
COMP 382: Reasoning about algorithms Fall 2025

October 23, 2025 Instructors: Aliakbarpour, Chida, Mamouras

Lab Worksheet 5: Greedy Algorithms (Solution)

Interval Scheduling Problem

Imagine you are in charge of a single shared resource, like a lecture hall. You have received
n requests to book this hall for various events. Each request i is for a specific time interval,
starting at si and finishing at fi. Because there is only one hall, you can only approve
requests for intervals that do not overlap. We say two intervals, i and j, are compatible if
the time period for i is completely over before the period for j begins, or vice-versa. Formally,
they are compatible if fi ≤ sj or fj ≤ si.

Our Goal: To maximize the use of the hall, you want to select the largest possible subset
of these requests that are all mutually compatible. Here is an example:

Time

A

B

C

D

Figure 1: A set of 4 interval requests. The optimal solution is the set {A, D}, with size 2.

Designing a Greedy Algorithm

We will solve this problem using a greedy algorithm. The idea is to build the solution
piece by piece. At each step, we will make a choice that seems best at that moment, without
worrying about future consequences.

Before we explore specific strategies, let’s think about the structure of our greedy algorithm
more formally. Let’s identify the following pieces:

• State: What defines the current state of the problem we are trying to solve?

• Action: What is the single action our algorithm takes at each step?

• New State: After we take an action, how does the state of the problem change? In
other words, how do we define the remaining subproblem?

1

COMP 382 Lab Worksheet 5: Greedy Algorithms (Solution) Fall 2025

Well... here are the answers: in this context, the state of the problem is the set of available
intervals, and our action is to select one. This leads to the following general process:

1. Start with the set of all n requested intervals.

2. Select one interval based on some “greedy” strategy. Add it to our solution set.

3. Remove the selected interval and all intervals that conflict with it from the set of
requests.

4. Repeat until no more intervals are left to consider.

The crucial part is the “greedy” strategy for selecting an interval. A good strategy leads
to an optimal solution, while a bad one may not. The state of our problem at any point is
simply the set of intervals that are still available to be chosen.

Exploring some (incorrect) greedy strategies

Let’s explore a few greedy strategies that seem reasonable at first glance. For each one, your
task is to find a counterexample. That is provide a small set of intervals where the strategy
fails to produce the largest possible set of compatible intervals. Show which intervals the
greedy algorithm selects and which intervals form the true optimal solution.

Earliest Start Time: The greedy strategy is that at each step, pick the available interval
with the earliest start time.

Your counter example:

The greedy algorithm selects A first since it begins at time 0. However, this choice excludes
both B and C, resulting in the solution {A} of size 1. In contrast, the optimal solution is
{B,C}, which has size 2.

Time

A

B C

Figure 2: Counterexample for the Earliest Start Time strategy.

Shortest Duration: The greedy strategy is that at each step, pick the available interval
with the smallest duration (fi − si).

Your counter example:

The greedy algorithm selects C, since it is the shortest interval. However, this choice excludes
both A and B, resulting in the solution {C} of size 1.

2

COMP 382 Lab Worksheet 5: Greedy Algorithms (Solution) Fall 2025

In contrast, the optimal solution is {A,B}, which has size 2.

Time

A B

C

Figure 3: Counterexample for the Shortest Duration strategy.

A Correct Greedy Strategy: Earliest Finish Time

Here is a strategy that does work. At each step, pick the available interval with the earliest
finish time (smallest fi).

Let’s trace the algorithm. Consider the set of intervals shown below. First, list the intervals
(by their letter) in sorted order of their finish times. Then, trace the Earliest Finish Time
algorithm: state which interval is chosen at each step and which intervals are removed. What
is the final set of intervals in your solution?

Time

A D F

B E J

C H

G

I

Figure 4: An example to trace the Earliest Finish Time algorithm.

If we sort the intervals based on their finish time, we get:

B, A, C, D, G, E, H, F, I, J .

The following is a visual trace for the algorithm. The greedy algorithm selects intervals in
four steps. Green intervals are chosen, gray intervals are eliminated as conflicts, and white
intervals remain as candidates for the next step.

Step 1: Choose B. Eliminate conflicting intervals A, C, G, I.

3

COMP 382 Lab Worksheet 5: Greedy Algorithms (Solution) Fall 2025

B

A

C

G

I

D F

E J

H

Step 2: Choose D. Eliminate conflicting interval E.

B

D

E

F

J

H

Step 3: Choose H. Eliminate conflicting interval F.

B

D

H

F

J

Step 4: Choose J. No remaining candidates.

B

D

H

J

Final Greedy Solution: {B, D, H, J}. Size = 4.

4

COMP 382 Lab Worksheet 5: Greedy Algorithms (Solution) Fall 2025

Proof of Optimality

Now, let’s focus on proving that this strategy is always optimal. Here is the statement we
want to prove:

Theorem 1. The greedy algorithm that, at each step, selects an available interval with the
earliest finish time produces an optimal solution for the Interval Scheduling problem.

To prove this, we will use an exchange argument. The idea is to show that the greedy
algorithm’s choices are always safe or correct. We will demonstrate that for any optimal
solution, we can transform it step-by-step into the greedy solution without decreasing its
size. Formally, we will build an inductive argument on the size of the problem. It is
natural to assume that the number of available intervals is a good measure of size.

Write the predicate (or statement) you would like to prove via induction:

P(n): Given n intervals (scheduling requests), the greedy algorithm that, at each step,
selects an available interval with the earliest finish time produces an optimal solution for

the Interval Scheduling problem.

Base case: Show the statement for n = 1. Clearly, our algorithm selects the single
available interval. This is optimal, since it represents the maximum number of intervals we
could possibly choose.

Induction hypothesis: For the rest of this proof, we assume that P (n′) holds for any
n′ < n. 1

Induction step: We will show that if P (n′) holds for all n′ < n, then P (n) also holds. In
the following, we have an sketch of the argument. Complete the missing parts of the proof.

We start off by showing that we can bring the greedy solution closer to the optimal one by
proving that at least one of the intervals selected by the greedy algorithm must appear in
some optimal solution. This is the exchange part of the argument.

Lemma 1. Let g1 denote the interval with the earliest finish time among all available
intervals. Let O = {o1, o2, . . . , om} be an optimal solution, sorted by finish times. There
exists an optimal solution O′ that includes g1.

Hint: Consider a good candidate to remove from O and replace with g1.

Proof. If g1 is in O, we are done, as O is an optimal solution containing g1. Suppose g1 /∈ O.
Then g1 ̸= o1. By definition of g1, it has the earliest finish time of any interval, so we have
fg1 ≤ fo1 . Consider a new set of intervals O′ = {g1, o2, . . . , om}. We will show that this is an

1This is called strong induction. Instead of assuming only that P (n − 1) holds, we assume that
P (1), P (2), . . . , P (n− 1) all hold. This approach sometimes makes the proof easier.

5

COMP 382 Lab Worksheet 5: Greedy Algorithms (Solution) Fall 2025

optimal solution as well. This set has the same size, m, as O. We just need to show it is a
valid, compatible set. Since fg1 ≤ fo1 and the intervals in O were compatible, we know that
so2 ≥ fo1 , meaning o2 starts after o1. This implies so2 ≥ fg1 . Therefore, g1 is compatible
with o2 and, by the same reasoning, with all subsequent intervals in O′. Thus, O′ is a set
of m mutually compatible intervals. It is a valid, optimal solution that contains the first
greedy choice, g1.

Lemma 2. Suppose we are given n intervals. Assume that the greedy algorithm produces
an optimal solution for any set of intervals of size smaller than n. Let G = {g1, . . . , gk} be
the solution produced by the greedy algorithm, and let O′ = {g1, o2, . . . , om} be an optimal
solution that contains the first greedy choice g1. Then, G is an optimal solution.

Proof. To prove optimality, we aim to show that |G| = |O′|. Consider the subproblem S1

consisting of all intervals that are compatible with g1, i.e.,

S1 := { I | sI ≥ fg1 }.

Note that G′ = {g2, . . . , gk} is exactly the set the greedy algorithm selects when run on S1

(i.e., the intervals chosen after committing to g1). This modularity yields the identity

|G| = 1 + (optimal solution size for S1).

Define O′′ to be {o2, . . . , om} . We claim that O′′ is a feasible and optimal solution for S1,
thereby linking |O′| and |G|.

Feasibility. Since O′ is feasible and contains g1, every oi with i ≥ 2 must be compatible
with g1, hence belongs to S1. Moreover, the oi remain mutually compatible because O′ is
feasible. Therefore O′′ is a feasible solution for S1.

Optimality. Suppose, for contradiction, there exists a feasible solution X for S1 with
|X| > |O′′|. Then

{g1} ∪X

would be a feasible solution for the original instance of size

1 + |X| > 1 + |O′′| = |O′|,

contradicting the optimality of O′. Hence O′′ is optimal for S1, and so

|O′| − 1 = |O′′| = optimal solution size for S1.

Conclusion. Putting this together,

|G| = |O′| .

Thus, the greedy algorithm produces a solution of optimal size.

6

COMP 382 Lab Worksheet 5: Greedy Algorithms (Solution) Fall 2025

Greedy Algorithms: The Interval Stabbing Problem

Imagine you are a biologist studying migratory birds. You know the time intervals during
which different species of birds visit a particular watering hole. You want to place automated
cameras to record these visits. Each camera can only be placed at a single point in time,
but it will record any bird species whose visiting interval includes that point in time. Your
cameras are expensive, so you want to use as few as possible to ensure that every species is
observed.

This is an instance of the Interval Stabbing Problem. You have a set of n intervals on a
line, and you want to find the smallest set of points such that every interval is “stabbed” –
that is, every interval contains at least one of the points.

Our Goal: Given n intervals, find a minimum-sized set of points that stabs all of them.
Here is an example:

Time

A

B

C

D

p1 p2

Figure 5: A set of 4 intervals. The optimal solution is to place two points, for example at
times 2.5 and 7.5. Point p1 stabs intervals A and B. Point p2 stabs intervals C and D.

Designing a Greedy Algorithm

We will solve this with a greedy algorithm. The idea is to repeatedly place points until all
intervals are covered. The “greedy” part is deciding where to place the next point.

Here is the general process:

1. Start with the set of all n intervals, none of which are stabbed yet.

2. While there are still unstabbed intervals:

2.1 Choose a location to place a point based on some “greedy” strategy. Add this
point to our solution set.

2.2 Remove all intervals stabbed by this new point from the set of unstabbed intervals.

3. Return the set of points.

The crucial part is the strategy for placing a point. A good strategy will lead to an optimal
(minimum size) set of points.

7

COMP 382 Lab Worksheet 5: Greedy Algorithms (Solution) Fall 2025

Exploring an incorrect greedy strategies

Let’s explore a greedy strategies that seems plausible. Your task is to find a counterexam-
ple: a small set of intervals where the strategy fails to produce the smallest possible set of
stabbing points.

Most Stabbing Point: The greedy strategy is to find a point on the line that stabs the
maximum number of currently unstabbed intervals. Place a point there.

Your counterexample: The greedy strategy picks a point placed anywhere that stabs
the maximum number of intervals: B, C, D, and E (a total of four). Then, this choice leaves
intervals A and F unstabbed. Since A and F do not overlap, we need two more points to
stab them. The greedy solution has a total size of three.

The optimal solution is to place two points, stabbing A, B, C, and stabbing D, E, F. The
optimal size is 2.

Time
0 1 2 3 4 5 6 7 8

A

B

C

D

E

F

Optimal

Greedy

Figure 6: Counterexample for the Most Stabbing Point strategy. The greedy choice (red)
leads to a 3-point solution. The optimal solution (green) uses only two points.

A Correct Greedy Strategy: Earliest Finish Time

Here is a strategy that does work. Find the unstabbed interval with the earliest finish
time. Place a point at its finish time.

Let’s trace this algorithm. First, sort the intervals below by their finish times. Then, trace
the algorithm: state which point is chosen at each step and which intervals are stabbed.
What is the final set of points?

Sorted by finish time: A (3), B (5), C (7), D (8), E (9), F (11), G (13).

In the diagrams below, the chosen interval with the earliest finish time is blue. Other intervals
stabbed in the current step are dark gray, intervals stabbed in previous steps are light gray,
and unstabbed intervals are white.

8

COMP 382 Lab Worksheet 5: Greedy Algorithms (Solution) Fall 2025

Time

A C F

B E G

D

Figure 7: An example to trace the Earliest Finish Time algorithm.

Step 1: The interval with the earliest finish time is A (ends at 3). Place a point p1 = 3.
This stabs intervals A, B, and D.

A

B

C

D

E

F

G

p1 = 3

Unstabbed intervals: C, E, F, G.

Step 2: Among the unstabbed intervals, C has the earliest finish time (7). Place a point
p2 = 7. This stabs C and E.

A

B

C

D

E

F

G

p1 = 3 p2 = 7

Unstabbed intervals: F, G.

Step 3: Among the unstabbed intervals, F has the earliest finish time (11). Place a point
p3 = 11. This stabs F and G.

A

B

C

D

E

F

G

p1 = 3 p2 = 7 p3 = 11

Unstabbed intervals: None. All intervals are stabbed.

Final Greedy Solution: {3, 7, 11}. Size = 3.

9

COMP 382 Lab Worksheet 5: Greedy Algorithms (Solution) Fall 2025

Proof of Optimality

Let’s prove this strategy is always optimal using an exchange argument. The core idea is
to show that the greedy choice is always “safe.” We will show that we can transform any
optimal solution into the greedy solution without increasing its size.

Theorem 2. The greedy algorithm that repeatedly finds the unstabbed interval with the ear-
liest finish time and places a point at that finish time produces an optimal solution for the
Interval Stabbing problem.

Let G = {p1, p2, . . . , pk} be the solution produced by our greedy algorithm, sorted by posi-
tion. Let O = {q1, q2, . . . , qm} be any optimal solution, also sorted by position. We want to
prove that k = m.

Our proof will show that the greedy algorithm “stays ahead.” Specifically, we will prove by
induction that for all i ≥ 1, the point pi is at least as far to the right as qi.

Claim: For all i = 1, . . . ,m, we have pi ≥ qi.

Base case (i = 1): Show that p1 ≥ q1.

Hint: Let i1 be the first interval chosen by the greedy algorithm (the one with the earliest
finish time). Where does the greedy algorithm place p1? Where must an optimal solution
place a point qj to stab i1? How do these positions relate?

Proof. Let i1 be the interval with the earliest finish time overall. The greedy algorithm
selects p1 = fi1 (the finish time of i1). Now, consider the optimal solution O. Some point in
O, say qj, must stab the interval i1. For qj to stab i1, it must be that si1 ≤ qj ≤ fi1 . Since
the points in O are sorted, q1 is the leftmost point. So, q1 ≤ qj. Combining these, we have
q1 ≤ qj ≤ fi1 = p1. Therefore, p1 ≥ q1. The base case holds.

Inductive Step: Assume that pi−1 ≥ qi−1 for some i > 1. We want to show that pi ≥ qi.

Before we prove the inductive step, let’s first show the following lemma:

Lemma 3. Suppose the greedy algorithm, at step j, selects i∗, the unstabbed interval with
the earliest finish time, and places a point pj = fi∗ at that finish time of i∗. If an interval i′

remains unstabbed after placing pj, then i′ must start strictly after pj; that is, pj < si′ .

Proof. We proceed by contradiction. Assume that i′ is an unstabbed interval after placing
the point pj = fi∗ , but it starts before or at pj: si′ ≤ pj

Since i′ is unstabbed, the point pj must not cover it. Therefore, since i′ is not covered by pj
and we have assumed si′ ≤ pj, it must be that pj is strictly greater than the finish time of i′:

pj > fi′

10

COMP 382 Lab Worksheet 5: Greedy Algorithms (Solution) Fall 2025

Substituting pj = fi∗ , we have:
fi∗ > fi′

This implies that i′ has an earlier finish time than i∗ (i.e., fi′ < fi∗). Furthermore, since i′

was unstabbed before step j (as it remains unstabbed after placing pj), and it has an earlier
finish time than i∗, this contradicts the greedy choice of i∗. The greedy algorithm specifically
chose i∗ because it was the unstabbed interval with the earliest finish time. Thus, our initial
assumption (si′ ≤ pj) must be false.

Therefore, any interval i′ that remains unstabbed must satisfy pj < si′ .

Using this lemma, complete the argument for the inductive step.

Proof. By the induction hypothesis, we assume pi−1 ≥ qi−1.

Let Si−1 be the set of all intervals stabbed by the first i − 1 greedy points {p1, . . . , pi−1}.
The greedy algorithm’s i-th step is to consider all intervals not in Si−1. Let’s call this set
of remaining intervals Ri. The algorithm then finds the interval i∗ in Ri with the earliest
finish time and sets pi = fi∗ . This means its start time must be after all of those points, i.e.,
si∗ > pj for all j < i via Lemma 3.

Now, consider the optimal solution’s point qi. By our claim pi−1 ≥ qi−1 and the sorted nature
of the points, any interval stabbed by {q1, . . . , qi−1} must start before qi−1, and thus must
also start before pi−1.

Since we proved pj ≥ qj for all j < i, it must be that si∗ > qj for all j < i. This means
that i∗ could not have been stabbed by any of the first i− 1 points of the optimal solution.
Therefore, some point qj with j ≥ i must stab i∗. So, we must have si∗ ≤ qj ≤ fi∗ . Since
the points are sorted, qi ≤ qj. This gives us qi ≤ qj ≤ fi∗ = pi. So, pi ≥ qi. The inductive
step holds.

Conclusion of the Proof: We have shown that pi ≥ qi for all i = 1, . . . ,m. How does
this prove that the greedy solution is optimal (i.e., that k = m)?

Hint: Assume for contradiction that the greedy algorithm is not optimal. What would
that imply about the relationship between k and m? Can you use the claim to find a
contradiction?

Proof. Assume for contradiction that the greedy solution is not optimal. This would mean it
uses more points than the optimal solution, so k > m. If k > m, then the greedy algorithm
produced at least m + 1 points: {p1, . . . , pm, pm+1}. After the m-th step of the greedy
algorithm, there must have been at least one unstabbed interval, let’s call it iunstabbed, which
caused the algorithm to place the point pm+1. For iunstabbed to be unstabbed by {p1, . . . , pm},
its start time must be greater than all of those points: siunstabbed

> pj for all j ≤ m.

From our claim, we know that pj ≥ qj for all j ≤ m. Therefore, siunstabbed
> pm ≥ qm.

This implies siunstabbed
> qj for all j = 1, . . . ,m. This means that the interval iunstabbed

cannot be stabbed by any of the points in the optimal solution O = {q1, . . . , qm}. This

11

COMP 382 Lab Worksheet 5: Greedy Algorithms (Solution) Fall 2025

is a contradiction, because O is supposed to be a valid solution that stabs all intervals.
Therefore, our assumption that k > m must be false. Since the greedy algorithm produces
a valid solution, we know k ≥ m. The only possibility is that k = m.

12

