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Today’s Lecture
1. Approximation Algorithms

1.1 2-Approximation Algorithm
for Vertex Cover

1.2 (In)Approximability of TSP

1.3 Metric TSP and Its Approximation Algorithm

2. Set Cover

2.1 SET-COVER Is NP-Complete

2.2 Approximation Algorithm for Set Cover

Reading:

• Chapter 12 of the Algorithms book [Erickson, 2019]

• Chapter 8.1 of [Tardos and Kleinberg, 2005]

Content adapted from the same references.
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Approximation Algorithms

If we relax optimality, does it get easier?



Approximation Algorithms

NP-complete problems are hard to solve exactly. A natural question is:

If we stop insisting on the optimal solution, can we solve the problem efficiently?

Approximation Algorithms:

• Run in polynomial time.

• Always produce a feasible solution.

• Guarantee that the solution is within a factor α of the optimum.

• For minimization problems α > 1, and smaller α means better approximation.

OPT ≤ cost(ALG) ≤ α · OPT.

• For maximization problems α < 1, and larger α means better approximation.

OPT ≥ cost(ALG) ≥ α · OPT.
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Approximability of Problems

Often we seek a solution that is close to optimal: a constant-factor approximation, or an α that
grows slowly with n (e.g., log n).

A natural question:

Does every NP-hard optimization problem admit a polynomial-time approximation algorithm?

• Some problems do admit good approximations.

• Others remain hard even to approximate within any reasonable factor.

This leads to an entire area of study: approximability theory.
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2-Approximation Algorithm
for Vertex Cover



Recap: Vertex Covers

Let G = (V ,E ) be a simple undirected graph.

A vertex cover in G is a subset C ⊆ V such that every edge of G has at least one
endpoint in C .

Equivalently: every edge is “touched” by C .

a
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b

c

d

b

c

d

A vertex cover C = {b, c, d} touches all edges.
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Minimum Vertex Cover Problem

VERTEX-COVER: Given a graph G and an integer k , does G contain a vertex cover of
size at most k?

b

c

e

f

a d

a d

Here {a, d} is a vertex cover of size 2.
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2-Approximation for Vertex Cover

The algorithm repeatedly picks an uncovered edge and adds both endpoints to the cover.

a

b

c

d e

a

b

d e

Step 1: pick an uncovered edge (here (a, b)), add a and b.
Step 2: pick another uncovered edge (here (d , e)), add d and e.
All edges are covered. ⇒ Final cover = {a, b, c , d}.
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Why the Greedy Algorithm Is a 2-Approximation

• Let M be the set of edges the algorithm picks. They are pairwise disjoint ⇒ forming a
matching.

• Any vertex cover must hit each edge of M. ⇒ |C∗| ≥ |M|.
• The algorithm adds both endpoints of each edge in M. ⇒ |CALG| = 2|M|.
• Therefore

|CALG| = 2|M| ≤ 2|C∗|.

a
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d e

Picked edges form a matching M
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(In)Approximability of TSP



Approximating TSP

APPROX-TSP Given a complete graph G and a constant α > 1, output a tour in G with
cost at most α ·OPT.

Intuitively, this requirement is weaker than exact TSP.

• Any algorithm solving exact TSP automatically solves APPROX-TSP.

However, APPROX-TSP and TSP have essentially the same difficulty.
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Inapproximability of TSP

Theorem

TSP admits no polynomial-time α-approximation algorithm for any constant α ≥ 1, unless
P = NP.

How do we prove this? We return to our standard reduction recipe:

Reduce a known NP-complete problem (Hamiltonian Cycle) to APPROX-TSP.
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The Strategy: Distinguishing by Gap

Goal: Reduce Hamiltonian Cycle to α-Approx TSP.

To do this, we construct an instance where the optimal cost falls into two disjoint ranges
separated by a factor of α.

If an algorithm guarantees an α-approximation, it returns a tour of cost C ≤ α ·OPT. We
need a gap such that:

• Case Yes (Hamiltonian): OPT = n =⇒ C ≤ αn.

• Case No (Not Hamiltonian): OPT > αn.

If we create this gap, checking if C ≤ αn decides the Hamiltonian Cycle problem.
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Creating the Gap

Construction: Build complete graph G ′ from G with weights:

w(u, v) =

{
1 if (u, v) ∈ E (G ) (Original)

M if (u, v) /∈ E (G ) (Non-edge)

where M is a large number (chosen later).

a b

cd

1

1

1

1

a b

cd

1

1

1

1
MMcomplete + weights
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Creating the Gap

The Costs:

• If G is Hamiltonian: We use n edges of weight 1.
⇒ OPT(G ′) = n.

• If G is NOT Hamiltonian: We must use at least one weight M.
⇒ OPT(G ′) ≥ M + (n − 1).

Forcing the Gap: Set M = αn.

No Hamiltonian Cycle =⇒ OPT(G ′) ≥ αn + (n − 1) > αn.
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The Reduction Algorithm

The Procedure

Input: Graph G , Approximation factor α.

1. Set the Penalty: Let n = |V | and choose a large weight M = αn + 1.

2. Construct G ′: Create a complete graph where:
• Existing edges in G get weight 1.
• Missing edges (non-edges) get weight M.

3. Run the Solver: Let C be the cost returned by Approx-TSP(G ′).

4. The Decision:
• If C ≤ αn −→ Return YES.
• If C > αn −→ Return NO.

17 / 45



Proof of Correctness

We analyze the output based on the structure of G :

Case 1: G has a Hamiltonian Cycle
• The optimal tour uses only original edges: OPT(G ′) = n.

• The α-approx algorithm returns cost C ≤ α ·OPT.

• Therefore, C ≤ αn.

• Result: Procedure correctly returns YES.

Case 2: G has NO Hamiltonian Cycle
• Any tour must use at least one non-edge (weight M).

• Therefore, OPT(G ′) ≥ M + (n − 1) > αn.

• Since any tour cost C ≥ OPT(G ′), we have C > αn.

• Result: Procedure correctly returns NO.
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Metric TSP and Its Approximation
Algorithm

Turns out TSP is not so hopeless...



Metric TSP

Metric TSP An input instance to Metric TSP is a complete graph where edge weights are a
metric.

• Identity of indiscernibles: d(u, v) = 0 ⇔ u = v .

• Non-negativity: ∀u ̸= v : d(u, v) > 0.

• Symmetric: d(u, v) = d(v , u) .

• Triangle inequality: ∀u, v , w : d(u,w) ≤ d(u, v) + d(v ,w) .

Why do we care?

• Many natural settings (FedEx, road networks, Euclidean distances) satisfy the triangle inequal-
ity.

• Triangle inequality enables good approximation algorithms.
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2-Approximation for Metric TSP: MST Doubling

Algorithm (“double-tree”):

1. Compute a Minimum Spanning Tree (MST) T of the metric.

2. Double every edge of T to get an Eulerian multigraph.

3. Take an Euler tour and shortcut repeated vertices to obtain a TSP tour.
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Visualizing the Double-Tree Algorithm

Step 1: Metric MST

We compute the MST of the metric
graph (shown in purple).

Current Cost ≤ OPT.

Shortcut

Shortcut

a

b c

d

e

1

2 3

4

5

6

7

8

Why?

W (MST ) ≤ W ( Hamiltonian Path) ≤ W (OPT Hamiltonian Cycle)

W (Tour with shortcuts) ≤ 2W (MST ) ≤ 2W (OPT Hamiltonian Cycle) .

2-Approximation!
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Visualizing the Double-Tree Algorithm

Step 2: Doubling

We double every edge in the MST.
This creates an Eulerian Multigraph
(every node has even degree).

Current Cost ≤ 2 ·OPT.
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Visualizing the Double-Tree Algorithm

Step 3: Euler Tour

We traverse the doubled edges in a con-
tinuous loop (DFS order).

a → b → e → b → c → d → c

→ b → a
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Visualizing the Double-Tree Algorithm

Step 4: Shortcutting

We delete repeated vertices from the
Euler Tour. Thanks to the triangle in-
equality, taking a shortcut (red) is al-
ways cheaper.

Final Tour: a → b → e → c → d

→ a

Shortcut

Shortcut
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Set Cover



NP-Hard and NP-Complete Problems

NP-Hard Problem

A problem B is NP-hard if for every problem A ∈ NP, A reduces to B.

NP-Complete Problem

A problem B is NP-complete if:

1. B ∈ NP, and

2. For every problem A ∈ NP, A reduces to B.
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The NP-Completeness Recipe

To show a new problem B is NP-complete, start from a known NP-complete problem A.
Show a polynomial-time reduction from A to B.

A is NP-complete: NP ≤p A

A poly-time reduction from A to B: A ≤p B

 =⇒ NP ≤p B

B is NP-hard.

If we also show that B is in NP, then =⇒ B is NP-complete
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A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

NP

NP-hard

NP-complete

CIRCUIT-SAT

3-SAT
Max Independent Set

Vertex Cover

Set Cover
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SET-COVER Is NP-Complete

A reduction from VERTEX-COVER



Set Cover

Let U be a finite set of n elements.

And, let S = {S1, . . . ,Sm} be a family of subsets with Si ⊆ U.

Example: S1 = {u1, u2, u3} S2 = {u2, u4, u5} S3 = {u3, u4, u5, u6}

U
u1

u2

u3

u4

u5

u6
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Set Covers

A set cover is a subfamily C ′ ⊆ S such that every element of U lies in at least one
member of C ′.

Equivalently: the union of the chosen sets equals U.

U

S1
S2

S3

S1
S2

S3

u1

u2

u3

u4

u5

u6

A set cover is, for example, C ′ = {S1, S3} since S1 ∪ S3 = U.
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Set Cover (Decision Problem)

SET-COVER: Given a universe U, a family S = {S1, . . . ,Sm} with Si ⊆ U, and an
integer k , does there exist a subfamily of size at most k whose union equals U?

U

S1
S2

S3

S1
S2

S3

u1

u2

u3

u4

u5

u6

Here k = 2 and {S1, S3} is a valid cover.
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Plan: Reduce VERTEX-COVER to SET-COVER

• Input on the Vertex Cover side: An undirected graph G = (V ,E ) and an integer k .

• We will build a Set Cover instance such that G has a vertex cover of size k iff (U,S, k)
has a set cover of size k .

Graph G = (V ,E )
and integer k

Poly-time
transformation

Poly-time
transformation

Set Cover instance

SET-COVER
solver

Vertex cover of
size k for G

Reduction: VERTEX-COVER ≤p SET-COVER

31 / 45



The Resemblance: Vertex Cover vs. Set Cover

Vertex Cover

• Items to cover: Edges.

• Objects to use: Vertices.

v

e1

e2

e3

Set Cover

• Items to cover: Elements.

• Objects to use: Sets.

S1

u1

u2

u3
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The Resemblance: Vertex Cover vs. Set Cover

• Vertex Cover is essentially a special case of Set Cover.

• Vertex Cover: cover all edges using the graph’s vertex sets (each edge has 2 options).

• Set Cover: cover all elements using arbitrary sets (no limit on set size).

v

e1

e2

e3

S1

u1

u2

u3
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The Reduction: Vertex-Cover ≤p Set-Cover

Given a graph G = (V ,E ) and integer k , we build a Set Cover instance:

• The universe is the set of edges:
U := E .

• For every vertex v ∈ V , we create a set

Sv := { e ∈ E : e is incident to v }.

• The family of sets is
S = {Sv : v ∈ V }.

• The Set Cover instance asks:

∃ C ′ ⊆ S of size ≤ k such that
⋃

S∈C ′

S = U?
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The Reduction: VERTEX-COVER ≤p SET-COVER

Graph G

a
b

c
d

e1

e2

e3

e4

e5
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Correctness of the Reduction

To prove the reduction is correct, we must show that the two instances have the same
answer.

(⇒) Suppose C ⊆ V is a vertex cover of size at most k . Every edge e = {u, v} ∈ E has
at least one endpoint in C .
Thus every element e ∈ U is contained in at least one of the sets C ′ = {Sv : v ∈ C},
meaning these |C | ≤ k sets form a valid set cover.

(⇐) Suppose we have a set cover C ′ = {Sv1 , . . . ,Svt} with t ≤ k . Since C ′ covers all
elements of U = E , for every edge e = {u, v}, at least one of the sets Svi contains e.
However, e ∈ Svi exactly when vi is an endpoint of e.
Therefore the vertices C = {v1, . . . , vt} touch every edge of G , so C is a vertex cover
of size at most k.
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Correctness of the Reduction

Efficiency. The construction is polynomial-time:

|U| = |E |, |S| = |V |, each edge is added to exactly two sets.

SET-COVER is in NP. A certificate is a subfamily {Si1 , . . . ,Sit} with t ≤ k. A
polynomial-time verifier checks:

• t ≤ k ,

• for every u ∈ U there exists j with u ∈ Sij .

Conclusion. Since VERTEX-COVER is NP-complete and we have given a
polynomial-time reduction from VERTEX-COVER to SET-COVER, it follows that
SET-COVER is NP-hard. Since it is also in NP, SET-COVER is NP-complete.
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Approximation Algorithm for Set Cover



Greedy Algorithm for Set Cover

Greedy rule: At each step, pick the set that covers the largest number of currently uncovered
elements. Break ties arbitrarily; repeat until all elements are covered.

The Algorithm:

1. Initialize C ← ∅ and Uleft ← U.

2. While Uleft ̸= ∅:

• Choose S ∈ S maximizing |S ∩ Uleft|.
• Add S to C and set Uleft ← Uleft \ S .

3. Return C .
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Greedy Set Cover Approximation

Algorithm Status:

Pick set with max uncovered elements.

Set Elements Count
S1 u1, u2, u4 3
S4 u5, u6, u7 3
S2 u2, u3 2
S3 u1, u7 2

Initial State: All elements uncovered.
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u3
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40 / 45



Greedy Set Cover Approximation

Algorithm Status:

Pick set with max uncovered elements.

Set Elements Count
S4 u5, u6, u7 3
S2 u2, u3 1
S3 u1, u7 1
S4 Selected –

Step 1: Pick S1. Covers {u1, u2, u4}.

u1

u2 u4

u5

u6
u7

u3

U

S1

S4

S2

S3

40 / 45



Greedy Set Cover Approximation

Algorithm Status:

Pick set with max uncovered elements.

Set Elements Count
S2 u2, u3 1
S3 u1, u7 0
S1 Selected –
S4 Selected –

Step 2: Pick S4. Covers {u5, u6, u7}.
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Greedy Set Cover Approximation

Algorithm Status:

Pick set with max uncovered elements.

Set Elements Count
S3 u1, u7 0
S1 Selected –
S4 Selected –
S2 Selected –

Step 3: Pick S2. Covers {u3}.

Done! All elements covered.
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Greedy is a (ln n + 1)-Approximation

• Let OPT be the minimum number of sets in an optimal cover.

• Suppose t elements remain uncovered.

• Since OPT uses OPT sets to cover all t of them,

∃S ∈ S : |S ∩ uncovered| ≥ t

OPT
.

• Greedy picks a set covering at least this many.
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Greedy is a (ln n + 1)-Approximation

• Let ti denote the number of uncovered elements at the end of step i .

• Greedy choice at this step covers ti
OPT many elements.

• Therefore the number of uncovered elements shrinks by a factor:

ti+1 = ti −# elements covered in step i + 1 ≤ ti

(
1− 1

OPT

)
.

• After k steps:

tk ≤ tk−1

(
1− 1

OPT

)
≤ tk−2

(
1− 1

OPT

)2

≤ · · · ≤ n

(
1− 1

OPT

)k

< n e−k/OPT .
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Greedy is a (ln n + 1)-Approximation

• If k is sufficiently large then then the number of uncovered elements should drop below
1:

k = ⌈OPT · ln n⌉ =⇒ tk < n e−0k/OPT ≤ 1 .

• Thus, the algorithm certainly terminates after k steps since no uncovered element left.

Thus greedy uses at most (ln n + 1) · OPT sets.
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Summary: Greedy Approximation for Set Cover

• Greedy repeatedly picks the set with the largest number of uncovered elements.

• Each step removes a constant fraction of what remains.

• After at most (ln n + 1) · OPT steps, all elements are covered.

• Therefore:
|Cgreedy| ≤ (ln n + 1) · |C∗|.

• This is optimal up to constants unless P = NP.
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