut at some point. Hence, there exists a cut edge e′ on this path.

2

COMP 382 Lab Worksheet 6: Minimum Spanning Trees (Solution) Fall 2025

Adding e′ to S\{e} reconnects the two components, since e′ crosses the cut. Therefore,
the graph obtained by removing e and adding e′ is indeed a spanning tree.

2. Show that T ′ := T \ {e′} ∪ {e} is also a spanning tree.

Solution: By our construction, e′ and e belong to cycle C, Removing any single edge
from a cycle leaves the two endpoints of that edge still connected by the remainder of
the cycle. Therefore, removing e′ from T and adding e (the other path in C) keeps the
graph connected. Since |T ′| = |T | = |V | − 1, T ′ is a spanning tree.

3. Now consider S ′ := S \ {e} ∪ {e′} and T ′ := T \ {e′} ∪ {e} we constructed. Our goal
is to show that T ′ is a second best minimum spanning tree. In particular, it might
be helpful to consider the following cases. Based on your answers to the earlier parts,
analyze the weight of T ′ and S ′.

• Case 1: w(e′) < w(e). What is the relationship between W (S ′) and W (S)?
What does this say about W (T ′)?

• Case 2: w(e′) = w(e). What is the relationship between W (S ′) and W (S)?

• Case 3: w(e′) > w(e). What is the relationship between W (T ′) and W (T)?

Solution: We consider each case separately:

• Case 1: w(e′) < w(e). In Since w(e′) < w(e), we have

W (S ′) = W (S) + (w(e′)− w(e)) < W (S) .

Since S is a second best MST,W (S) is the second smallest weight. S ′ is a spanning
tree with a smaller weight than S, so it must be the case that W (S ′) is an MST
weight, i.e., W (S ′) = W (T). Now, we can directly calculate the weight of T ′ and
show it is equal to the weight of S ′.

W (T ′) = W (T) + w(e)− w(e′) = W (S ′) + w(e)− w(e′) = W (S) .

Hence, T ′ is one a second best minimum spanning tree that is one-edge-flip away
from T .

• Case 2: w(e′) = w(e). Since w(e′) = w(e), we have W (S ′) = W (S) − w(e) +
w(e′) = W (S). S ′ is also a second best MST. We compare the overlap:

T ∩ S ′ = T ∩ (S \ {e} ∪ {e′})
= (T ∩ S) ∪ {e′} since e /∈ T and e′ ∈ T \ S

The overlap increases: |T ∩ S ′| = |T ∩ S|+1. This contradicts the initial assump-
tion that S was the second best MST with the maximum overlap with T , because
S ′ has the same weight as S but a strictly larger overlap.

• Case 3: w(e′) > w(e). Note that T ′ is a spanning tree with weight W (T ′) =
W (T) − w(e′) + w(e). However, if w(e′) > w(e), then W (T ′) < W (T). This

3

COMP 382 Lab Worksheet 6: Minimum Spanning Trees (Solution) Fall 2025

directly contradicts the fact that T is a minimum spanning tree. This argument
is, in spirit, the same as the cycle property, which states that the heavier edge in
a cycle must be excluded.

From Edge-Flip to an Algorithm

The previous section established a crucial result: the second best minimum spanning tree is
one edge-flip away from an arbitrary MST (say T). Specifically, for some edge e = (u, v) /∈ T
and some edge e′ ∈ T , the resulting tree T ′ = T \ {e′} ∪ {e} must be the second best MST.

There are two properties to point out about e and e′. By adding e to T , we will create a
cycle C, to preserve the connectivity clearly e′ must belong to this cycle. To get the second
best minimum spanning tree, we need to make sure that the increase to the weight caused
by this swap is minimal, but greater than zero. The weight of the new tree is:

W (T ′) = W (T) + w(e)− w(e′)

Thus, we have w(e′) < w(e). And, for any given e, we will pick the edge e′ with the maximum
weight that is still smaller than w(e).

Since W (T) is a constant, our objective becomes:

min
e∈E\T

{
w(e)− max

e′∈C,w(e′)<w(e)
{w(e′)}

}
where C is the unique cycle formed by T ∪ {e}, and e′ ∈ C \ {e} with weight w(e′) < w(e).

Question 3: Finding the Optimal Edge to Remove (Brute-Force Approach). For
a fixed non-tree edge e = (u, v) ∈ E \T , we want to find the tree edge e′ with the constrained
mentioned above.

1. For a fixed input edge e = (u, v), describe an algorithm that can be used to find the
corresponding e′. What is the time complexity of this traversal?

Solution: We can use a traversal algorithm, like BFS or DFS, starting at vertex u to
find the path to v.

• When performing the traversal, we record the path from u to v by keeping a
pointer to parent.

• Once the path is found, we iterate over all edges in this path and keep track of
the edge with the largest weight below w(e), setting this as our e′.

Since the traversal is performed on the tree T , which has |V | vertices and |V |−1 edges,
the time complexity is O(|V |).

4

COMP 382 Lab Worksheet 6: Minimum Spanning Trees (Solution) Fall 2025

2. What is the overall time complexity of finding the second best MST if we repeat the
traversal described above for every non-tree edge e ∈ E \ T?

Solution: The algorithm involves:

• Finding the initial MST T : O(|E| log |E|).
• Iterating over all non-tree edges: There are O(|E|) such edges.

• For each non-tree edge, performing an O(|V |) path traversal.

The dominant time complexity is therefore O(|E| · |V |). Since |E| can be up to O(|V |2)
in a dense graph, this approach can be slow, with a worst-case complexity of O(|V |3).

Path to the Max Edge: The LCA Connection

Assumption: For the remainder of this problem, let’s assume all edges in the graph have
distinct weights. This assumption simplifies the analysis by ensuring w(e′) ̸= w(e). In fact,
we can show that finding the desired e′ as stated before can be replaced by finding the first
(or lowest) common ancestor of the endpoints of e = (u, v) and taking the maximum edge
on the paths from u and v to this ancestor.

Question 4: Simplified Goal The maximum weight edge on the path Pu,v is equal to
the maximum of the maximum weight edges on the two paths leading from u and v up to
their Lowest Common Ancestor.

argmax
e′∈Pu,v ,w(e′)<w(e)

{w(e′)} = argmax
e′∈Pu,LCA(u,v)∪Pv,LCA(u,v)

{w(e′)} .

Figure 1 illustrates the LCA and Pu,v.

r

a

u c

v d

b

e

Figure 1: The path between u and v is shown by dashed red lines. The node a is the lowest
common ancestor of u and v.

Solution: Note that when we add a non-tree edge e = (u, v) to the MST T , it creates a
unique cycle C. By the cycle property, the edge with the maximum weight in any cycle

5

COMP 382 Lab Worksheet 6: Minimum Spanning Trees (Solution) Fall 2025

cannot belong to the MST. Since all edges in C, except e, belong to an MST, e must be
the edge with the maximum weight in the cycle C, meaning that w(e) > w(e′) for any
e′ ∈ C \ {e}. Now, to find e′ (the optimal edge to remove), we have a simplified task: we
only need to find the maximum weight edge on the path between u and v, the endpoints of e
in the tree.

The main algorithmic challenge now is to find e′ for all e efficiently. To solve this, we can
root the MST T arbitrarily (say, at vertex r). The path between any two vertices u and v in
T can be decomposed into the path from u to their Lowest Common Ancestor (LCA(u, v))
and the path from v to LCA(u, v):

Pu,v = Pu,LCA(u,v) ∪ Pv,LCA(u,v) .

See Figure 1 for an example.

Therefore, the maximum weight edge on the path Pu,v is simply:

max
e′∈Pu,v

{w(e′)} = max

{
max

e′∈Pu,LCA(u,v)

{w(e′)}, max
e′′∈Pv,LCA(u,v)

{w(e′′)}
}

This insight allows us to break down the path problem into two simpler ancestor-descendant
path problems.

Binary Lifting for Efficiency

The Binary Lifting technique allows us to answer LCA and path-max queries efficiently. We
precalculate information for “jumps” of size 2k in the tree. Let L = ⌈log2 |V |⌉. We compute
the following metrics for every node u and every power k from 0 to L:

1. Depth (d[u]): The distance (number of edges) from the root r to u.

2. Ancestor Array (p[u][k]): The 2k-th ancestor of u.

3. Maximum Weight Array (max w[u][k]): The maximum edge weight on the path from
u up to its 2k-th ancestor, p[u][k].

4. Maximum Weight Edge Array (max e[u][k]): The edge that attains the maximum
stored in max w[u][k].

Question 5: Preprocessing and Initial Calculation. Describe a dynamic program-
ming algorithm that can compute the above values. Your algorithm should run in time
O(|V | log |V |) time.

Solution: A single traversal (DFS or BFS) starting at the root r is used to:

• Determine d[u] for all u.

6

COMP 382 Lab Worksheet 6: Minimum Spanning Trees (Solution) Fall 2025

• Determine the base case values (k = 0): p[u][0], max w[u][0], and max e[u][0] by
determining the parent of u in the tree.

General Recurrence (k ≥ 1): For k ≥ 1, we compute the values by combining two jumps
of size 2k−1:

• Ancestor: p[u][k] := p[p[u][k − 1]][k − 1]

• Max Weight: max w[u][k] := max {max w[u][k − 1], max w[p[u][k − 1]][k − 1]}

• Max Edge: max e[u][k] is the edge (from the two 2k−1 segments) that corresponds to
the max w[u][k] value.

This preprocessing takes O(|V | log |V |) time.

Question 6: Finding the Lowest Common Ancestor (LCA). Given the values
defined earlier, design an algorithm that finds LCA(u, v) in O(log |V |) time.

Solution:

1. Equalize Depths: If d[u] ̸= d[v], lift the deeper node (u) up by the difference ∆ =
|d[u]− d[v]| using binary jumps. The binary representation of ∆ determines a series of
jump values. For example, if ∆ = 18 = 24+21, we take the first jump to be u← p[u][1],
and then u← p[u][4].

For the rest of the algorithm, we may assume that u and v have the same depth.

2. Check for Ancestor: If u = v, then LCA(u, v) = u.

3. Binary Search on Height of Common Ancestor: We run a binary search on the
height of the common ancestor in the range [0, x]. Initially, x can be |V |. We perform
a simultaneous lift for both u and v of length equal to the power of two closest to x/2.
Suppose 2k is this closest power. Then, we check whether p[u][k] = p[v][k].

If yes, we know that the common ancestor of u and v lies in the range [0, 2k] (roughly
[0, x/2]). We continue this until x ≤ 1, where we can find the ancestor in O(1). If no,
then we set u← p[u][k] and v ← p[v][k], and continue.

Question 7: Efficiently Finding the Maximum Edge. Describe a procedure to find
the maximum edge to the common ancestor in O(log |V |).

Solution: To find the maximum weight edge on Pu,v (the path from u to v), we integrate
a tracking variable into the lifting process that describe in the previous question using the
maxe data structure we created earlier.

This entire query runs in O(log |V |) time.

7

COMP 382 Lab Worksheet 6: Minimum Spanning Trees (Solution) Fall 2025

Question 8: Time Complexity. Given the efficiency of Binary Lifting, what is the
overall time complexity of the final algorithm for finding the second best MST?

Solution:

• Step 1: MST Construction: O(|E| log |E|).

• Step 2: Binary Lifting Preprocessing: O(|V | log |V |).

• Step 3: Query all non-tree edges: For each of the O(|E|) non-tree edges e = (u, v),
the LCA and path max-weight query takes O(log |V |). Total time for queries:
O(|E| log |V |).

The overall time complexity is dominated by the slowest steps, resulting in an complexity of
O(|E| log |V |).

8

