COMP 382: Reasoning about Algorithms

More NP-Complete Reductions
and Approximation Algorithms

Prof. Maryam Aliakbarpour

co-instructors: Prof. Anjum Chida & Prof. Konstantinos Mamouras

November 25, 2025

Today’s Lecture

1. NP-Complete Problems
1.1 HAMILTONIAN-CYCLE Is NP-Complete
1.2 Traveling Salesman Problem (TSP) is NP-complete

2. Approximation Algorithms

2.1 2-Approximation Algorithm
for Vertex Cover

2.2 (In)Approximability of TSP
2.3 Metric TSP and Its Approximation Algorithm

Reading:
® Chapter 12 of the Algorithms book [Erickson, 2019]

Content adapted from the same reference.

2/50

https://jeffe.cs.illinois.edu/teaching/algorithms/book/12-nphard.pdf

NP-Hard and NP-Complete Problems

NP-Hard Problem

A problem B is NP-hard if for every problem A € NP, A reduces to B.

3/50

NP-Hard and NP-Complete Problems

NP-Hard Problem

A problem B is NP-hard if for every problem A € NP, A reduces to B.

NP-Complete Problem

A problem B is NP-complete if:
1. B € NP, and
2. For every problem A € NP, A reduces to B.

3/50

The NP-Completeness Recipe

To show a new problem B is NP-complete, start from a known NP-complete problem A.
Show a polynomial-time reduction from A to B.

A is NP-complete: NP <, A

A poly-time reduction from A to B: A<, B

4/50

The NP-Completeness Recipe

To show a new problem B is NP-complete, start from a known NP-complete problem A.
Show a polynomial-time reduction from A to B.

A is NP-complete: NP <, A

A poly-time reduction from A to B: A<, B

4/50

The NP-Completeness Recipe

To show a new problem B is NP-complete, start from a known NP-complete problem A.
Show a polynomial-time reduction from A to B.

A is NP-complete: NP <, A
= NP <, B

A poly-time reduction from A to B: A<, B
B is NP-hard.

4/50

The NP-Completeness Recipe

To show a new problem B is NP-complete, start from a known NP-complete problem A.
Show a polynomial-time reduction from A to B.

A is NP-complete: NP <, A
= NP <, B
A poly-time reduction from A to B: A<, B
B is NP-hard.
If we also show that B is in NP, then — B is NP-complete

4/50

Recap: Vertex Covers

Let G = (V, E) be a simple undirected graph.

A vertex cover in G is a subset C C V such that every edge of G has at least one
endpoint in C.

Equivalently: every edge is “touched” by C.

oo
@
CHNNG

5/50

Recap: Vertex Covers

Let G = (V, E) be a simple undirected graph.

A vertex cover in G is a subset C C V such that every edge of G has at least one
endpoint in C.

Equivalently: every edge is “touched” by C.

b

ﬁ/

(o

NG
A vertex cover C = {b, ¢, d} touches all edges.

5/50

Minimum Vertex Cover Problem

VERTEX-COVER: Given a graph G and an integer k, does G contain a vertex cover of
size at most k?

oo
@
CERNG

6/50

Minimum Vertex Cover Problem

VERTEX-COVER: Given a graph G and an integer k, does G contain a vertex cover of
size at most k7?7

a \?/ d
Here {a, d} is a vertex cover of size 2.

6/50

A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

NP-hard
NP E NP-complete |
17 \| :
| 1
3-SAT Lo
o . e Max Independent Set : |
CIRCUIT-SAT Lo
* Vertex Cover | !
| 1
| 1
) 1

7/50

A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

NP-hard
NP E NP-complete :
17 \| :
| 1
3-SAT -
o . e Max Independent Set : |
CIRCUIT-SAT Lo
* Vertex Cover | !
o] 1
Hamiltonian Cycle |

7/50

HAMILTONIAN-CYCLE Is NP-Complete

A reduction from VERTEX-COVER to HAMILTONIAN-CYCLE

Hamiltonian Cycle

¢ A Hamiltonian cycle in a graph is a cycle that visits every vertex exactly once.
¢ Not the same as an Euler cycle (which uses every edge once).

9/50

Directed Hamiltonian Cycle

e A directed Hamiltonian cycle in a graph is a cycle that visits every vertex exactly
once and traverses the edges in their direction.

10/50

Directed Hamiltonian Cycle

HAMILTONIAN-CYCLE: Given a directed graph H, does it contain a Hamiltonian
cycle?

11/50

Directed Hamiltonian Cycle

HAMILTONIAN-CYCLE: Given a directed graph H, does it contain a Hamiltonian
cycle?

e We show directed HAMILTONIAN-CYCLE is NP-complete.

® The undirected version of this problem is also NP-complete. (Exercise)

11/50

Plan: Reduce VERTEX-COVER to Directed
HAMILTONIAN-CYCLE

® Input on the Vertex Cover side: An undirected graph G = (V, E) and an integer k
(target cover size).

e We will build a directed graph G’ such that: G has a vertex cover of size k if and only
if G’ has a directed Hamiltonian cycle.

Reduction: VERTEX-COVER <, HAMILTONIAN-CYCLE

Graph .G: (V,E) Pon—t|me. —{ Directed Graph G’
and integer k transformation
Vertex Cover of Pon—timej HAMILTONIAN-CYCLE
size k for G transformation solver for G’

12/50

The Edge Gadget

For each edge uv € G, we create gadget with four vertices.

(u, v,out) Q Q (v, u,out)
(u,v,in) O O (v, u,in)

13/50

The Edge Gadget

For each edge uv € G, we create gadget with four vertices.

We add the following edges:

® Crossing edges:
(u,v,in) < (v, u,in)
(u,v,in) > (v, u, out) (uvioum) ()) (vrmow)
i) (() vouin)

13/50

The Edge Gadget

For each edge uv € G, we create gadget with four vertices.

We add the following edges:

® Crossing edges:

(u,v,in) < (v, u,in)

(u,v,in) < (v, u,out) (u, v, out) OCQ (v, u,0ut)
® Internal chain edges:

(u,v,in) = (u, v,out) (u,v,in) O()C) (v,u,in)

(v,u,in) = (v, u,out)

13/50

The Edge Gadget

For each edge uv € G, we create gadget with four vertices.

We add the following edges:

® Crossing edges:
(u,v,in) < (v, u,in)
(u,v,in) <> (v, u,out)

® Internal chain edges:
(u,v,in) — (u, v,out)
(v,u,in) = (v, u,out)

o External chain edges:

connect this gadget to others.

(u, v,out) OCQ (v, u,out)
(u, v,in) CCO (v, u,in)

13/50

The Edge Gadget

For each edge uv € G, we create gadget with four vertices.

We add the following edges:

® Crossing edges:
(u,v,in) & (v, u,in)
(u,v,in) < (v, u,out) (u, v,out)

(u,v,in) = (u, v,out) (u,v,in) CCO (v,u,in)

1
¢ [Internal chain edges: |
(v,u,in) = (v, u,out) '

o External chain edges:
connect this gadget to others.

13/50

Vertex Chains

For each vertex u in G, connect the edge gadgets Y
(u, v3, out)

involving u into a directed chain.

—
=
S
o

. c
(md
~

—

<

N

=
~

-
4
N

—
— =
= =
.S -
- o
5 =
= —

14 /50

Vertex Chains

For each vertex u in G, connect the edge gadgets
involving u into a directed chain.

14 /50

Possible Traversals

The Hamiltonian cycle must assume one of three states (straight or detour),
corresponding to selecting u, v, or both.

15 /50

Possible Traversals

The Hamiltonian cycle must assume one of three states (straight or detour),
corresponding to selecting u, v, or both.

15 /50

Possible Traversals

The Hamiltonian cycle must assume one of three states (straight or detour),
corresponding to selecting u, v, or both.

15 /50

Possible Traversals

The Hamiltonian cycle must assume one of three states (straight or detour),

corresponding to selecting u, v, or both.

15 /50

Possible Traversals

The Hamiltonian cycle must assume one of three states (straight or detour),
corresponding to selecting u, v, or both.

15 /50

Possible Traversals

The Hamiltonian cycle must assume one of three states (straight or detour),
corresponding to selecting u, v, or both.

15 /50

Possible Traversals

The Hamiltonian cycle must assume one of three states (straight or detour),

corresponding to selecting u, v, or both.

15 /50

Possible Traversals

The Hamiltonian cycle must assume one of three states (straight or detour),
corresponding to selecting u, v, or both.

15 /50

Possible Traversals

The Hamiltonian cycle must assume one of three states (straight or detour),
corresponding to selecting u, v, or both.

15 /50

Possible Traversals

The Hamiltonian cycle must assume one of three states (straight or detour),

corresponding to selecting u, v, or both.

15 /50

Why Only Three Traversals?

If a Hamiltonian cycle ever crosses from the u-side to the v-side (or vice versa), it must also cross
back. Otherwise, one vertex on the original side would remain unvisited, making a Hamiltonian
cycle impossible.

Therefore, every gadget admits exactly three traversals:

1. Straight through on both sides,
2. A detour on the u-side,

3. A detour on the v-side.

These are the three configurations shown on the previous slide.

16 /50

Interpreting the Gadget Behavior

Key idea: Once the Hamiltonian cycle enters u's chain, the structure of the gadgets forces it to
traverse the entire chain.

® The cycle cannot skip a gadget in the chain without leaving a vertex unvisited.

® Thus, entering u's chain means “committing” to the vertex u.

17 /50

Interpreting the Gadget Behavior

Key idea: Once the Hamiltonian cycle enters u's chain, the structure of the gadgets forces it to
traverse the entire chain.

® The cycle cannot skip a gadget in the chain without leaving a vertex unvisited.

® Thus, entering u's chain means “committing” to the vertex u.

Interpretation: Passing through the full chain of u corresponds exactly to selecting the vertex u
in the Vertex Cover instance.

1. Straight through on both sides — selecting both v and v,
2. A detour on the u-side — selecting u,

3. A detour on the v-side — selecting v.

17/50

Cover Vertices

We are looking for a mechanism to enforce the selection of k chains.

® |ntroduce k special vertices xi, ..., Xk.
® Each x; has:

® edges to the start of every vertex chain,
® edges from the end of every vertex chain.

18/50

Cover Vertices

(u, vy, 0ut)

(u, vq,in) .\Q

19/50

Cover Vertices Select Chains

Any Hamiltonian cycle must enter exactly k vertex chains—uvia the x; nodes. Those k
chains correspond to chosen vertices of the vertex cover.

) (=) ©O,

u-chain w-cnain z-chain
N R

SQrtOOOeCWSJ L@rtOOOOJ SartOQOO

20/50

Cover Vertices Select Chains

Any Hamiltonian cycle must enter exactly k vertex chains—uvia the x; nodes. Those k
chains correspond to chosen vertices of the vertex cover.

(=) ©O,

u-chain w- cnain z-chain

J00 oec"iij L%O o0 OJ 000008

20/50

Cover Vertices Select Chains

Any Hamiltonian cycle must enter exactly k vertex chains—uvia the x; nodes. Those k
chains correspond to chosen vertices of the vertex cover.

(=) ©O,

w- cnain z-chain

e"dj LtQmo o0 OJ 000008

20/50

Cover Vertices Select Chains

Any Hamiltonian cycle must enter exactly k vertex chains—uvia the x; nodes. Those k
chains correspond to chosen vertices of the vertex cover.

w- cnain z-chain

Ltomo 00 OJ 000008

20/50

Cover Vertices Select Chains

Any Hamiltonian cycle must enter exactly k vertex chains—uvia the x; nodes. Those k
chains correspond to chosen vertices of the vertex cover.

w-cnain z-chain

20/50

Cover Vertices Select Chains

Any Hamiltonian cycle must enter exactly k vertex chains—uvia the x; nodes. Those k
chains correspond to chosen vertices of the vertex cover.

w-cnain

20/50

Cover Vertices Select Chains

Any Hamiltonian cycle must enter exactly k vertex chains—uvia the x; nodes. Those k
chains correspond to chosen vertices of the vertex cover.

w-cnain

20/50

Cover Vertices Select Chains

Any Hamiltonian cycle must enter exactly k vertex chains—uvia the x; nodes. Those k
chains correspond to chosen vertices of the vertex cover.

20/50

Cover Vertices Select Chains

Any Hamiltonian cycle must enter exactly k vertex chains—uvia the x; nodes. Those k
chains correspond to chosen vertices of the vertex cover.

20/50

Cover Vertices Select Chains

Any Hamiltonian cycle must enter exactly k vertex chains—uvia the x; nodes. Those k
chains correspond to chosen vertices of the vertex cover.

20/50

Can We Have Unused Chains?

) (o) O,

u-chain w-chain z-chain

\ —_—mN
end end end
sgtOOOOJ sgtOOOOJ StCa)rtOOOO

y-chain {unused)

[stomo o oe"djj

21/50

Can We Have Unused Chains?

y-chain {unused)

[stomo o oe"djj

21/50

Zoom: Detours cover an “unused’” chain

As we traverse other vertices’ chains, each gadget's detour dips to the opposite side and back.
Thus an “unused” chain still has all its vertices visited via these detours.

u-chain
TTTT \ end
start 1 VS
1
1
T 1
1
N 1
1
' !
1
: v 1 end
1
O—+O=>01 O
start ,

y-chain (“unused”)

22/50

Correctness: Vertex Cover —> Hamiltonian cycle

Suppose C = {uy,...,ux} is a vertex cover.

® \We traverse vertex chains in order uy, us, ..., u.

23/50

Correctness: Vertex Cover —> Hamiltonian cycle

Suppose C = {uy,...,ux} is a vertex cover.

® \We traverse vertex chains in order uy, us, ..., u.

® Enter each chain from cover vertex x; and exit to xjy1, assuming x; = Xx11:

Xj — Uj = Xjq1

23/50

Correctness: Vertex Cover —> Hamiltonian cycle

Suppose C = {uy,...,ux} is a vertex cover.

® \We traverse vertex chains in order uy, us, ..., u.

® Enter each chain from cover vertex x; and exit to xjy1, assuming x; = Xx11:
Xj — Uj = Xjq1

® For each edge gadget (u, v):

23/50

Correctness: Vertex Cover —> Hamiltonian cycle

Suppose C = {uy,...,ux} is a vertex cover.

® \We traverse vertex chains in order uy, us, ..., u.

® Enter each chain from cover vertex x; and exit to xjy1, assuming x; = Xx11:
Xj — Uj = Xjq1

® For each edge gadget (u, v):
® |f v € C, go straight through (u, v,in) — (u, v, out).

23/50

Correctness: Vertex Cover —> Hamiltonian cycle

Suppose C = {uy,...,ux} is a vertex cover.

® \We traverse vertex chains in order uy, us, ..., u.

® Enter each chain from cover vertex x; and exit to xjy1, assuming x; = Xx11:
Xj — Uj = Xjq1
® For each edge gadget (u, v):

® |f v € C, go straight through (u, v,in) — (u, v, out).
® If v ¢ C, take the detour through the v-side to ensure the gadget is covered.

23/50

Correctness: Vertex Cover —> Hamiltonian cycle

Suppose C = {uy,...,ux} is a vertex cover.

® \We traverse vertex chains in order uy, us, ..., u.

® Enter each chain from cover vertex x; and exit to xjy1, assuming x; = Xx11:

Xj — Uj = Xjq1

® For each edge gadget (u, v):

® |f v € C, go straight through (u, v,in) — (u, v, out).

® If v ¢ C, take the detour through the v-side to ensure the gadget is covered.
[)

This builds a Hamiltonian cycle in H.

23/50

Correctness: Hamiltonian cycle — Vertex Cover

Given Hamiltonian cycle C in H:

e C must use an outgoing edge from each x; into some vertex chain.

® Once C enters chain of u, it must traverse all gadgets of u in order.
® Thus exactly k chains are fully traversed.
® |et S be the set of vertices whose chains are chosen.
® We show that S is a vertex cover:
® For any edge uv € G, the cycle must visit (u, v,in).
® Therefore either u or v's chain must be selected.
® Hence |S| = k and S covers all edges.

24/50

Conclusion

® Reduction transforms (G, k) into H in O(|V/|+ |E|) time.
® H has a Hamiltonian cycle <= G has a vertex cover of size k.
® Therefore Directed HAMILTONIAN-CYCLE is NP-hard.

25/50

Conclusion

Reduction transforms (G, k) into H in O(|V/|+ |E|) time.
H has a Hamiltonian cycle <= G has a vertex cover of size k.
Therefore Directed HAMILTONIAN-CYCLE is NP-hard.

Since the problem is in NP and our reduction proves NP-hardness, Directed
HAMILTONIAN-CYCLE is NP-complete.

25 /50

Conclusion

Reduction transforms (G, k) into H in O(|V/|+ |E|) time.

H has a Hamiltonian cycle <= G has a vertex cover of size k.

Therefore Directed HAMILTONIAN-CYCLE is NP-hard.

Since the problem is in NP and our reduction proves NP-hardness, Directed
HAMILTONIAN-CYCLE is NP-complete.

Also implies related problems:

® Hamiltonian path is NP-hard.
® Undirected variants also NP-hard via simple modifications. (See homework)

25 /50

A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

NP-hard
NP E NP-complete :
17 \| :
| 1
3-SAT -
o . e Max Independent Set : |
CIRCUIT-SAT Lo
* Vertex Cover | !
o] 1
Hamiltonian Cycle |

26 /50

A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

NP-hard
NP E NP-complete :
17 \| :
| 1
3-SAT -
. . e Max Independent Set : |
CIRCUIT-SAT Lo
Traveling Salesman Problem * Vertex Cover | E
L] 1
Hamiltonian Cycle |

26 /50

Traveling Salesman Problem (TSP) is
NP-complete

A reduction from Hamiltonian cycle to TSP

Traveling Salesman Problem (TSP)

Problem: Find a Hamiltonian cycle (visiting every vertex exactly once) of minimum total
edge cost.

TSP: Given a weighted complete graph, is there a tour
visiting every vertex exactly once with total cost < B?

You can ‘“complete” a non-complete graph by assigning
weight oo (or a very large weight > B) to every missing
edge.

28 /50

Plan: Reduce Hamiltonian Cycle to TSP

® Input on the Hamiltonian Cycle side: a graph G = (V, E).
e We will build a weighted complete graph G’ and threshold B such that:

G has a Hamiltonian cycle <= G’ has a TSP tour of total cost < B.

Reduction: Hamiltonian Cycle <, TSP

| Poly-time Weighted
Graph G | weighting complete graph G’
—

h

Hamiltonian —ti
. el t'f“e ¢ TSP solver
cycle in G extraction

—

29 /50

Reduction: Hamiltonian Cycle < TSP

Given an unweighted graph G = (V, E), build a complete weighted graph G’ by

W(u,v)—{l if {u,v} € E,

M otherwise,

for some M > 1. Let B =|V/|.
Claim. G has a Hamiltonian cycle <& G’ has a TSP tour of total cost < B.
e |f G has a Hamiltonian cycle, the corresponding tour in G’ uses only weight-1 edges = total
cost = |V| = B.
® |f G’ has a tour of cost < B, it cannot use any weight-M edge (that would raise the cost to

at least B+ M — 1 > B). Thus the tour corresponds to a Hamiltonian cycle in G.

Thus
HAMILTONIAN-CYCLE <, TSP = TSP is NP-complete.

30/50

Reduction: Hamiltonian Cycle < TSP

Any Hamiltonian Cycle in G’ needs to take < |V/| = 4 edges. To obtain total weight of at
most four, it must avoid all red (weight-M) edges, since including even one such edge
would push the cost above 4. Therefore only green edges can appear in a valid low-cost

tour.

31/50

Approximation Algorithms

If we relax optimality, does it get easier?

Approximation Algorithms

NP-complete problems are hard to solve exactly. A natural question is:

If we stop insisting on the optimal solution, can we solve the problem efficiently?

33/50

Approximation Algorithms

NP-complete problems are hard to solve exactly. A natural question is:

If we stop insisting on the optimal solution, can we solve the problem efficiently?

Approximation Algorithms:

® Run in polynomial time.
® Always produce a feasible solution.

® Guarantee that the solution is within a factor a of the optimum.

33/50

Approximation Algorithms

NP-complete problems are hard to solve exactly. A natural question is:

If we stop insisting on the optimal solution, can we solve the problem efficiently?

Approximation Algorithms:

® Run in polynomial time.
® Always produce a feasible solution.
® Guarantee that the solution is within a factor a of the optimum.

® For minimization problems o > 1, and smaller a means better approximation.
OPT < cost(ALG) < «-OPT.
® For maximization problems o < 1, and larger o« means better approximation.

OPT > cost(ALG) > «-OPT.

33/50

Approximability of Problems

Often we seek a solution that is close to optimal: a constant-factor approximation, or an « that
grows slowly with n (e.g., log n).

A natural question:

Does every NP-hard optimization problem admit a polynomial-time approximation algorithm?

® Some problems do admit good approximations.

® Others remain hard even to approximate within any reasonable factor.

This leads to an entire area of study: approximability theory.

34/50

2-Approximation Algorithm
for Vertex Cover

2-Approximation for Vertex Cover

The algorithm repeatedly picks an uncovered edge and adds both endpoints to the cover.

36/50

2-Approximation for Vertex Cover

The algorithm repeatedly picks an uncovered edge and adds both endpoints to the cover.

Step 1: pick an uncovered edge (here (a, b)), add a and b.

36/50

2-Approximation for Vertex Cover

The algorithm repeatedly picks an uncovered edge and adds both endpoints to the cover.

(2)
@) (O—©
()

Step 1: pick an uncovered edge (here (a, b)), add a and b.
Step 2: pick another uncovered edge (here (d,e)), add d and e.

36/50

2-Approximation for Vertex Cover

The algorithm repeatedly picks an uncovered edge and adds both endpoints to the cover.

(2)
@) (O—©
()

Step 1: pick an uncovered edge (here (a, b)), add a and b.
Step 2: pick another uncovered edge (here (d,e)), add d and e.
All edges are covered. = Final cover = {a, b, ¢, d}.

36 /50

Why the Greedy Algorithm Is a 2-Approximation

® let M be the set of edges the algorithm picks. They are pairwise disjoint = forming a
matching.

) (O—©
©

Picked edges form a matching M
37/50

Why the Greedy Algorithm Is a 2-Approximation

® let M be the set of edges the algorithm picks. They are pairwise disjoint = forming a
matching.

® Any vertex cover must hit each edge of M. = |C*| > |M|.

) (O—©
©

Picked edges form a matching M
37/50

Why the Greedy Algorithm Is a 2-Approximation

® let M be the set of edges the algorithm picks. They are pairwise disjoint = forming a
matching.

® Any vertex cover must hit each edge of M. = |C*| > |M|.

® The algorithm adds both endpoints of each edge in M. = |CaLc| = 2|M|.

(&)
) (O—©
()

Picked edges form a matching M
37/50

Why the Greedy Algorithm Is a 2-Approximation

® let M be the set of edges the algorithm picks. They are pairwise disjoint = forming a
matching.

® Any vertex cover must hit each edge of M. = |C*| > |M|.

® The algorithm adds both endpoints of each edge in M. = |CaLc| = 2|M|.

® Therefore
|CaLc| = 2|M| < 2|C¥|.

(&)
) (O—©
()

Picked edges form a matching M
37/50

(In) Approximability of TSP

Approximating TSP

APPROX-TSP Given a complete graph G and a constant o > 1, output a tour in G with
cost at most o - OPT.

Intuitively, this requirement is weaker than exact TSP.

® Any algorithm solving exact TSP automatically solves APPROX-TSP.

39/50

Approximating TSP

APPROX-TSP Given a complete graph G and a constant o > 1, output a tour in G with
cost at most o - OPT.

Intuitively, this requirement is weaker than exact TSP.

® Any algorithm solving exact TSP automatically solves APPROX-TSP.

However, APPROX-TSP and TSP have essentially the same difficulty.

39/50

Inapproximability of TSP

Theorem

TSP admits no polynomial-time a-approximation algorithm for any constant a > 1, unless
P = NP.

40/50

Inapproximability of TSP

Theorem

TSP admits no polynomial-time a-approximation algorithm for any constant a > 1, unless
P = NP.

How do we prove this? We return to our standard reduction recipe:

Reduce a known NP-complete problem (Hamiltonian Cycle)
to APPROX-TSP.

40/50

The Strategy: Distinguishing by Gap

Goal: Reduce Hamiltonian Cycle to a-Approx TSP.

To do this, we construct an instance where the optimal cost falls into two disjoint ranges
separated by a factor of a.

The Distinguishing Condition

If an algorithm guarantees an a-approximation, it returns a tour of cost C < «- OPT. We
need a gap such that:

¢ Case Yes (Hamiltonian): OPT =n = C < an.

e Case No (Not Hamiltonian): OPT > an.

If we create this gap, checking if C < an decides the Hamiltonian Cycle problem.

41/50

Creating the Gap

Construction: Build complete graph G’ from G with weights:

w(u,v) = {1 if (u,v) € E(G) (Original)
’ M if (u,v) ¢ E(G) (Non-edge)

where M is a large number (chosen later).

42/50

Creating the Gap

The Costs:

e If G is Hamiltonian: We use n edges of weight 1.
= OPT(G’) = n.

e If G is NOT Hamiltonian: We must use at least one weight M.
= OPT(G') > M+ (n—1).

Forcing the Gap: Set M = an.

No Hamiltonian Cycle = OPT(G') > an+ (n—1) > an.

43/50

The Reduction Algorithm

Input: Graph G, Approximation factor «.

1. Set the Penalty: Let n = |V/| and choose a large weight M = an + 1.
2. Construct G’: Create a complete graph where:

® Existing edges in G get weight 1.

® Missing edges (non-edges) get weight M.
3. Run the Solver: Let C be the cost returned by APPROX-TSP(G’).
4. The Decision:

e |f C < an — Return YES.
® |f C > an — Return NO.

44 /50

Proof of Correctness

We analyze the output based on the structure of G:

Case 1: G has a Hamiltonian Cycle

® The optimal tour uses only original edges: OPT(G’) = n.

® The «a-approx algorithm returns cost C < o - OPT.
® Therefore, C < an.

® Result: Procedure correctly returns YES.

45 /50

Proof of Correctness

We analyze the output based on the structure of G:

Case 1: G has a Hamiltonian Cycle

® The optimal tour uses only original edges: OPT(G’) = n.

® The a-approx algorithm returns cost C < o - OPT.
® Therefore, C < an.

® Result: Procedure correctly returns YES.

Case 2: G has NO Hamiltonian Cycle

® Any tour must use at least one non-edge (weight M).
® Therefore, OPT(G') > M + (n—1) > an.

® Since any tour cost C > OPT(G’), we have C > an.

® Result: Procedure correctly returns NO.
45 /50

Metric TSP and Its Approximation
Algorithm

Turns out TSP is not so hopeless...

Metric TSP

Metric TSP An input instance to Metric TSP is a complete graph where edge weights are a
metric.

* Identity of indiscernibles: dlu,v)=0 < u=v.
* Non-negativity: Yu#v: d(uv)>0.
® Symmetric: d(u,v) =d(v,u).
® Triangle inequality: Yu, v, w: d(u,w) <d(u,v)+d(v,w).

Why do we care?

® Many natural settings (FedEx, road networks, Euclidean distances) satisfy the triangle inequal-
ity.

® Triangle inequality enables good approximation algorithms.

47/50

2-Approximation for Metric TSP: MST Doubling

Algorithm (“double-tree”):

1. Compute a Minimum Spanning Tree (MST) T of the metric.
2. Double every edge of T to get an Eulerian multigraph.

3. Take an Euler tour and shortcut repeated vertices to obtain a TSP tour.

48 /50

Visualizing the Double-Tree Algorithm

Step 1: Metric MST

We compute the MST of the metric
graph (shown in purple). ° °

Current Cost < OPT. e o

Why?
W(MST) < W/(Hamiltonian Path < W(Hamiltonian Cycle)

49 /50

Visualizing the Double-Tree Algorithm

Step 2: Doubling

We double every edge in the MST.
This creates an Eulerian Multigraph ° °

(every node has even degree).

Current Cost <2 -OPT. e o

49 /50

Visualizing the Double-Tree Algorithm

Step 3: Euler Tour

We traverse the doubled edges in a con-
tinuous loop (DFS order).

a—+b —+e b —->c—d—c
— b — a

49 /50

Visualizing the Double-Tree Algorithm

Step 4: Shortcutting

We delete repeated vertices from the
Euler Tour. Thanks to the triangle in- @ @
equality, taking a shortcut (red) is al-

ways cheaper. @ @

Final Tour: a - b — e —- ¢ — d
— a

49 /50

References

[§ Erickson, J. (2019).
Algorithms.
Self-published.

50 /50

	NP-Complete Problems
	HAMILTONIAN-CYCLE Is NP-Complete
	Traveling Salesman Problem (TSP) is NP-complete

	Approximation Algorithms
	2-Approximation Algorithm for Vertex Cover
	(In)Approximability of TSP
	Metric TSP and Its Approximation Algorithm

