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Today’s Lecture

1. What Is NP-Hardness?
1.1 MST vs TSP
1.2 Defining “Easy” and “Hard” Problems
1.3 The Class NP
1.4 IsP = NP?
1.5 Reductions
1.6 NP-hardness and NP-Completeness

2. Greedy Algorithms

3. Minimum Spanning Trees
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Greedy Algorithms



What is a Greedy Algorithm?

® Solves an optimization problem:

® Maximize or minimize an objective
® Subject to constraints

e Builds the solution step by step

® At each step:

® Choose what looks best locally
® Once a choice is made, it is not changed later (irrevocable).

Key question: Do locally optimal choices lead to a global optimum?

35/75



Proof of Correctness: General Recipe

The proof of correctness for a greedy algorithm has two main steps:
® The produced solution is valid given the constraints of the problem.

® The final solution is optimal.
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Proof of Correctness: General Recipe

The proof of correctness for a greedy algorithm has two main steps:

® The produced solution is valid given the constraints of the problem. Usually easy.

® The final solution is optimal. This is the main hurdle.

Common Techniques for Proving Optimality: The core idea is a comparison with an
optimal solution.
® Greedy Stays Ahead: Show that the greedy choice is always “better” than or equal
to the optimal choice at every step, leading to an equally good final result.

e Exchange Argument: Show that any differences between a supposed optimal solution
and the greedy solution can be “exchanged” to make the optimal solution more like
the greedy one, without making it worse.
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Proving Optimality

To prove our “Farthest-First” strategy is optimal, we'll use a classic technique: Greedy
Stays Ahead.

1. Setup: Let's define two refueling strategies:

* G={g1,8,...,8¢«}: The sequence of stops chosen by our Greedy algorithm.
® O={o01,02,...,0m}: The sequence of stops in any Optimal solution.
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Proving Optimality

To prove our “Farthest-First” strategy is optimal, we'll use a classic technique: Greedy
Stays Ahead.

1. Setup: Let's define two refueling strategies:

* G={g1,8,...,8¢«}: The sequence of stops chosen by our Greedy algorithm.
® O={o01,02,...,0m}: The sequence of stops in any Optimal solution.

2. Goal: We want to prove that our greedy solution makes the minimum number of
stops, i.e., k = m.

3. Method: Greedy Stays Ahead. We will show that the greedy choice is always at
least as close to the destination as the optimal choice at every step.
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The Exchange Argument: A General Technique

This is a powerful method for proving a greedy algorithm is correct. The core idea is to
show that any other solution can be transformed into the greedy one without increasing
the cost.

1. Start with an assumed optimal solution, ¢*, that is different from the greedy one, o.
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The Exchange Argument: A General Technique

This is a powerful method for proving a greedy algorithm is correct. The core idea is to
show that any other solution can be transformed into the greedy one without increasing
the cost.

1. Start with an assumed optimal solution, ¢*, that is different from the greedy one, o.

N

. Find a place where ¢* differs from the greedy choice. This is an “inversion”.
3. Perform a small, local exchange to make o* look more like o.

4. Show that this exchange does not increase the cost (and often improves it).

o1

. Argue that the greedy solution is at least as good as any optimal solution.
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Huffman’s Greedy Algorithm

The core insight: The two symbols with the smallest frequencies must be siblings at the
lowest level of the optimal tree.

The Greedy Strategy

1. Identify the two symbols with the lowest frequencies.

2. Join them as children of a new parent node. This parent’s frequency is the sum of its
children’s frequencies (f; + f;).

3. Remove the original two symbols from the list and add this new parent node.

4. Repeat this process until only one node remains—the root of the tree.
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Huffman Algorithm: An Example

y ° ° ¢ Symbol | Frequency
B:3 C:20 D:37 A:70 A 20 million
B 3 million
C 20 million
D 37 million
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B 3 million
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Huffman Algorithm: An Example

ABCD:130

A:70

The Huffman algorithm gives us the following code:

A—1 B—000 C—001

Symbol ‘ Frequency

A

B
C
D

D—01

70 million
3 million
20 million
37 million
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Huffman Algorithm: An Example

ABCD:130 Symbol ‘ Frequency
A 70 million

B 3 million

A:70 C 20 million

D 37 million

The Huffman algorithm gives us the following code:
A—1 B—000 C—001 D—01

Total length: 213 million bits 1 %18 reduction in the size
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Canonical Solutions

If a globally optimal solution lies within a restricted set, then we may focus solely on that
restricted set and still obtain a globally optimal solution.
We choose this restricted set carefully so that it simplifies the proof.

All solutions
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Possible Questions

¢ Huffman Coding Concepts
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Possible Questions

¢ Huffman Coding Concepts

® Understanding its implementation
® Understanding the relationship between symbol frequency and codeword depth/length

(similar to Question 1.1 from Quiz 3).

® Conceptual questions about canonical format: what a canonical format means and
how optimization changes under this restriction.

* A New Greedy-Algorithm Problem
® |dentify what constitutes a single step (or choice) in the problem.

® Propose the natural greedy strategy.
® Compare the greedy choice with the optimal one using an exchange argument or greedy

stays ahead proof.
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Minimum Spanning Trees



Definition

Problem. Given connected G = (V/, E) with weights w, find a spanning tree T
minimizing > .- w(e).
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The Cut Property (safe-to-include)

The Cut Property

Assume all edge costs are distinct.
Let e be the cheapest edge crossing any cut (A, B).
Then e must belong to the Minimum Spanning Tree.

A B
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The Cut Property

Why is this true? If an MST didn’t use e, it would have to use some other, more
expensive edge f to cross that cut. We could swap f for e and get a cheaper tree!

This is a contradiction.
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The Cycle Property (safe-to-exclude)

The Cycle Property

On any cycle C, the heaviest edge is unsafe. There is an MST that does not use this edge.
If the heaviest edge is unique, it appears in no MST.
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Cycle Property: Exchange Argument

Key Idea. In any cycle, the heaviest edge f cannot belong to an MST. Remove f: the graph
splits into two components with endpoints v and v. The rest of the cycle is a u — v path, so it
must cross the cut. That crossing edge e in the cycle satisfies w(e) < w(f). Swapping f for e
yields a strictly lighter spanning tree.

A B

4
@,

)
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Exchange Argument with Two Trees

Setup. Let T be an MST and let S be any spanning tree. Pick an edge e € S\ T. Add
e to T; this creates a unique cycle C in T U {e}.
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connected in T by a unique path, and that path must cross this cut. Hence, along that

T—path there is an edge that can reconnect the two components of S\ {e}; call this edge
f.
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Exchange Argument with Two Trees

Setup. Let T be an MST and let S be any spanning tree. Pick an edge e € S\ T. Add
e to T; this creates a unique cycle C in T U {e}.

Removing e from S disconnects S into two components. The endpoints of e are
connected in T by a unique path, and that path must cross this cut. Hence, along that
T—path there is an edge that can reconnect the two components of S\ {e}; call this edge
f.

This gives rise to two new spanning trees:

T = T+{e}—{f}, S =S—{e}+{f}

Comparing the weights of T/ and S’ to those of T and S leads to the key inequalities in
many MST arguments.

See the Second Best MST in Lab 5, and Question 3 in quiz 3.
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Exchange argument with two trees
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Exchange argument with two trees

TU{(b,c)} S\{(b;0)}
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Exchange argument with two trees
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Uniqueness of the MST

Theorem (Uniqueness Condition). A connected, weighted graph has a unique MST if
and only if

every cut of the graph has a unique lightest edge crossing it.

Intuition.

® Ties among lightest cut edges give multiple safe choices — multiple MSTs.
® Ties among heaviest cycle edges give multiple edges that can be safely removed —
multiple MSTs.
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Kruskal’s algorithm

Outline.
1. Sort edges by weight.

2. Scan in order; add if it connects two com-
ponents.

Correctness: each added edge is lightest
across some cut (Cut Property).

Data structure: Union-Find.
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Possible Question

Conceptual focus: Determining whether an edge belongs to the MST, using the cut and
cycle properties.

A partially built MST is given, and the question asks for the next step of the algorithm.
(Comparable to Question 3 on Quiz 4.)

® Kruskal's algorithm
® including the use of the union—find data structure

® Prim’'s algorithm

® Boriivka's algorithm
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Max Flow and Min Cut



The Maximum Flow Problem

The goal: What is the maximum amount of “stuff” we can send from the source node s
to the sink node t?
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The Maximum Flow Problem

The goal: What is the maximum amount of “stuff” we can send from the source node s
to the sink node t?

The maximum flow problem is to find a valid flow f that maximizes this value.

max |f] .
valid f

Here, we define the value or the size of a flow, denoted by |f
leaving the source node s, or going to the sink node t.

=Y. flsu)— >  f(us)

ueOUT(s) u€lN(s)

, as the total net flow

~
outgoing flow from s incoming flow to s
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The Maximum Flow Problem

The goal: What is the maximum amount of “stuff” we can send from the source node s

to the sink node t?

The maximum flow problem is to find a valid flow f that maximizes this value.

max |f] .
valid f

, as the total net flow
leaving the source node s, or going to the sink node t.

= > — > flus) = > flut) = > f(tu)

ueEOUT (s ) uEIN(s) uEIN(t) ueEOUT(t)

outgoing flow from s incoming flow tos incoming flow to t  outgoing flow from t
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Ford-Fulkerson: An Example

Let's find the max flow for this network. Total flow so far: O.
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Example: Augmenting Path 1

Path: s — a2 — t. Bottleneck: min(10, 8) = 8.

Augmenting Path

We push 8 units of flow.
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Example: Augmenting Path 1

Path: s — a2 — t. Bottleneck: min(10, 8) = 8.

Augmenting Path Updated Flow

We push 8 units of flow. New total flow: 8.
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Example: Augmenting Path 2

Residual Graph Path
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Example: Augmenting Path 2

Path: s — b — t. Bottleneck: min(10, 9) = 9.

Residual Graph Path

We push 9 units of flow.
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Example: Augmenting Path 2

Path: s — b — t. Bottleneck: min(10, 9) = 9.

Residual Graph Path Updated Flow

We push 9 units of flow. New total flow: 8 + 9 = 17.
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Example: Searching for another Path

After pushing 17 units of flow, let's search for another path in the residual graph.

Final Residual Graph

In the residual graph, there is no in-

::Z@ coming edge to t.

No more augmenting paths can be
found.
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Example: No More Paths Found

Since there is no path from s to t in the final residual graph, the algorithm terminates.

The total flow is the sum of the flows sent along the augmenting paths found:
Maximum Flow = 17

This result is guaranteed to be the maximum by the max-flow min-cut theorem.
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What Is an s-t Cut?

® An s-t cut is a partition of the
vertices into two sets, S and T,
such that the source s € S and
the sink t € T.
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What Is an s-t Cut?

® An s-t cut is a partition of the
vertices into two sets, S and T,
such that the source s € S and
the sink t € T.

® The capacity (or the size) of
the cut is the sum of capacities
of all edges going from a node
in Stoanodein T.

The capacity is the sum of edges
crossing from S to T (orange):

10+8+4 =22
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The Max-Flow Min-Cut Theorem

Theorem

In any flow network, the value of the maximum (s, t)-flow is equal to the capacity of the
minimum (s, t)-cut.
x |fl=min_ capacity(S, T)

flows f cuts (S,T)
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Main Lemma: Weak Duality

Lemma (Weak Duality Lemma)

For any feasible (s, t)-flow f and any (s, t)-cut (S, T), the value of the flow is at most the

capacity of the cut.
|f| < capacity(S, T)

Important implication
Weak duality =  max flow < min cut

Weak duality provides certificates of optimality when a feasible solutions are equal:
they both must be optimal.
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Potential Questions

Conceptual questions that probe understanding of how max-flow works and why.

¢ Residual Graph: What it represents, why we need reverse edges, and how residual
capacity enables undoing previous choices.

e Augmenting Paths: Why pushing flow along any augmenting path increases the total
flow, and how augmenting on a reverse edge ‘“cancels” earlier flow.

e Cuts and Min-Cut: Definition of s—t cuts, cut capacity, and why the max-flow value
equals the min-cut capacity (the dual view).

¢ Integrality Property: If all capacities are integers, then there exists an integral max-
imum flow. (Useful when flows encode matchings or assignments.)

® |mplementation of Ford—Fulkerson and Edmonds—Karp and knowing the guaran-
teed polynomial time.

¢ Uniqueness / Non-uniqueness: Why the maximum flow value is unique but the flow
itself may not be.

¢ Linear Programming: Standard LP questions (including duality)
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Potential Questions

A new problem that can be solved by reducing it to a matching problem.

Common tricks used in such reductions:

® Assignment problems can be handled similarly to maximum matching, where capacities
ensure that an integral solution assigns only one object to each resource.
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Potential Questions

A new problem that can be solved by reducing it to a matching problem.

Common tricks used in such reductions:

® Assignment problems can be handled similarly to maximum matching, where capacities
ensure that an integral solution assigns only one object to each resource.

® When a problem appears to have multiple sources (or sinks), introduce a single global
source (or sink) and connect all individual ones to it.

® To force certain vertices to stay together in the graph, we can use “infinite” edge
weights (as in the project constraints from Lab 7). A similar trick can be used to
prevent those edges from appearing in the cut.

® Vertex splitting: Convert a vertex capacity to an “in-node” and “out-node” joined by
a capacity edge.

® Flow Decomposition: A feasible solution of the problem can be the decomposition of
the flow into path flows and cycle flows.

Proof of correctness: show a bidirectional relationship. 65 /75



NP-completeness



P: Polynomial Time Solvable Problems

Complexity theory classifies problems based on their inherent difficulty;,

Algorithms can be fast or slow, clever or naive, but our statements about the problem
itself.

A problem is polynomial time solvable if there is an algorithm that correctly solves it
in O(n*) time, for some constant k, where n is the input length.

still polynomial even k = 101°.

This is worst-case running time. (maximum running time over all possible inputs of
size n)

P: Problems solvable in Polynomial time (easy to solve).
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P: Examples

® Typical examples:

® Shortest paths (without nasty conditions like negative cycles).
® Minimum spanning tree, maximum flow, bipartite matching, etc.

® Non-example: the standard dynamic programming for knapsack runs in ©(nW) time,
where W is the capacity; since the input size is only log W, this is actually pseu-
dopolynomial, not polynomial, in the input length.

* MST « Knapsack (?)
* Max-Flow + Taveling Salesman Problem (?)
* Shortest Path
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The Class NP

NP is the class of problems for which solutions can be efficiently recognized, even if we
don't know how to find them efficiently.

A problem is in NP if:

® YES-instances have short witnesses (certificates) whose length is polynomial in the
input size.
® We can verify a witness in polynomial time.

“check”

Poly-time

verifier
Witness w
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Cook—Levin Theorem

Key idea: Satisfiability (via CIRCUIT-SAT) can act as a universal witness finder for every
problem in NP.

For any decision problem A € NP and any instance x of A:

e |f x is a YES-instance, then there exists a witness w that convinces the verifier V(x, w) to
accept.

® |f x is a NO-instance, then no witness can make the verifier accept.

The Cook—Levin theorem encodes this verifier behavior into a CIRCUIT-SAT formula. Given an
instance x of A, we construct a Boolean formula &, such that:

o, is satisfiable <= 3w : V(x, w) = accept.

Thus, CIRCUIT-SAT simulates the entire accepting computation of the verifier— it captures the

witness and every step showing that the witness is correct.
70/75



NP-Hard and NP-Complete Problems

NP-Hard Problem

A problem B is NP-hard if for every problem A € NP, A reduces to B.
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NP-Hard and NP-Complete Problems

NP-Hard Problem

A problem B is NP-hard if for every problem A € NP, A reduces to B.

NP-Complete Problem

A problem B is NP-complete if:
1. B € NP, and
2. For every problem A € NP, A reduces to B.
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The NP-Completeness Recipe

To show a new problem B is NP-complete, start from a known NP-complete problem A.
Show a polynomial-time reduction from A to B.

A is NP-complete: NP <, A

A poly-time reduction from A to B: A<, B
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The NP-Completeness Recipe

To show a new problem B is NP-complete, start from a known NP-complete problem A.
Show a polynomial-time reduction from A to B.

A is NP-complete: NP <, A
= NP <, B

A poly-time reduction from A to B: A<, B
B is NP-hard.
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The NP-Completeness Recipe

To show a new problem B is NP-complete, start from a known NP-complete problem A.
Show a polynomial-time reduction from A to B.

A is NP-complete: NP <, A
= NP <, B
A poly-time reduction from A to B: A<, B
B is NP-hard.
If we also show that B is in NP, then — B is NP-complete
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What You Need to Know

e Understand the notions of P, NP, polynomial-time reductions, and the general recipe
for proving NP-completeness.

® Be familiar with the problems we defined. You should know their general structure
and which problems are “close enough” so that a reduction between them makes sense.

® These reductions are especially important to study carefully:

® 3-SAT to Maximum Independent Set
® Vertex Cover to Set Cover
® Conceptual message of Cook-Levin's theorem.

Also review the reductions in the problem sets and in Lab 8.

® For the remaining reductions, you do not need to memorize the full proofs. However,
you should know the problems themselves and the general relationships that motivate
the reductions.
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Potential Questions

® A new question that can be solved via reduction (to any of the previously known
algorithms).

® Study the approximation algorithms (may be greedy algorithm). Vertex cover, TSP,
set cover.

® For all such question follow the instruction given in homework 6.
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Guidelines for Writing Algorithm Correctness Proofs

Goal: Show that the algorithm always produces a correct answer for every valid input.

General Structure:

® Prove That the Algorithm Terminates.

¢ Follow a Logical Chain of Implications. Write the proof so each claim follows
explicitly:
p1r= p2=p3=-=4q.

® Make every step justified — no intuition gaps. Use definitions, earlier lemmas, or
properties of the algorithm (e.g., cut property, greedy choice, residual capacity).
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