COMP 382: Reasoning about Algorithms

More NP-Complete Reductions
and Approximation Algorithms

Prof. Maryam Aliakbarpour

co-instructors: Prof. Anjum Chida & Prof. Konstantinos Mamouras

December 2, 2025

Today’s Lecture
1. Approximation Algorithms

1.1 2-Approximation Algorithm
for Vertex Cover

1.2 (In)Approximability of TSP

1.3 Metric TSP and Its Approximation Algorithm
2. Set Cover

2.1 SET-COVER Is NP-Complete

2.2 Approximation Algorithm for Set Cover
Reading:

® Chapter 12 of the Algorithms book [Erickson, 2019]
e Chapter 8.1 of [Tardos and Kleinberg, 2005]

Content adapted from the same references.
2/45

https://jeffe.cs.illinois.edu/teaching/algorithms/book/12-nphard.pdf

Approximation Algorithms

If we relax optimality, does it get easier?

Approximation Algorithms

NP-complete problems are hard to solve exactly. A natural question is:

If we stop insisting on the optimal solution, can we solve the problem efficiently?

4/45

Approximation Algorithms

NP-complete problems are hard to solve exactly. A natural question is:

If we stop insisting on the optimal solution, can we solve the problem efficiently?

Approximation Algorithms:

® Run in polynomial time.
® Always produce a feasible solution.

® Guarantee that the solution is within a factor a of the optimum.

4/45

Approximation Algorithms

NP-complete problems are hard to solve exactly. A natural question is:

If we stop insisting on the optimal solution, can we solve the problem efficiently?

Approximation Algorithms:

® Run in polynomial time.
® Always produce a feasible solution.
® Guarantee that the solution is within a factor a of the optimum.

® For minimization problems o > 1, and smaller a means better approximation.
OPT < cost(ALG) < «-OPT.
® For maximization problems o < 1, and larger o« means better approximation.

OPT > cost(ALG) > «-OPT.

4/45

Approximability of Problems

Often we seek a solution that is close to optimal: a constant-factor approximation, or an « that
grows slowly with n (e.g., log n).

A natural question:

Does every NP-hard optimization problem admit a polynomial-time approximation algorithm?

® Some problems do admit good approximations.

® Others remain hard even to approximate within any reasonable factor.

This leads to an entire area of study: approximability theory.

5/45

2-Approximation Algorithm
for Vertex Cover

Recap: Vertex Covers

Let G = (V, E) be a simple undirected graph.

A vertex cover in G is a subset C C V such that every edge of G has at least one
endpoint in C.

Equivalently: every edge is “touched” by C.

oo
@
CHNNG

7/45

Recap: Vertex Covers

Let G = (V, E) be a simple undirected graph.

A vertex cover in G is a subset C C V such that every edge of G has at least one
endpoint in C.

Equivalently: every edge is “touched” by C.

b

ﬁ/

(o

NG
A vertex cover C = {b, ¢, d} touches all edges.

7/45

Minimum Vertex Cover Problem

VERTEX-COVER: Given a graph G and an integer k, does G contain a vertex cover of
size at most k?

oo
@
CERNG

8/45

Minimum Vertex Cover Problem

VERTEX-COVER: Given a graph G and an integer k, does G contain a vertex cover of
size at most k7?7

a \?/ d
Here {a, d} is a vertex cover of size 2.

8/45

2-Approximation for Vertex Cover

The algorithm repeatedly picks an uncovered edge and adds both endpoints to the cover.

9/45

2-Approximation for Vertex Cover

The algorithm repeatedly picks an uncovered edge and adds both endpoints to the cover.

Step 1: pick an uncovered edge (here (a, b)), add a and b.

9/45

2-Approximation for Vertex Cover

The algorithm repeatedly picks an uncovered edge and adds both endpoints to the cover.

(2)
@) (O—©
()

Step 1: pick an uncovered edge (here (a, b)), add a and b.
Step 2: pick another uncovered edge (here (d,e)), add d and e.

9/45

2-Approximation for Vertex Cover

The algorithm repeatedly picks an uncovered edge and adds both endpoints to the cover.

(2)
@) (O—©
()

Step 1: pick an uncovered edge (here (a, b)), add a and b.
Step 2: pick another uncovered edge (here (d,e)), add d and e.
All edges are covered. = Final cover = {a, b, ¢, d}.

9/45

Why the Greedy Algorithm Is a 2-Approximation

® let M be the set of edges the algorithm picks. They are pairwise disjoint = forming a
matching.

) (O—©
©

Picked edges form a matching M
10/45

Why the Greedy Algorithm Is a 2-Approximation

® let M be the set of edges the algorithm picks. They are pairwise disjoint = forming a
matching.

® Any vertex cover must hit each edge of M. = |C*| > |M|.

) (O—©
©

Picked edges form a matching M
10/45

Why the Greedy Algorithm Is a 2-Approximation

® let M be the set of edges the algorithm picks. They are pairwise disjoint = forming a
matching.

® Any vertex cover must hit each edge of M. = |C*| > |M|.

® The algorithm adds both endpoints of each edge in M. = |CaLc| = 2|M|.

(&)
) (O—©
()

Picked edges form a matching M
10/45

Why the Greedy Algorithm Is a 2-Approximation

® let M be the set of edges the algorithm picks. They are pairwise disjoint = forming a
matching.

® Any vertex cover must hit each edge of M. = |C*| > |M|.

® The algorithm adds both endpoints of each edge in M. = |CaLc| = 2|M|.

® Therefore
|CaLc| = 2|M| < 2|C¥|.

(&)
) (O—©
()

Picked edges form a matching M
10/45

(In) Approximability of TSP

Approximating TSP

APPROX-TSP Given a complete graph G and a constant o > 1, output a tour in G with
cost at most o - OPT.

Intuitively, this requirement is weaker than exact TSP.

® Any algorithm solving exact TSP automatically solves APPROX-TSP.

12/45

Approximating TSP

APPROX-TSP Given a complete graph G and a constant o > 1, output a tour in G with
cost at most o - OPT.

Intuitively, this requirement is weaker than exact TSP.

® Any algorithm solving exact TSP automatically solves APPROX-TSP.

However, APPROX-TSP and TSP have essentially the same difficulty.

12/45

Inapproximability of TSP

Theorem

TSP admits no polynomial-time a-approximation algorithm for any constant a > 1, unless
P = NP.

13/45

Inapproximability of TSP

Theorem

TSP admits no polynomial-time a-approximation algorithm for any constant a > 1, unless
P = NP.

How do we prove this? We return to our standard reduction recipe:

Reduce a known NP-complete problem (Hamiltonian Cycle) to APPROX-TSP.

13/45

The Strategy: Distinguishing by Gap

Goal: Reduce Hamiltonian Cycle to a-Approx TSP.

To do this, we construct an instance where the optimal cost falls into two disjoint ranges
separated by a factor of a.

14 /45

The Strategy: Distinguishing by Gap

Goal: Reduce Hamiltonian Cycle to a-Approx TSP.

To do this, we construct an instance where the optimal cost falls into two disjoint ranges
separated by a factor of a.

If an algorithm guarantees an a-approximation, it returns a tour of cost C < o.- OPT. We
need a gap such that:

¢ Case Yes (Hamiltonian): OPT =n = C < an.

e Case No (Not Hamiltonian): OPT > an.

If we create this gap, checking if C < an decides the Hamiltonian Cycle problem.

14 /45

Creating the Gap

Construction: Build complete graph G’ from G with weights:

w(u,v) = {1 if (u,v) € E(G) (Original)
’ M if (u,v) ¢ E(G) (Non-edge)

where M is a large number (chosen later).

15 /45

Creating the Gap

The Costs:

e If G is Hamiltonian: We use n edges of weight 1.
= OPT(G’) = n.

e If G is NOT Hamiltonian: We must use at least one weight M.
= OPT(G') > M+ (n—1).

Forcing the Gap: Set M = an.

No Hamiltonian Cycle = OPT(G') > an+ (n—1) > an.

16 /45

The Reduction Algorithm

Input: Graph G, Approximation factor «.

1. Set the Penalty: Let n = |V/| and choose a large weight M = an + 1.
2. Construct G’: Create a complete graph where:

® Existing edges in G get weight 1.

® Missing edges (non-edges) get weight M.
3. Run the Solver: Let C be the cost returned by APPROX-TSP(G’).
4. The Decision:

e |f C < an — Return YES.
® |f C > an — Return NO.

17/45

Proof of Correctness

We analyze the output based on the structure of G:

Case 1: G has a Hamiltonian Cycle

® The optimal tour uses only original edges: OPT(G’) = n.

® The «a-approx algorithm returns cost C < o - OPT.
® Therefore, C < an.

® Result: Procedure correctly returns YES.

18/45

Proof of Correctness

We analyze the output based on the structure of G:

Case 1: G has a Hamiltonian Cycle

® The optimal tour uses only original edges: OPT(G’) = n.

® The a-approx algorithm returns cost C < o - OPT.
® Therefore, C < an.

® Result: Procedure correctly returns YES.

Case 2: G has NO Hamiltonian Cycle

® Any tour must use at least one non-edge (weight M).
® Therefore, OPT(G') > M + (n—1) > an.

® Since any tour cost C > OPT(G’), we have C > an.

® Result: Procedure correctly returns NO.
18/45

Metric TSP and Its Approximation
Algorithm

Turns out TSP is not so hopeless...

Metric TSP

Metric TSP An input instance to Metric TSP is a

metric.

Identity of indiscernibles:
Non-negativity:
Symmetric:

Triangle inequality:

complete graph where edge weights are a

dlu,v)=0 < u=v.

Yu#v: d(u,v)>0.

d(u,v) =d(v,u).

Yu, v, w: d(u,w) <d(u,v)+d(v,w).

20/45

Metric TSP

Metric TSP An input instance to Metric TSP is a complete graph where edge weights are a
metric.

* Identity of indiscernibles: dlu,v)=0 < u=v.
* Non-negativity: Yu#v: d(uv)>0.
® Symmetric: d(u,v) =d(v,u).
® Triangle inequality: Yu, v, w: d(u,w) <d(u,v)+d(v,w).

Why do we care?

® Many natural settings (FedEx, road networks, Euclidean distances) satisfy the triangle inequal-
ity.

® Triangle inequality enables good approximation algorithms.

20/ 45

2-Approximation for Metric TSP: MST Doubling

Algorithm (“double-tree”):

1. Compute a Minimum Spanning Tree (MST) T of the metric.
2. Double every edge of T to get an Eulerian multigraph.

3. Take an Euler tour and shortcut repeated vertices to obtain a TSP tour.

21/45

Visualizing the Double-Tree Algorithm

Step 1: Metric MST

We compute the MST of the metric
graph (shown in purple). ° °

Current Cost < OPT. e o

Why?

W(MST) < W(Hamiltonian Path) < W/(OPT Hamiltonian Cycle)

22/45

Visualizing the Double-Tree Algorithm

Step 2: Doubling

We double every edge in the MST.
This creates an Eulerian Multigraph ° °

(every node has even degree).

Current Cost <2 -OPT. e o

22/45

Visualizing the Double-Tree Algorithm

Step 3: Euler Tour

We traverse the doubled edges in a con-
tinuous loop (DFS order).

a—+b —+e b —->c—d—c
— b — a

22/45

Visualizing the Double-Tree Algorithm

Step 4: Shortcutting

We delete repeated vertices from the
Euler Tour. Thanks to the triangle in- @ @

equality, taking a shortcut (red) is al-

ways cheaper. @ @

Final Tour: a - b — e —- ¢ — d
— a

W (Tour with shortcuts) < 2W(MST) < 2 W(OPT Hamiltonian Cycle).

2-Approximation! 245

Set Cover

NP-Hard and NP-Complete Problems

NP-Hard Problem

A problem B is NP-hard if for every problem A € NP, A reduces to B.

24 /45

NP-Hard and NP-Complete Problems

NP-Hard Problem

A problem B is NP-hard if for every problem A € NP, A reduces to B.

NP-Complete Problem

A problem B is NP-complete if:
1. B € NP, and
2. For every problem A € NP, A reduces to B.

24 /45

The NP-Completeness Recipe

To show a new problem B is NP-complete, start from a known NP-complete problem A.
Show a polynomial-time reduction from A to B.

A is NP-complete: NP <, A

A poly-time reduction from A to B: A<, B

25/45

The NP-Completeness Recipe

To show a new problem B is NP-complete, start from a known NP-complete problem A.
Show a polynomial-time reduction from A to B.

A is NP-complete: NP <, A

A poly-time reduction from A to B: A<, B

25/45

The NP-Completeness Recipe

To show a new problem B is NP-complete, start from a known NP-complete problem A.
Show a polynomial-time reduction from A to B.

A is NP-complete: NP <, A
= NP <, B

A poly-time reduction from A to B: A<, B
B is NP-hard.

25/45

The NP-Completeness Recipe

To show a new problem B is NP-complete, start from a known NP-complete problem A.
Show a polynomial-time reduction from A to B.

A is NP-complete: NP <, A
= NP <, B
A poly-time reduction from A to B: A<, B
B is NP-hard.
If we also show that B is in NP, then — B is NP-complete

25/45

A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

NP-hard
NP E NP-complete |
17 \| :
| 1
3-SAT Lo
o . e Max Independent Set : |
CIRCUIT-SAT Lo
* Vertex Cover | !
| 1
| 1
) 1

26 /45

A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

NP-hard
NP E NP-complete :
17 \| :
| 1
3-SAT Lo
o . e Max Independent Set : |
CIRCUIT-SAT Lo
* Vertex Cover | !
[] 1
Set Cover |

26 /45

SET-COVER Is NP-Complete

A reduction from VERTEX-COVER

Set Cover

Let U be a finite set of n elements.

And, let § = {S1,...,Sm} be a family of subsets with S; C U.

up ug Ug

u
us

u3

28 /45

Set Cover

Let U be a finite set of n elements.

And, let § = {S1,...,Sm} be a family of subsets with S; C U.

Example: S1={u1, wp, us} So ={u, us, us} S3 = {u3, g,

S 1 us Up

us

us, U6}

28 /45

Set Cover

Let U be a finite set of n elements.

And, let § = {S1,...,Sm} be a family of subsets with S; C U.

Example: S1=A{w, w, usz} Sy = {uw2, ug, us} S3 ={us, us, us, ue}

I
|
1
1
1
1
|
|
|
|
|
|
1
1
1
1
|

28 /45

Set Cover

Let U be a finite set of n elements.

And, let § = {S1,...,Sm} be a family of subsets with S; C U.

Example: S1=A{w, w, usz} Sy = {uw2, ug, us} S3 ={us, us, us, ue}

u

28 /45

Set Covers

A set cover is a subfamily C’ C S such that every element of U lies in at least one
member of C’.

Equivalently: the union of the chosen sets equals U.

29 /45

Set Covers

A set cover is a subfamily C’ C S such that every element of U lies in at least one
member of C’.

Equivalently: the union of the chosen sets equals U.

A set cover is, for example, C' = {Sy, S3} since S U S3 = U.

29 /45

Set Cover (Decision Problem)

SET-COVER: Given a universe U, a family S = {S1,...,5,} with S; C U, and an
integer k, does there exist a subfamily of size at most k whose union equals U?

p \
S1 /[w g ug

30/45

Set Cover (Decision Problem)

SET-COVER: Given a universe U, a family S = {51,...,Sn} with S; C U, and an
integer k, does there exist a subfamily of size at most k whose union equals U?

u

Here k =2 and {51, S3} is a valid cover.

30/45

Plan: Reduce VERTEX-COVER to SET-COVER

e Input on the Vertex Cover side: An undirected graph G = (V/, E) and an integer k.
¢ We will build a Set Cover instance such that G has a vertex cover of size k iff (U, S, k)

has a set cover of size k.

Reduction: VERTEX-COVER <, SET-COVER

Graph G = (V,E)
and integer k

Vertex cover of
size k for G

-

-

Poly-time
transformation

N

J

(.

Poly-time
transformation

—>[Set Cover instance]

h

J

SET-COVER
solver

31/45

The Resemblance: Vertex Cover vs. Set Cover

Vertex Cover Set Cover
® Items to cover: Edges. ® |tems to cover: Elements.
® Objects to use: Vertices. ¢ Objects to use: Sets.
S1

O

32/45

The Resemblance: Vertex Cover vs. Set Cover

® Vertex Cover is essentially a special case of Set Cover.

S

33/45

The Resemblance: Vertex Cover vs. Set Cover

® Vertex Cover is essentially a special case of Set Cover.
e Vertex Cover: cover all edges using the graph'’s vertex sets (each edge has 2 options).

e Set Cover: cover all elements using arbitrary sets (no limit on set size).

S

©

33/45

The Reduction: Vertex-Cover <, Set-Cover

Given a graph G = (V, E) and integer k, we build a Set Cover instance:

® The universe is the set of edges:
U:=E.

34/45

The Reduction: Vertex-Cover <, Set-Cover

Given a graph G = (V, E) and integer k, we build a Set Cover instance:

® The universe is the set of edges:
U:=E.

® For every vertex v € V/, we create a set

S, :={e€ E:eisincident to v }.

34/45

The Reduction: Vertex-Cover <, Set-Cover

Given a graph G = (V, E) and integer k, we build a Set Cover instance:

® The universe is the set of edges:
U:=E.

® For every vertex v € V/, we create a set
S, :={e€ E:eisincident to v }.

® The family of sets is
S={S5 :veV}

34/45

The Reduction: Vertex-Cover <, Set-Cover

Given a graph G = (V, E) and integer k, we build a Set Cover instance:

® The universe is the set of edges:
U:=E.

® For every vertex v € V/, we create a set
S, :={e€ E:eisincident to v }.

® The family of sets is
S={S5 :veV}

® The Set Cover instance asks:

J C' C S of size < k such that U S=u?
Sec’

34/45

The Reduction: VERTEX-COVER <, SET-COVER

35/45

The Reduction: VERTEX-COVER <, SET-COVER

35/45

The Reduction: VERTEX-COVER <, SET-COVER

35/45

The Reduction: VERTEX-COVER <, SET-COVER

35/45

The Reduction: VERTEX-COVER <, SET-COVER

35/45

The Reduction: VERTEX-COVER <, SET-COVER

Graph G

35/45

The Reduction: VERTEX-COVER <, SET-COVER

Graph G . J

smallest vertex cover: C = {a,c}

35/45

The Reduction: VERTEX-COVER <, SET-COVER

Graph G

smallest vertex cover: C = {a, c}

smallest set cover: C' ={S,, 5.}

35/45

Correctness of the Reduction

To prove the reduction is correct, we must show that the two instances have the same
answer.

(=) Suppose C C V is a vertex cover of size at most k. Every edge e = {u,v} € E has
at least one endpoint in C.
Thus every element e € U is contained in at least one of the sets C' = {S, : v € C},
meaning these |C| < k sets form a valid set cover.

(<) Suppose we have a set cover C' = {S,,,...,S,,} with t < k. Since C’ covers all
elements of U = E, for every edge e = {u, v}, at least one of the sets S, contains e.
However, e € S,. exactly when v; is an endpoint of e.

Therefore the vertices C = {v1, ..., v} touch every edge of G, so C is a vertex cover
of size at most k.

36/45

Correctness of the Reduction

Efficiency. The construction is polynomial-time:

|U| = |E|, |S| = |V, each edge is added to exactly two sets.

SET-COVER is in NP. A certificate is a subfamily {S;,,...,S;,} with t < k. A
polynomial-time verifier checks:
ot <k

® for every u € U there exists j with u € 5;..

Conclusion. Since VERTEX-COVER is NP-complete and we have given a
polynomial-time reduction from VERTEX-COVER to SET-COVER, it follows that
SET-COVER is NP-hard. Since it is also in NP, SET-COVER is NP-complete.

37/45

Approximation Algorithm for Set Cover

Greedy Algorithm for Set Cover

Greedy rule: At each step, pick the set that covers the largest number of currently uncovered
elements. Break ties arbitrarily; repeat until all elements are covered.

The Algorithm:

1. Initialize C < 0 and Ut < U.

39/45

Greedy Algorithm for Set Cover

Greedy rule: At each step, pick the set that covers the largest number of currently uncovered
elements. Break ties arbitrarily; repeat until all elements are covered.

The Algorithm:

1. Initialize C < 0 and Ut < U.
2. While U|eft 75 @:

39/45

Greedy Algorithm for Set Cover

Greedy rule: At each step, pick the set that covers the largest number of currently uncovered
elements. Break ties arbitrarily; repeat until all elements are covered.

The Algorithm:

1. Initialize C < 0 and Ut < U.

2. While U|eft 75 @:
® Choose S € & maximizing |S N Uieft]-

39/45

Greedy Algorithm for Set Cover

Greedy rule: At each step, pick the set that covers the largest number of currently uncovered
elements. Break ties arbitrarily; repeat until all elements are covered.

The Algorithm:

1. Initialize C < 0 and Ut < U.

2. While U|eft 75 @:

® Choose S € & maximizing |S N Uieft]-
® Add S to C and set Uet < Uest \ S.

39/45

Greedy Algorithm for Set Cover

Greedy rule: At each step, pick the set that covers the largest number of currently uncovered
elements. Break ties arbitrarily; repeat until all elements are covered.

The Algorithm:

1. Initialize C < 0 and Ut < U.

2. While U|eft 75 @:

® Choose S € & maximizing |S N Uieft]-
® Add S to C and set Uet < Uest \ S.

3. Return C.

39/45

Greedy Set Cover Approximation

Algorithm Status:
Pick set with max uncovered elements.
Set Elements Count @
S1 U1, o, g S
S4 us, Us, U7

S, u3
S3 o,y

®
O,

Initial State: All elements uncovered.

40 /45

Greedy Set Cover Approximation

Algorithm Status:

Pick set with max uncovered elements.

Set Elements Count //u s

Sa us, Ug, U7 3 S3 2/

Sonn Lo

53 uy 1 LI/ ~ s
—_ 4

Sa Se]ected @ °

Step 1: Pick Sy. Covers {uy, ua, ug}.

40 /45

Greedy Set Cover Approximation

Algorithm Status:

Pick set with max uncovered elements.

Set Elements Count //

S L u 1 S

52 , i 0 3/ //@

S1 Selected - LUI/ - ° ¢
4

Sa Selected -
L ug

Step 2: Pick S4. Covers {us, ug, u7}.

40 /45

Greedy Set Cover Approximation

Algorithm Status:

Pick set with max uncovered elements.

Set Elements Count
S3 , 0
S Selected -
Sa Selected -
S, Selected -

Step 3: Pick S,. Covers {u3}.

Done! All elements covered.

40 /45

Greedy is a (In n + 1)-Approximation

® Let OPT be the minimum number of sets in an optimal cover.

41/45

Greedy is a (In n + 1)-Approximation

® Let OPT be the minimum number of sets in an optimal cover.

® Suppose t elements remain uncovered.

41/45

Greedy is a (In n + 1)-Approximation

® Let OPT be the minimum number of sets in an optimal cover.
® Suppose t elements remain uncovered.

® Since OPT uses OPT sets to cover all t of them,

t
3 : > — .
S € S8 :|SNuncovered| > OPT

41/45

Greedy is a (In n + 1)-Approximation

® Let OPT be the minimum number of sets in an optimal cover.
® Suppose t elements remain uncovered.

® Since OPT uses OPT sets to cover all t of them,
t
3 : > — .
S € S8 :|SNuncovered| > oPT

® Greedy picks a set covering at least this many.

41/45

Greedy is a (In n + 1)-Approximation

® |et t; denote the number of uncovered elements at the end of step i.

42/45

Greedy is a (In n + 1)-Approximation

® |et t; denote the number of uncovered elements at the end of step i.

® Greedy choice at this step covers OET many elements.

42/45

Greedy is a (In n + 1)-Approximation

® |et t; denote the number of uncovered elements at the end of step i.

® Greedy choice at this step covers OET many elements.

® Therefore the number of uncovered elements shrinks by a factor:

1
ti =t — | t d in st +1 < 11— —=].
11 # elements covered in step i + (OPT)

42/45

Greedy is a (In n + 1)-Approximation

® |et t; denote the number of uncovered elements at the end of step i.

® Greedy choice at this step covers OET many elements.

® Therefore the number of uncovered elements shrinks by a factor:

1
ti =t — | t d in st +1 < 11— —=].
11 # elements covered in step i + (OPT)

o After k steps:

te <t 1—L < ti l—i 2<...<n 1— 1 k<ne7k/OPT
=kt OPT) = *2 oPT) = = OPT '

42/45

Greedy is a (In n + 1)-Approximation

e If k is sufficiently large then then the number of uncovered elements should drop below
1

k = [OPT -Inn] — ti < ne OK/OPT <1

® Thus, the algorithm certainly terminates after k steps since no uncovered element left.

43/45

Greedy is a (In n + 1)-Approximation

e If k is sufficiently large then then the number of uncovered elements should drop below
1

k = [OPT -Inn] — ti < ne OK/OPT <1

® Thus, the algorithm certainly terminates after k steps since no uncovered element left.

Thus greedy uses at most (Inn+ 1) - OPT sets.

43/45

Summary: Greedy Approximation for Set Cover

® Greedy repeatedly picks the set with the largest number of uncovered elements.

44 /45

Summary: Greedy Approximation for Set Cover

® Greedy repeatedly picks the set with the largest number of uncovered elements.

® Each step removes a constant fraction of what remains.

44 /45

Summary: Greedy Approximation for Set Cover

® Greedy repeatedly picks the set with the largest number of uncovered elements.
® Each step removes a constant fraction of what remains.

e After at most (Inn+ 1) - OPT steps, all elements are covered.

44 /45

Summary: Greedy Approximation for Set Cover

Greedy repeatedly picks the set with the largest number of uncovered elements.

® Each step removes a constant fraction of what remains.

After at most (Inn+ 1) - OPT steps, all elements are covered.

Therefore:
|Cgreedy| < (ln n—+ 1) ’ |C*|

44 /45

Summary: Greedy Approximation for Set Cover

Greedy repeatedly picks the set with the largest number of uncovered elements.

® Each step removes a constant fraction of what remains.

After at most (Inn+ 1) - OPT steps, all elements are covered.

Therefore:
|Cgreedy| < (ln n—+ 1) ’ |C*|

This is optimal up to constants unless P = NP.

44 /45

References

[§ Erickson, J. (2019).
Algorithms.
Self-published.

[§ Tardos, E. and Kleinberg, J. (2005).
Algorithm Design.
Pearson.

45 /45

	Approximation Algorithms
	2-Approximation Algorithm for Vertex Cover
	(In)Approximability of TSP
	Metric TSP and Its Approximation Algorithm

	Set Cover
	SET-COVER Is NP-Complete
	Approximation Algorithm for Set Cover

