COMP 382: Reasoning about algorithms Fall 2025
October 23, 2025 Instructors: Aliakbarpour, Chida, Mamouras

Lab Worksheet 5: Greedy Algorithms

Interval Scheduling Problem

Imagine you are in charge of a single shared resource, like a lecture hall. You have received
n requests to book this hall for various events. Each request ¢ is for a specific time interval,
starting at s; and finishing at f;. Because there is only one hall, you can only approve
requests for intervals that do not overlap. We say two intervals, ¢ and j, are compatible if
the time period for ¢ is completely over before the period for j begins, or vice-versa. Formally,
they are compatible if f; <'s; or f; <s;.

Our Goal: To maximize the use of the hall, you want to select the largest possible subset
of these requests that are all mutually compatible. Here is an example:

f t t t t t t t Time

Figure 1: A set of 4 interval requests. The optimal solution is the set {A, D}, with size 2.

Designing a Greedy Algorithm

We will solve this problem using a greedy algorithm. The idea is to build the solution
piece by piece. At each step, we will make a choice that seems best at that moment, without
worrying about future consequences.

Before we explore specific strategies, let’s think about the structure of our greedy algorithm
more formally. Let’s identify the following pieces:

e State: What defines the current state of the problem we are trying to solve?
e Action: What is the single action our algorithm takes at each step?

e New State: After we take an action, how does the state of the problem change? In
other words, how do we define the remaining subproblem?

1

COMP 382 Lab Worksheet 5: Greedy Algorithms Fall 2025

Well... here are the answers: in this context, the state of the problem is the set of available
intervals, and our action is to select one. This leads to the following general process:

1. Start with the set of all n requested intervals.
2. Select one interval based on some “greedy” strategy. Add it to our solution set.

3. Remove the selected interval and all intervals that conflict with it from the set of
requests.

4. Repeat until no more intervals are left to consider.

The crucial part is the “greedy” strategy for selecting an interval. A good strategy leads
to an optimal solution, while a bad one may not. The state of our problem at any point is
simply the set of intervals that are still available to be chosen.

Exploring some (incorrect) greedy strategies

Let’s explore a few greedy strategies that seem reasonable at first glance. For each one, your
task is to find a counterexample. That is provide a small set of intervals where the strategy
fails to produce the largest possible set of compatible intervals. Show which intervals the
greedy algorithm selects and which intervals form the true optimal solution.

Earliest Start Time: The greedy strategy is that at each step, pick the available interval
with the earliest start time.

Your counter example:

Shortest Duration: The greedy strategy is that at each step, pick the available interval
with the smallest duration (f; — s;).

Your counter example:

COMP 382 Lab Worksheet 5: Greedy Algorithms Fall 2025

A Correct Greedy Strategy: Earliest Finish Time

Here is a strategy that does work. At each step, pick the available interval with the earliest
finish time (smallest f;).

Let’s trace the algorithm. Consider the set of intervals shown below. First, list the intervals
(by their letter) in sorted order of their finish times. Then, trace the Farliest Finish Time
algorithm: state which interval is chosen at each step and which intervals are removed. What
is the final set of intervals in your solution?

i } } } } } } } } } } } } } } } 3
F T T T T T T T T T T T T T T T T][[]e

Figure 2: An example to trace the Farliest Finish Time algorithm.

Proof of Optimality

Now, let’s focus on proving that this strategy is always optimal. Here is the statement we
want to prove:

Theorem 1. The greedy algorithm that, at each step, selects an available interval with the
earliest finish time produces an optimal solution for the Interval Scheduling problem.

To prove this, we will use an exchange argument. The idea is to show that the greedy
algorithm’s choices are always safe or correct. We will demonstrate that for any optimal

3

COMP 382 Lab Worksheet 5: Greedy Algorithms Fall 2025

solution, we can transform it step-by-step into the greedy solution without decreasing its
size. Formally, we will build an inductive argument on the size of the problem. It is
natural to assume that the number of available intervals is a good measure of size.

Write the predicate (or statement) you would like to prove via induction:

P(n):

Base case: Show the statement for n = 1.

Induction hypothesis: For the rest of this proof, we assume that P(n’) holds for any
n <n.!

Induction step: We will show that if P(n’) holds for all n’ < n, then P(n) also holds. In
the following, we have an sketch of the argument. Complete the missing parts of the proof.

We start off by showing that we can bring the greedy solution closer to the optimal one by
proving that at least one of the intervals selected by the greedy algorithm must appear in
some optimal solution. This is the ezchange part of the argument.

Lemma 1. Let g; denote the interval with the earliest finish time among all available
intervals. Let O = {o1,09,...,0,} be an optimal solution, sorted by finish times. There
exists an optimal solution O’ that includes g;.

Hint: Consider a good candidate to remove from O and replace with g;.

!This is called strong induction. Instead of assuming only that P(n — 1) holds, we assume that
P(1),P(2),...,P(n—1) all hold. This approach sometimes makes the proof easier.

COMP 382 Lab Worksheet 5: Greedy Algorithms Fall 2025

Lemma 2. Suppose we are given n intervals. Assume that the greedy algorithm produces
an optimal solution for any set of intervals of size smaller than n. Let G = {g1,..., g} be
the solution produced by the greedy algorithm, and let O' = {g, 09, ...,0,} be an optimal
solution that contains the first greedy choice g;. Then, G is an optimal solution.

COMP 382 Lab Worksheet 5: Greedy Algorithms Fall 2025

Greedy Algorithms: The Interval Stabbing Problem

Imagine you are a biologist studying migratory birds. You know the time intervals during
which different species of birds visit a particular watering hole. You want to place automated
cameras to record these visits. Each camera can only be placed at a single point in time,
but it will record any bird species whose visiting interval includes that point in time. Your
cameras are expensive, so you want to use as few as possible to ensure that every species is
observed.

This is an instance of the Interval Stabbing Problem. You have a set of n intervals on a
line, and you want to find the smallest set of points such that every interval is “stabbed” —
that is, every interval contains at least one of the points.

Our Goal: Given n intervals, find a minimum-sized set of points that stabs all of them.
Here is an example:

(. B)
. C=——
r T T .: T T T T T ;. T T Time
D1 P2

Figure 3: A set of 4 intervals. The optimal solution is to place two points, for example at
times 2.5 and 7.5. Point p; stabs intervals A and B. Point p, stabs intervals C and D.

Designing a Greedy Algorithm

We will solve this with a greedy algorithm. The idea is to repeatedly place points until all
intervals are covered. The “greedy” part is deciding where to place the next point.

Here is the general process:
1. Start with the set of all n intervals, none of which are stabbed yet.
2. While there are still unstabbed intervals:

2.1 Choose a location to place a point based on some “greedy” strategy. Add this
point to our solution set.

2.2 Remove all intervals stabbed by this new point from the set of unstabbed intervals.

3. Return the set of points.

The crucial part is the strategy for placing a point. A good strategy will lead to an optimal
(minimum size) set of points.

COMP 382 Lab Worksheet 5: Greedy Algorithms Fall 2025

Exploring an incorrect greedy strategies

Let’s explore a greedy strategies that seems plausible. Your task is to find a counterexam-
ple: a small set of intervals where the strategy fails to produce the smallest possible set of
stabbing points.

Most Stabbing Point: The greedy strategy is to find a point on the line that stabs the
maximum number of currently unstabbed intervals. Place a point there.

Your counterexample:

A Correct Greedy Strategy: Earliest Finish Time

Here is a strategy that does work. Find the unstabbed interval with the earliest finish
time. Place a point at its finish time.

Let’s trace this algorithm. First, sort the intervals below by their finish times. Then, trace
the algorithm: state which point is chosen at each step and which intervals are stabbed.
What is the final set of points?

1
T
Time

Figure 4: An example to trace the Farliest Finish Time algorithm.

COMP 382 Lab Worksheet 5: Greedy Algorithms Fall 2025

Proof of Optimality

Let’s prove this strategy is always optimal using an exchange argument. The core idea is
to show that the greedy choice is always “safe.” We will show that we can transform any
optimal solution into the greedy solution without increasing its size.

Theorem 2. The greedy algorithm that repeatedly finds the unstabbed interval with the ear-
liest finish time and places a point at that finish time produces an optimal solution for the
Interval Stabbing problem.

Let G = {p1,p2,-..,pr} be the solution produced by our greedy algorithm, sorted by posi-
tion. Let O = {q1, 42, ..., qm} be any optimal solution, also sorted by position. We want to
prove that k = m.

Our proof will show that the greedy algorithm “stays ahead.” Specifically, we will prove by
induction that for all 7 > 1, the point p; is at least as far to the right as ¢;.

Claim: Forall:=1,...,m, we have p; > ¢;.

Base case (i = 1): Show that p; > ¢.

Hint: Let iy be the first interval chosen by the greedy algorithm (the one with the earliest
finish time). Where does the greedy algorithm place p;? Where must an optimal solution
place a point ¢; to stab 7;?7 How do these positions relate?

COMP 382 Lab Worksheet 5: Greedy Algorithms Fall 2025

Inductive Step: Assume that p,_1 > ¢;_1 for some ¢ > 1. We want to show that p; > ¢;.
Before we prove the inductive step, let’s first show the following lemma:
Lemma 3. Suppose the greedy algorithm, at step 7, selects ¢*, the unstabbed interval with

the earliest finish time, and places a point p; = f;- at that finish time of 7*. If an interval ¢’
remains unstabbed after placing p;, then ¢ must start strictly after p;; that is, p; < s;.

Using this lemma, complete the argument for the inductive step.

COMP 382 Lab Worksheet 5: Greedy Algorithms Fall 2025

Conclusion of the Proof: We have shown that p; > ¢; for all : = 1,...,m. How does
this prove that the greedy solution is optimal (i.e., that &k = m)?

Hint: Assume for contradiction that the greedy algorithm is not optimal. What would
that imply about the relationship between & and m? Can you use the claim to find a
contradiction?

10

