

COMP 382: Reasoning about Algorithms

Reductions and NP-Completeness

Prof. Maryam Aliakbarpour

co-instructors: Prof. Anjum Chida & Prof. Konstantinos Mamouras

November 20, 2025

Today's Lecture

1. NP-Complete Problems

- 1.1 3-SAT is NP-complete.
- 1.2 Maximum Independent Set (MIS) is NP-complete
- 1.3 MAX-CLIQUE Is NP-Complete
- 1.4 VERTEX-COVER Is NP-Complete

Reading:

- Chapter 12 of the *Algorithms* book [Erickson, 2019]

Content adapted from the same reference.

NP-Hard and NP-Complete Problems

NP-Hard Problem

A problem B is **NP-hard** if for every problem $A \in \text{NP}$, A reduces to B .

NP-Hard and NP-Complete Problems

NP-Hard Problem

A problem B is **NP-hard** if for every problem $A \in \text{NP}$, A reduces to B .

NP-Complete Problem

A problem B is **NP-complete** if:

1. $B \in \text{NP}$, and
2. For every problem $A \in \text{NP}$, A reduces to B .

The NP-Completeness Recipe

To show a new problem B is NP-complete, start from a known NP-complete problem A .
Show a polynomial-time reduction from A to B .

A is NP-complete:

A poly-time reduction from A to B :

$$\left. \begin{array}{l} \text{NP } \leq_p A \\ A \leq_p B \end{array} \right\} \implies \text{NP } \leq_p B$$

The NP-Completeness Recipe

To show a new problem B is NP-complete, start from a known NP-complete problem A . Show a polynomial-time reduction from A to B .

Cook-Levin Theorem

A is NP-complete:

A poly-time reduction from A to B :

$$\left. \begin{array}{l} \text{NP } \leq_p A \\ A \leq_p B \end{array} \right\} \implies \text{NP } \leq_p B$$

The NP-Completeness Recipe

To show a new problem B is NP-complete, start from a known NP-complete problem A . Show a polynomial-time reduction from A to B .

Cook-Levin Theorem

A is NP-complete:

A poly-time reduction from A to B :

$$\left. \begin{array}{l} \text{NP } \leq_p A \\ A \leq_p B \end{array} \right\} \implies \text{NP } \leq_p B$$

B is NP-hard.

The NP-Completeness Recipe

To show a new problem B is NP-complete, start from a known NP-complete problem A . Show a polynomial-time reduction from A to B .

Cook-Levin Theorem

A is NP-complete:

A poly-time reduction from A to B :

$$\left. \begin{array}{l} \text{NP } \leq_p A \\ A \leq_p B \end{array} \right\} \implies \text{NP } \leq_p B$$

B is NP-hard.

If we also show that B is in NP, then \implies

B is NP-complete

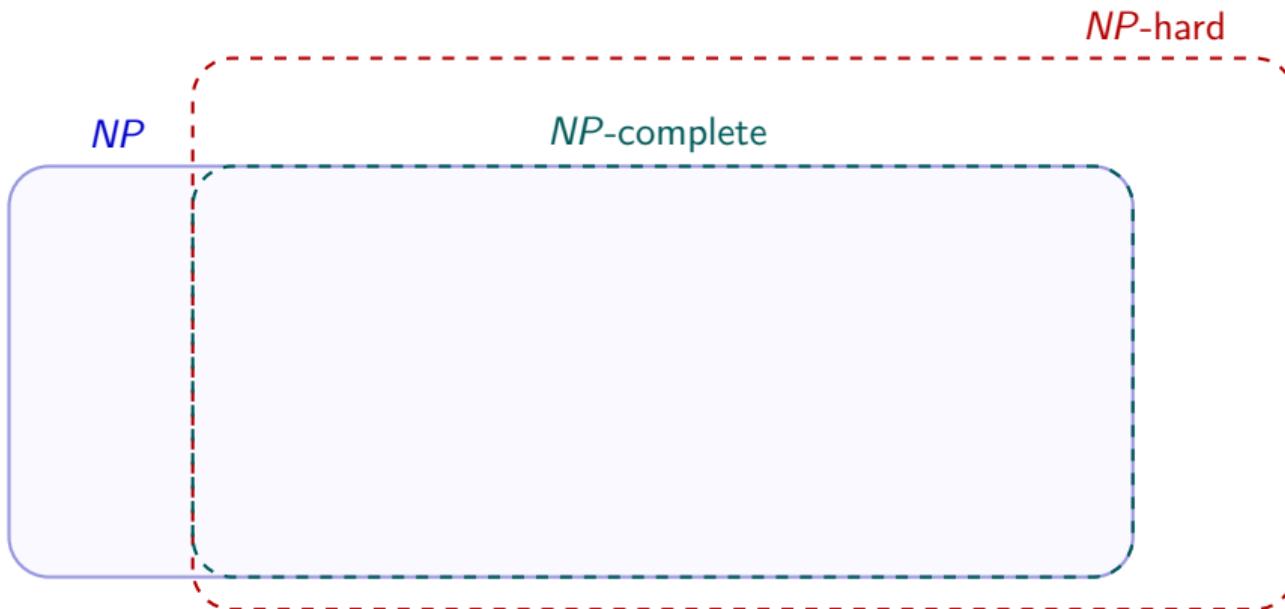
A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.



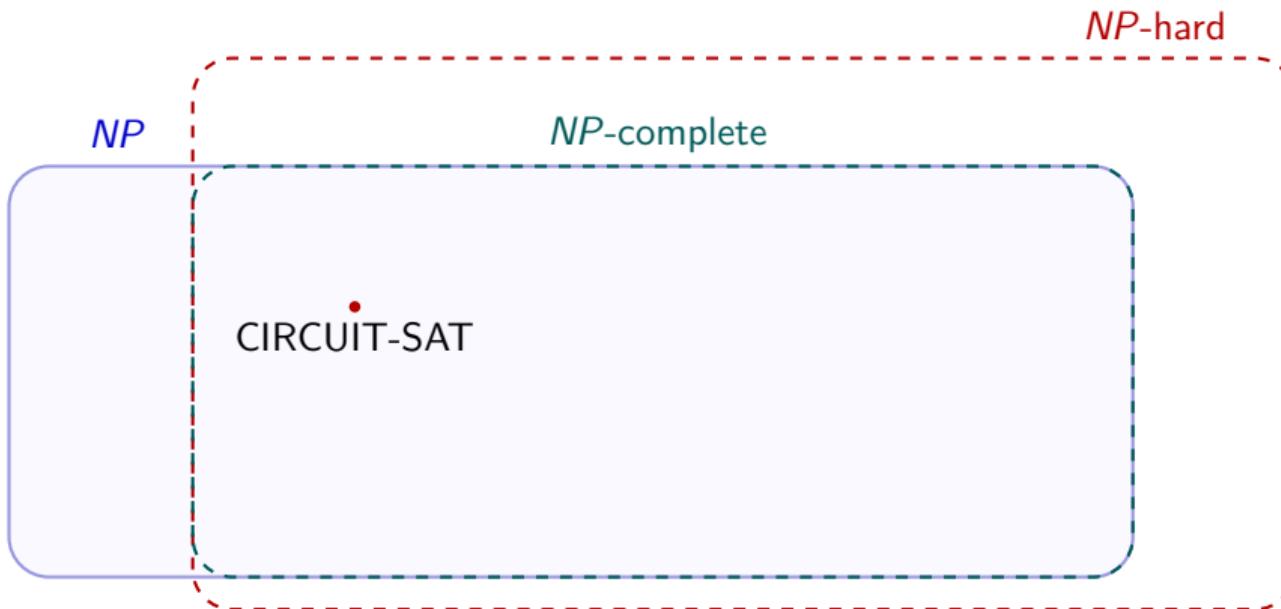
A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.



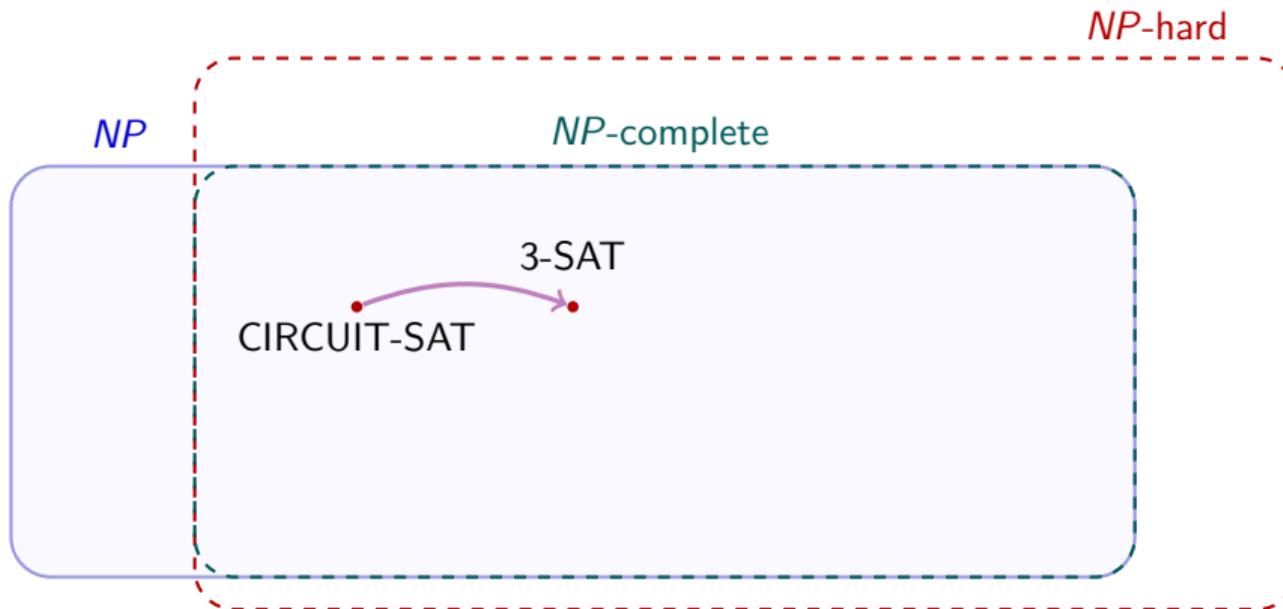
A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.



A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.



3-SAT is NP-complete.

A Reduction from CIRCUIT-SAT to 3-SAT

Boolean Logic Basics

- A **literal** is a variable x or its negation $\neg x$.

Boolean Logic Basics

- A **literal** is a variable x or its negation $\neg x$.
- A **disjunction** (a.k.a **clause**) is a logical OR of two or more literals:

$$\ell_1 \vee \ell_2 \vee \cdots \vee \ell_k.$$

Boolean Logic Basics

- A **literal** is a variable x or its negation $\neg x$.
- A **disjunction** (a.k.a **clause**) is a logical OR of two or more literals:

$$\ell_1 \vee \ell_2 \vee \cdots \vee \ell_k.$$

- A **conjunction** is a logical AND of literals:

$$\ell_1 \wedge \ell_2 \wedge \cdots \wedge \ell_m.$$

Boolean Logic Basics

- A **literal** is a variable x or its negation $\neg x$.
- A **disjunction** (a.k.a **clause**) is a logical OR of two or more literals:

$$\ell_1 \vee \ell_2 \vee \cdots \vee \ell_k.$$

- A **conjunction** is a logical AND of literals:

$$\ell_1 \wedge \ell_2 \wedge \cdots \wedge \ell_m.$$

- A formula is in **conjunctive normal form (CNF)** if it is a conjunction of disjunctions.

Boolean Logic Basics

- A **literal** is a variable x or its negation $\neg x$.
- A **disjunction** (a.k.a **clause**) is a logical OR of two or more literals:

$$\ell_1 \vee \ell_2 \vee \cdots \vee \ell_k.$$

- A **conjunction** is a logical AND of literals:

$$\ell_1 \wedge \ell_2 \wedge \cdots \wedge \ell_m.$$

- A formula is in **conjunctive normal form (CNF)** if it is a conjunction of disjunctions.
- A **3-CNF formula** is a CNF formula in which **every clause has exactly 3 literals**.

$$(a \vee \neg b \vee c) \wedge (\neg a \vee d \vee \neg e) \wedge (b \vee c \vee \neg d).$$

What Is 3-SAT?

3-SAT: Given a 3-CNF formula Φ , does there exist a truth assignment that makes Φ true?

What Is 3-SAT?

3-SAT: Given a 3-CNF formula Φ , does there exist a truth assignment that makes Φ true?

Example:

$$(a \vee \neg b \vee c) \wedge (\neg a \vee d \vee \neg e) \wedge (b \vee c \vee \neg d).$$

What Is 3-SAT?

3-SAT: Given a 3-CNF formula Φ , does there exist a truth assignment that makes Φ true?

Example:

$$(a \vee \neg b \vee c) \wedge (\neg a \vee d \vee \neg e) \wedge (b \vee c \vee \neg d).$$

Assignment:

$$a = \text{ (T)}$$

$$b = \text{ (F)}$$

$$c = \text{ (T)}$$

$$d = \text{ (T)}$$

$$e = \text{ (F)}$$

What Is 3-SAT?

3-SAT: Given a 3-CNF formula Φ , does there exist a truth assignment that makes Φ true?

Example:

$$(a \vee \neg b \vee c) \wedge (\neg a \vee d \vee \neg e) \wedge (b \vee c \vee \neg d).$$

Assignment: $a = \text{ } \textcolor{teal}{\text{T}}$ $b = \text{ } \textcolor{orange}{\text{F}}$ $c = \text{ } \textcolor{teal}{\text{T}}$ $d = \text{ } \textcolor{teal}{\text{T}}$ $e = \text{ } \textcolor{orange}{\text{F}}$

Why it works:

$$(\text{ } \textcolor{teal}{\text{a}} \text{ } \vee \neg b \vee c) \wedge (\neg a \vee d \vee \neg e) \wedge (b \vee c \vee \neg d).$$

What Is 3-SAT?

3-SAT: Given a 3-CNF formula Φ , does there exist a truth assignment that makes Φ true?

Example:

$$(a \vee \neg b \vee c) \wedge (\neg a \vee d \vee \neg e) \wedge (b \vee c \vee \neg d).$$

Assignment:

$$a = \text{ (T)}$$

$$b = \text{ (F)}$$

$$c = \text{ (T)}$$

$$d = \text{ (T)}$$

$$e = \text{ (F)}$$

Why it works:

$$(\text{ (a)} \vee \neg b \vee c) \wedge (\text{ (\neg a)} \vee d \vee \neg e) \wedge (b \vee c \vee \neg d).$$

What Is 3-SAT?

3-SAT: Given a 3-CNF formula Φ , does there exist a truth assignment that makes Φ true?

Example:

$$(a \vee \neg b \vee c) \wedge (\neg a \vee d \vee \neg e) \wedge (b \vee c \vee \neg d).$$

Assignment:

$$a = \text{ (T)}$$

$$b = \text{ (F)}$$

$$c = \text{ (T)}$$

$$d = \text{ (T)}$$

$$e = \text{ (F)}$$

Why it works:

$$(\text{ (a)} \vee \neg b \vee c) \wedge (\text{ (\neg a)} \vee \text{ (d)} \vee \neg e) \wedge (b \vee c \vee \neg d).$$

What Is 3-SAT?

3-SAT: Given a 3-CNF formula Φ , does there exist a truth assignment that makes Φ true?

Example:

$$(a \vee \neg b \vee c) \wedge (\neg a \vee d \vee \neg e) \wedge (b \vee c \vee \neg d).$$

Assignment: $a = \text{ } \textcolor{teal}{\text{F}}$ $b = \text{ } \textcolor{orange}{\text{T}}$ $c = \text{ } \textcolor{teal}{\text{T}}$ $d = \text{ } \textcolor{teal}{\text{T}}$ $e = \text{ } \textcolor{orange}{\text{F}}$

Why it works:

$$(\text{ } \textcolor{teal}{a} \text{ } \vee \neg b \vee c) \wedge (\text{ } \textcolor{orange}{\neg a} \text{ } \vee \text{ } \textcolor{teal}{d} \text{ } \vee \neg e) \wedge (\text{ } \textcolor{orange}{\neg b} \text{ } \vee \text{ } \textcolor{teal}{c} \text{ } \vee \neg d).$$

Why Is 3-SAT Hard? (Intuition)

Clause 1

$$(a \vee \neg b \vee c)$$

Clause 2

$$(\neg a \vee d \vee \neg e)$$

Clause 3

$$(b \vee c \vee \neg d)$$

Why Is 3-SAT Hard? (Intuition)

Clause 1

$$(a \vee \neg b \vee c)$$

Clause 2

$$(\neg a \vee d \vee \neg e)$$

Clause 3

$$(b \vee c \vee \neg d)$$

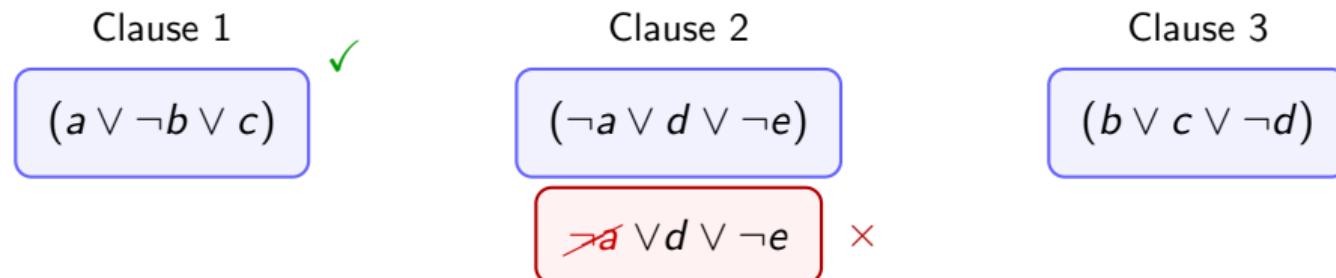
To satisfy the first clause, we might choose

$$a = \text{T},$$

$$b = \text{F}, \text{ or}$$

$$c = \text{T}$$

Why Is 3-SAT Hard? (Intuition)



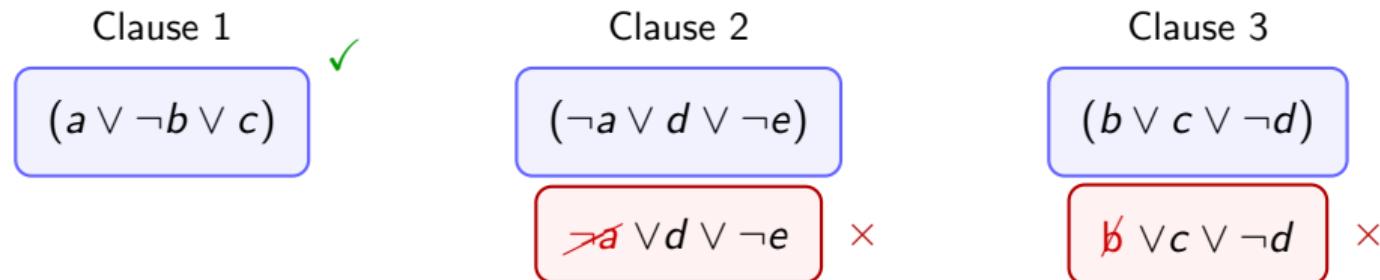
To satisfy the first clause, we might choose

$$a = \text{True}$$

$$b = \text{False}, \text{ or}$$

$$c = \text{True}$$

Why Is 3-SAT Hard? (Intuition)



To satisfy the first clause, we might choose

$$a = \text{True}$$

$$b = \text{False}, \text{ or}$$

$$c = \text{True}$$

Satisfying one clause (Clause 1) can break others (Clauses 2 and 3).

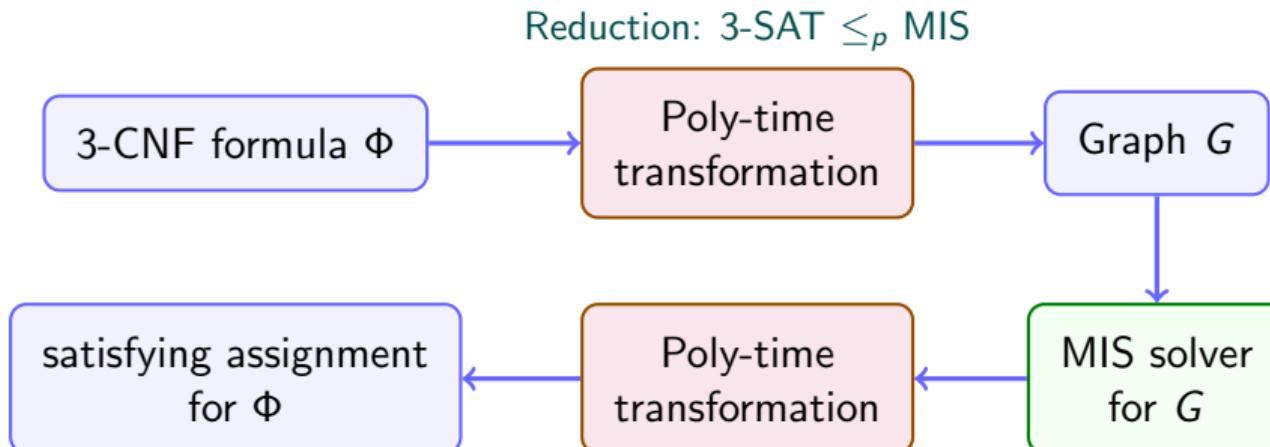
This tug-of-war between clauses is what makes 3-SAT difficult.

Plan: Reduce 3-SAT to MIS

- Input on the 3-SAT side: A 3-CNF formula Φ with k clauses, each with exactly three literals.

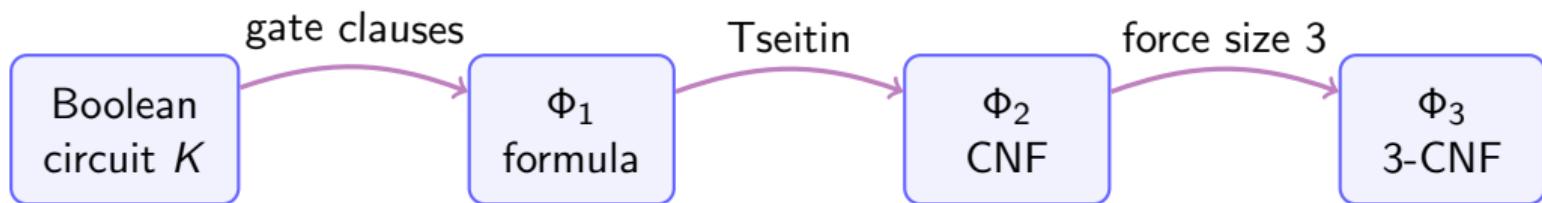
$$\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_k$$

- We will build a graph G such that: Φ is satisfiable if and only if G has an independent set of size k .



From CIRCUIT-SAT to 3-SAT

Goal: Show that 3-SAT is NP-complete by giving a polynomial-time reduction from Circuit-SAT to 3-SAT.



Our reduction turns an arbitrary circuit K into an equivalent 3-CNF formula Φ_3 :

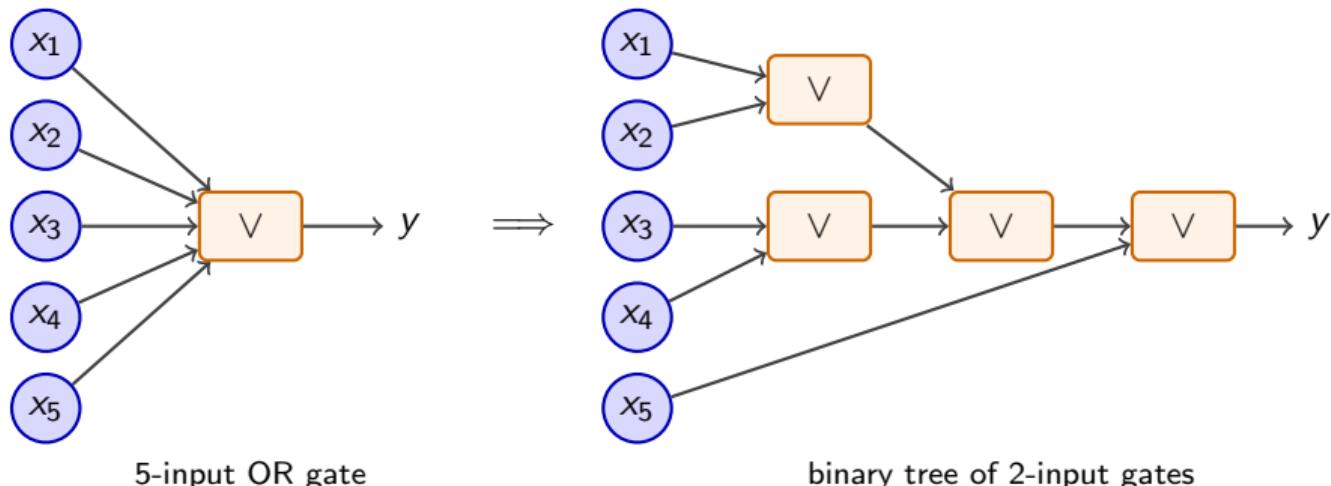
$$K \text{ is satisfiable} \iff \Phi_3 \text{ is satisfiable.}$$

Step 1: Make the Circuit Binary

Input: an arbitrary Boolean circuit Φ built from \wedge , \vee , and \neg gates.

First, ensure every \wedge and \vee gate has exactly two inputs.

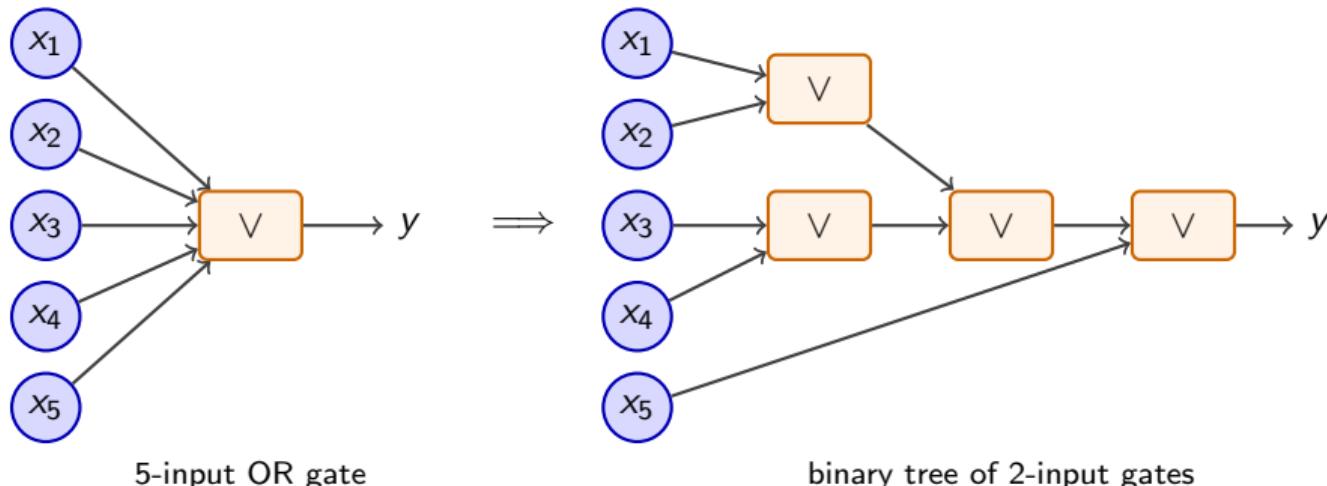
- If a gate has $k > 2$ inputs, replace it by a small binary tree of $k - 1$ binary gates.
- Call the resulting circuit Φ_1 .



Step 1: Make the Circuit Binary

- Φ and Φ_1 are logically equivalent.
- Every satisfying input for Φ is a satisfying input for Φ_1 and vice versa.

(So we can pretend from now on that every gate is binary.)



Step 2: From Circuit to CNF Φ_2

Introduce a Boolean variable for the output of every gate and input wire.

For each gate, add a constraint that relates the output variable to the input variables.

We get a formula Φ_2 with one clause per gate, such that:

$$\text{assignment to inputs satisfies } \Phi_1 \iff \text{extended assignment satisfies } \Phi_2.$$

Intuitively:

- Wire variables represent the value on each wire of the circuit.
- Gate clauses enforce that each gate output is computed correctly.

Step 2: Gate Clauses as CNF (Tseitin)

Each gate in Φ_1 becomes a small CNF formula in Φ_2 .

Let a be the output of the gate, b and c be its inputs.

$$\text{AND gate: } a = b \wedge c \Rightarrow (a \vee \neg b \vee \neg c) \wedge (\neg a \vee b) \wedge (\neg a \vee c)$$

$$\text{OR gate: } a = b \vee c \Rightarrow (\neg a \vee b \vee c) \wedge (a \vee \neg b) \wedge (a \vee \neg c)$$

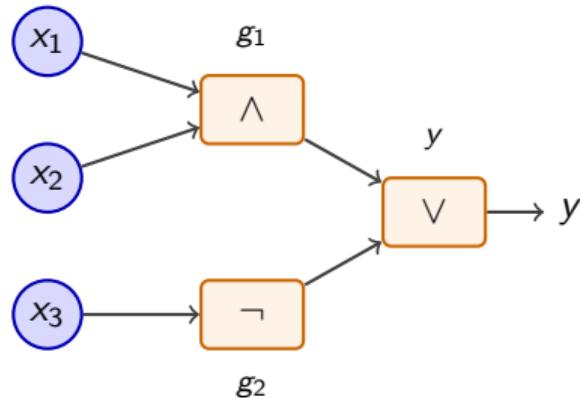
$$\text{NOT gate: } a = \neg b \Rightarrow (a \vee b) \wedge (\neg a \vee \neg b)$$

Φ_1 and Φ_2 are logically equivalent, so they have exactly the same satisfying assignments.

Tseitin Encoding on a Small Circuit

Example depth-2 circuit:

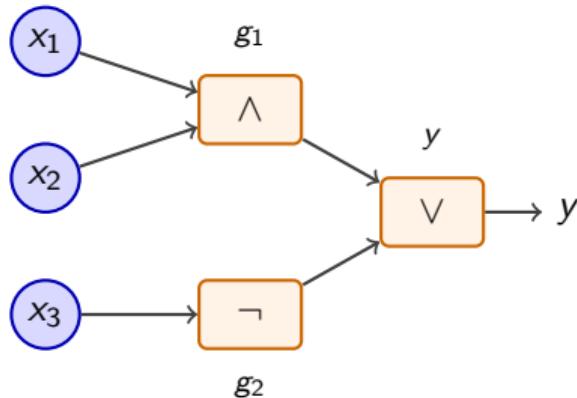
$$y = (x_1 \wedge x_2) \vee \neg x_3.$$



Tseitin Encoding on a Small Circuit

Example depth-2 circuit:

$$y = (x_1 \wedge x_2) \vee \neg x_3.$$



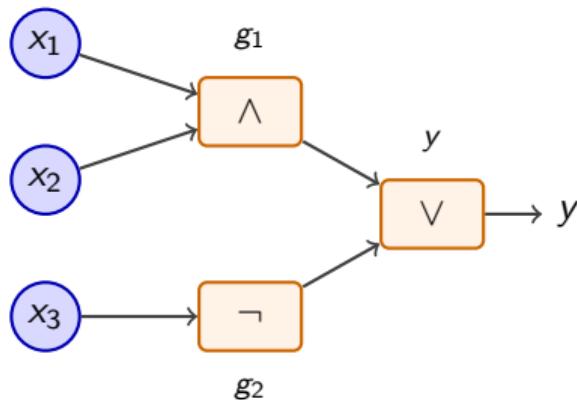
Introduce one variable per gate output:

$$g_1, g_2, y.$$

Tseitin Encoding on a Small Circuit

Example depth-2 circuit:

$$y = (x_1 \wedge x_2) \vee \neg x_3.$$



Tseitin constraints (CNF clauses):

$$\begin{aligned} g_1 &= x_1 \wedge x_2 \\ \Rightarrow (g_1 \vee \neg x_1 \vee \neg x_2) \wedge (\neg g_1 \vee x_1) \wedge (\neg g_1 \vee x_2) \end{aligned}$$

$$\begin{aligned} g_2 &= \neg x_3 \\ \Rightarrow (g_2 \vee x_3) \wedge (\neg g_2 \vee \neg x_3) \end{aligned}$$

$$\begin{aligned} y &= g_1 \vee g_2 \\ \Rightarrow (\neg y \vee g_1 \vee g_2) \wedge (y \vee \neg g_1) \wedge (y \vee \neg g_2) \end{aligned}$$

Introduce one variable per gate output:

$$g_1, g_2, y.$$

Step 3: Force Clauses to Have Size Exactly 3

Every clause in Φ_2 has at most three literals, but 3-CNF requires exactly three.

We fix short clauses by introducing new variables.

Two-literal clause:

$$(a \vee b) \implies (a \vee b \vee x) \wedge (a \vee b \vee \neg x),$$

using a new variable x .

One-literal clause:

$$(z) \implies (z \vee x \vee y) \wedge (z \vee \neg x \vee y) \wedge (z \vee x \vee \neg y) \wedge (z \vee \neg x \vee \neg y),$$

using new variables x, y .

Call the final 3-CNF formula Φ_3 .

Correctness of the Construction

At every step, we obtained a new formula that was logically equivalent. Thus:

$$\Phi \text{ is satisfiable} \iff \Phi_3 \text{ is satisfiable.}$$

The whole transformation runs in polynomial (in fact, linear) time in the size of Φ , so we have a valid reduction from Circuit-SAT to 3-SAT.

Correctness of the Construction

At every step, we obtained a new formula that was logically equivalent. Thus:

$$\Phi \text{ is satisfiable} \iff \Phi_3 \text{ is satisfiable.}$$

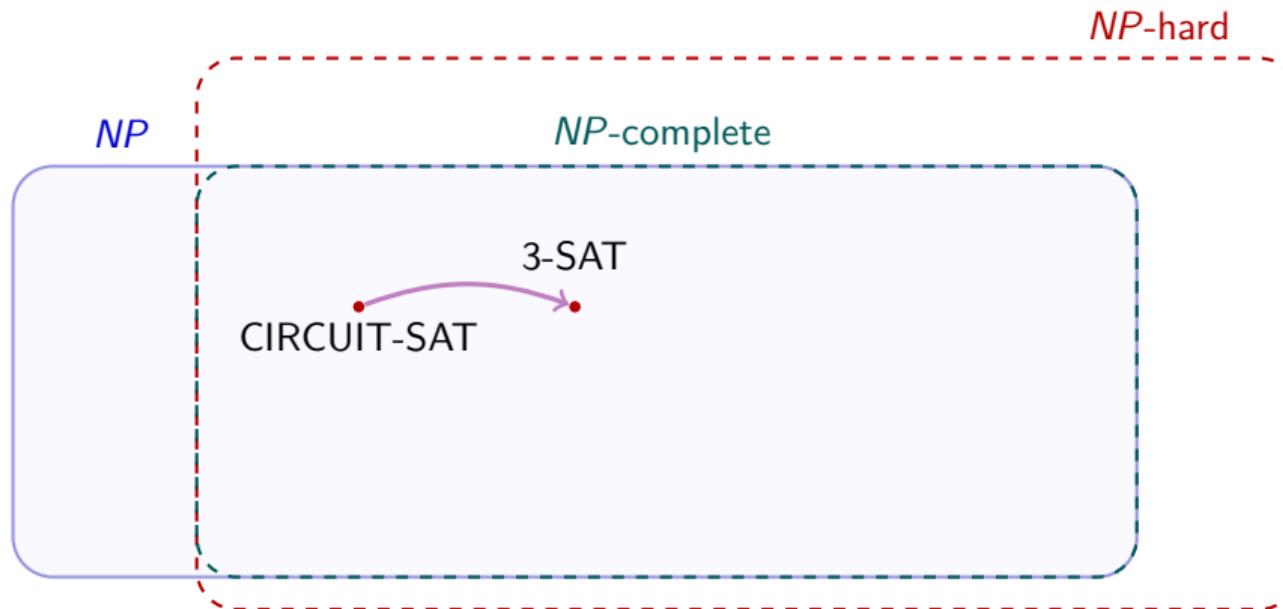
The whole transformation runs in polynomial (in fact, linear) time in the size of Φ , so we have a valid reduction from Circuit-SAT to 3-SAT.

If an input assignment makes the circuit output true, that assignment serves as a polynomial-time verifiable witness for a YES-instance.

Hence CIRCUIT-SAT is in NP, and together with NP-hardness, CIRCUIT-SAT is NP-complete.”

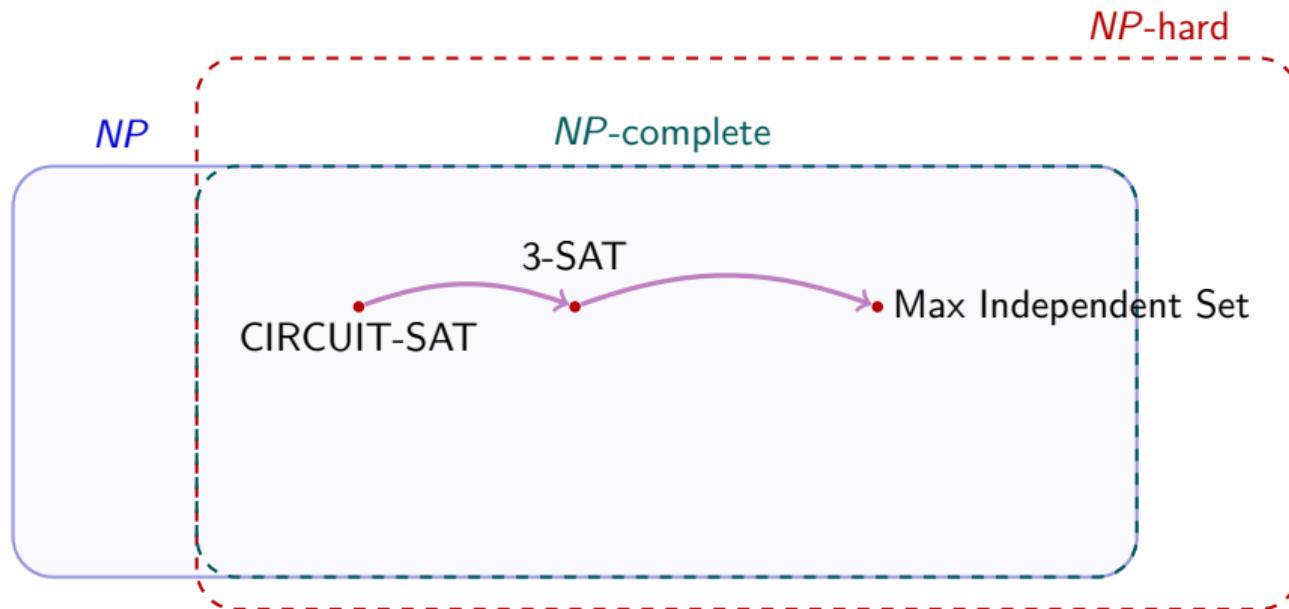
A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.



A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.



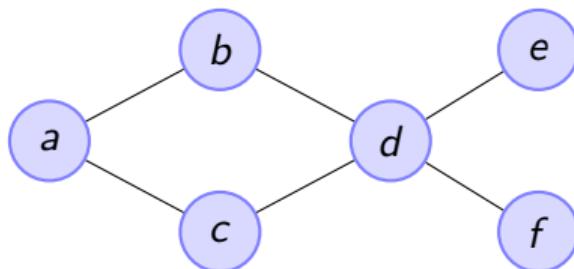
Maximum Independent Set (MIS) is NP-complete

A reduction from 3-SAT to MIS

Independent Sets and MIS

Let $G = (V, E)$ be a simple undirected graph.

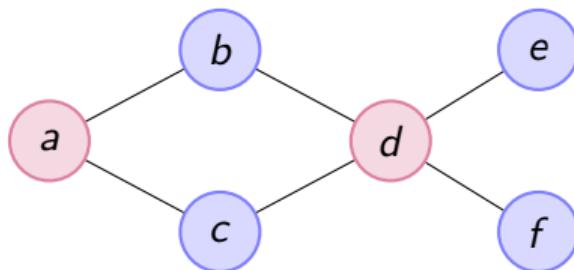
An **independent set** in G is a subset $S \subseteq V$ such that no two vertices in S are adjacent.



Independent Sets and MIS

Let $G = (V, E)$ be a simple undirected graph.

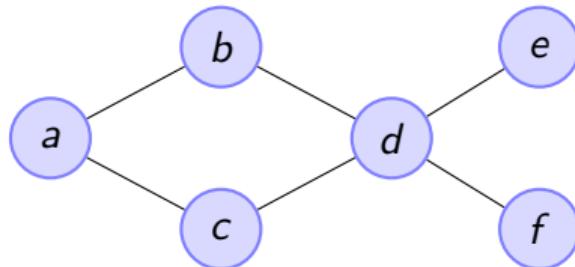
An **independent set** in G is a subset $S \subseteq V$ such that no two vertices in S are adjacent.



An independent set $S = \{a, d\}$ (no edges inside S).

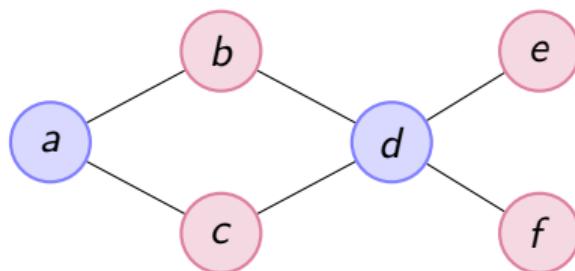
Maximum Independent Set Problem (MIS)

Maximum Independent Set (MIS): Given a graph G and an integer k , does G contain an independent set of size at least k ?



Maximum Independent Set Problem (MIS)

Maximum Independent Set (MIS): Given a graph G and an integer k , does G contain an independent set of size at least k ?



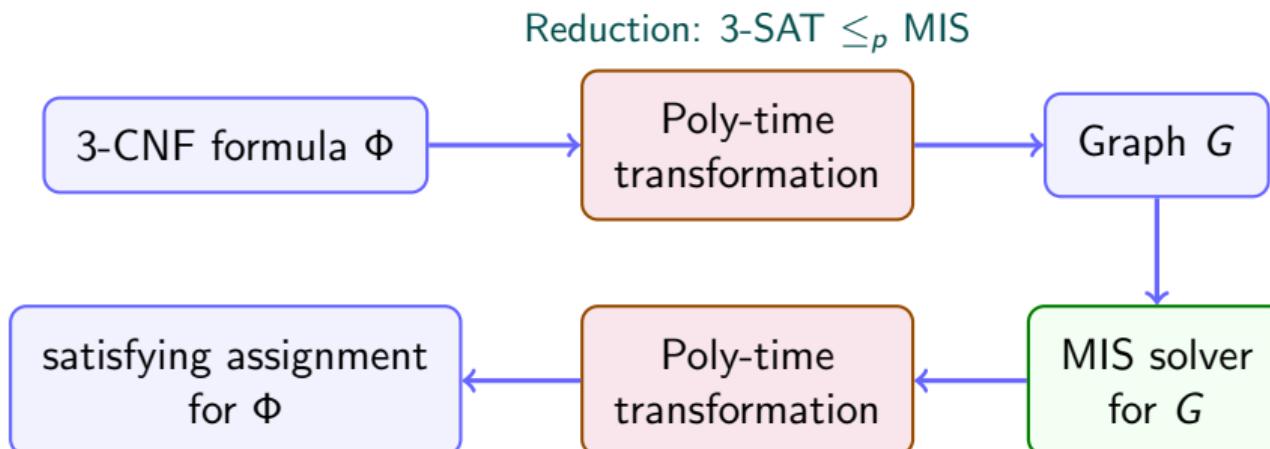
An independent set $S = \{b, c, e, f\}$ with size ≥ 4 .

Plan: Reduce 3-SAT to MIS

- Input on the 3-SAT side: A 3-CNF formula Φ with k clauses, each with exactly three literals.

$$\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_k$$

- We will build a graph G such that: Φ is satisfiable if and only if G has an independent set of size k .



Constructing the Graph G from Φ

Let Φ be a 3-CNF formula with k clauses.

$$\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_k, \quad C_i = (\ell_{i1} \vee \ell_{i2} \vee \ell_{i3})$$

Constructing the Graph G from Φ

Let Φ be a 3-CNF formula with k clauses.

$$\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_k, \quad C_i = (\ell_{i1} \vee \ell_{i2} \vee \ell_{i3})$$

We build a graph G as follows:

1. For each clause C_i , create a triangle of three vertices, one for each literal $\ell_{i1}, \ell_{i2}, \ell_{i3}$.
 - The resulting graph has exactly $3k$ vertices: one vertex per literal occurrence in Φ .

Constructing the Graph G from Φ

Let Φ be a 3-CNF formula with k clauses.

$$\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_k, \quad C_i = (\ell_{i1} \vee \ell_{i2} \vee \ell_{i3})$$

We build a graph G as follows:

1. For each clause C_i , create a triangle of three vertices, one for each literal $\ell_{i1}, \ell_{i2}, \ell_{i3}$.
 - The resulting graph has exactly $3k$ vertices: one vertex per literal occurrence in Φ .
2. For every pair of complementary literals x and $\neg x$, connect all corresponding vertices in G by an edge.
 - These edges enforce that we do not pick both x and $\neg x$.

Constructing the Graph G from Φ

Let Φ be a 3-CNF formula with k clauses.

$$\Phi = C_1 \wedge C_2 \wedge \cdots \wedge C_k, \quad C_i = (\ell_{i1} \vee \ell_{i2} \vee \ell_{i3})$$

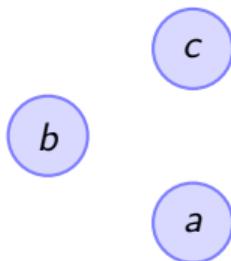
We build a graph G as follows:

1. For each clause C_i , create a triangle of three vertices, one for each literal $\ell_{i1}, \ell_{i2}, \ell_{i3}$.
 - The resulting graph has exactly $3k$ vertices: one vertex per literal occurrence in Φ .
2. For every pair of complementary literals x and $\neg x$, connect all corresponding vertices in G by an edge.
 - These edges enforce that we do not pick both x and $\neg x$.

Example of the Construction

Intuition: Each selected vertex in MIS represents a literal we use to make its clause true.

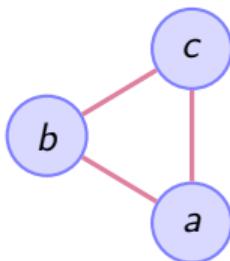
$$\Phi = (a \vee b \vee c) \wedge (b \vee \neg c \vee \neg d) \wedge (\neg a \vee c \vee d) \wedge (a \vee \neg b \vee \neg d).$$



Example of the Construction

Intuition: Each selected vertex in MIS represents a literal we use to make its clause true.

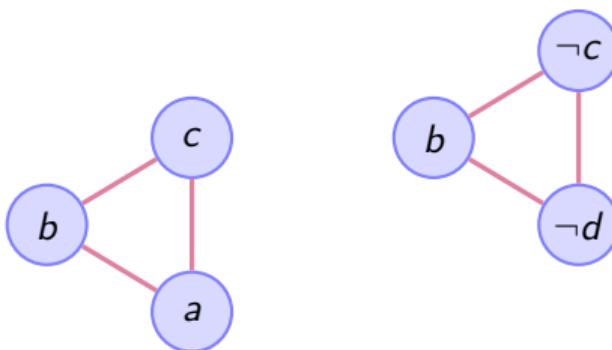
$$\Phi = (a \vee b \vee c) \wedge (b \vee \neg c \vee \neg d) \wedge (\neg a \vee c \vee d) \wedge (a \vee \neg b \vee \neg d).$$



Example of the Construction

Intuition: Each selected vertex in MIS represents a literal we use to make its clause true.

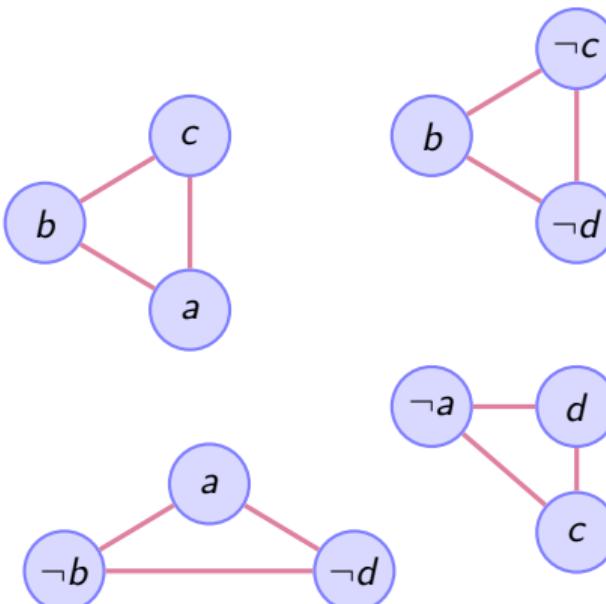
$$\Phi = (a \vee b \vee c) \wedge (b \vee \neg c \vee \neg d) \wedge (\neg a \vee c \vee d) \wedge (a \vee \neg b \vee \neg d).$$



Example of the Construction

Intuition: Each selected vertex in MIS represents a literal we use to make its clause true.

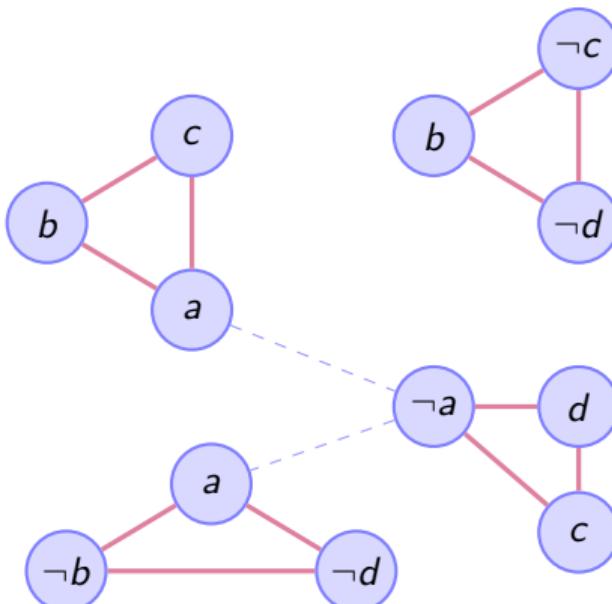
$$\Phi = (a \vee b \vee c) \wedge (b \vee \neg c \vee \neg d) \wedge (\neg a \vee c \vee d) \wedge (a \vee \neg b \vee \neg d).$$



Example of the Construction

Intuition: Each selected vertex in MIS represents a literal we use to make its clause true.

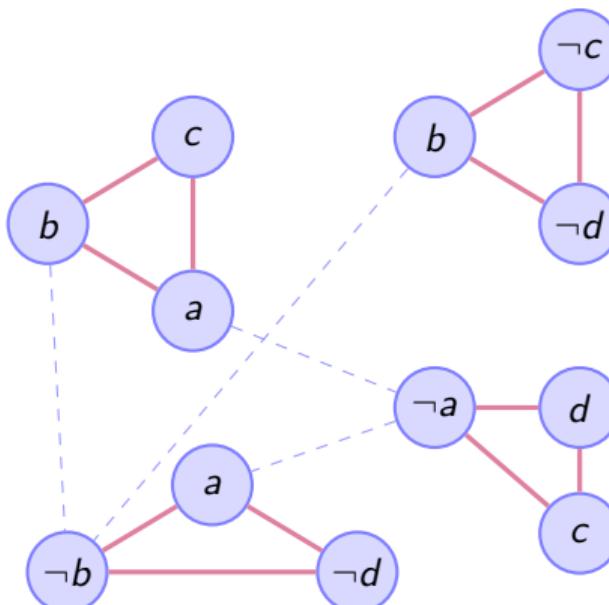
$$\Phi = (a \vee b \vee c) \wedge (b \vee \neg c \vee \neg d) \wedge (\neg a \vee c \vee d) \wedge (a \vee \neg b \vee \neg d).$$



Example of the Construction

Intuition: Each selected vertex in MIS represents a literal we use to make its clause true.

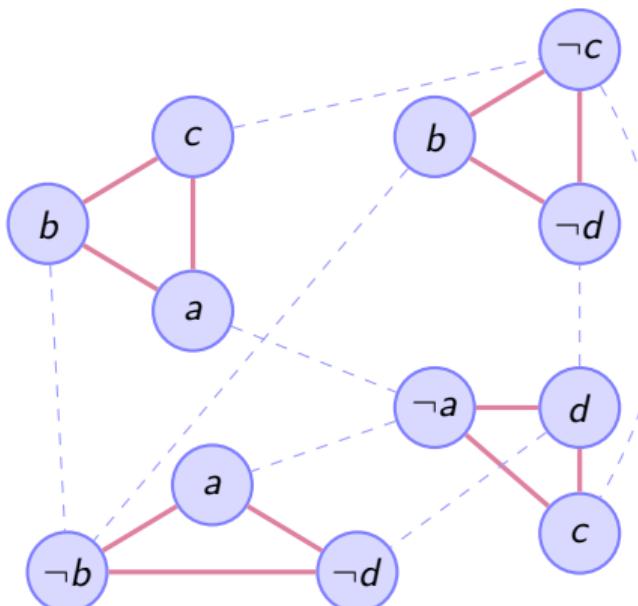
$$\Phi = (a \vee b \vee c) \wedge (b \vee \neg c \vee \neg d) \wedge (\neg a \vee c \vee d) \wedge (a \vee \neg b \vee \neg d).$$



Example of the Construction

Intuition: Each selected vertex in MIS represents a literal we use to make its clause true.

$$\Phi = (a \vee b \vee c) \wedge (b \vee \neg c \vee \neg d) \wedge (\neg a \vee c \vee d) \wedge (a \vee \neg b \vee \neg d).$$



Key Observation About Independent Sets

- Each clause corresponds to a triangle in G .

Key Observation About Independent Sets

- Each clause corresponds to a triangle in G .
- An independent set can contain at most one vertex from each triangle, because every pair of vertices in a triangle is connected by an edge.

Key Observation About Independent Sets

- Each clause corresponds to a triangle in G .
- An independent set can contain at most one vertex from each triangle, because every pair of vertices in a triangle is connected by an edge.
- Therefore, any independent set in G has size at most k (one vertex per clause).

Key Observation About Independent Sets

- Each clause corresponds to a triangle in G .
- An independent set can contain at most one vertex from each triangle, because every pair of vertices in a triangle is connected by an edge.
- Therefore, any independent set in G has size at most k (one vertex per clause).
- The decision version of MIS was: $|\text{MIS}| \geq k$; The answer is YES iff $|\text{MIS}| = k$;

Key Observation About Independent Sets

- Each clause corresponds to a triangle in G .
- An independent set can contain at most one vertex from each triangle, because every pair of vertices in a triangle is connected by an edge.
- Therefore, any independent set in G has size at most k (one vertex per clause).
- The decision version of MIS was: $|\text{MIS}| \geq k$; The answer is YES iff $|\text{MIS}| = k$;
- We will show:

$$\Phi \text{ is satisfiable} \iff G \text{ has an independent set of size } k.$$

Correctness: Φ is Satisfiable $\implies |\text{MIS}| = k$

Assume Φ is satisfiable and fix a satisfying assignment.

Correctness: Φ is Satisfiable $\implies |\text{MIS}| = k$

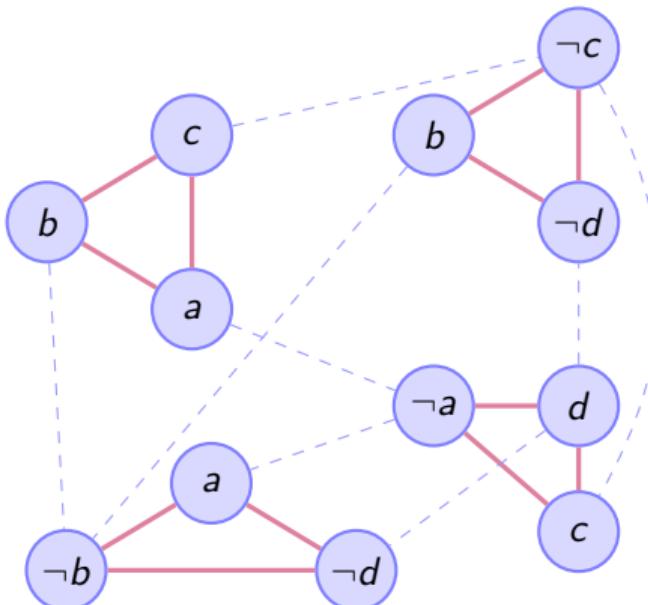
Assume Φ is satisfiable and fix a satisfying assignment.

- In each clause C_i , at least one literal is true under this assignment.
- For each clause C_i , choose exactly one vertex in the clause triangle whose literal is true.
- Let S be the set of these k chosen vertices.

Correctness: Φ is Satisfiable $\implies |\text{MIS}| = k$

3-CNF: $\Phi = (a \vee b \vee c) \wedge (b \vee \neg c \vee \neg d) \wedge (\neg a \vee c \vee d) \wedge (a \vee \neg b \vee \neg d)$.

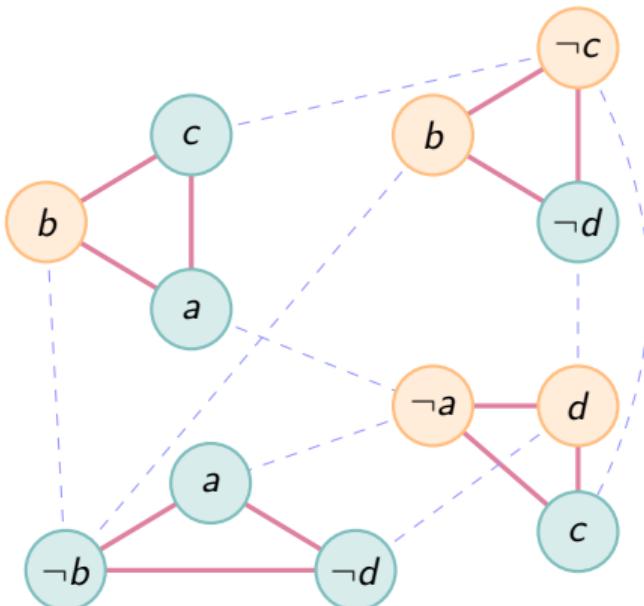
Assignment: $a = \text{True}$ $b = \text{False}$ $c = \text{True}$ $d = \text{False}$



Correctness: Φ is Satisfiable $\implies |\text{MIS}| = k$

$$\text{3-CNF: } \Phi = (a \vee b \vee c) \wedge (b \vee \neg c \vee \neg d) \wedge (\neg a \vee c \vee d) \wedge (a \vee \neg b \vee \neg d).$$

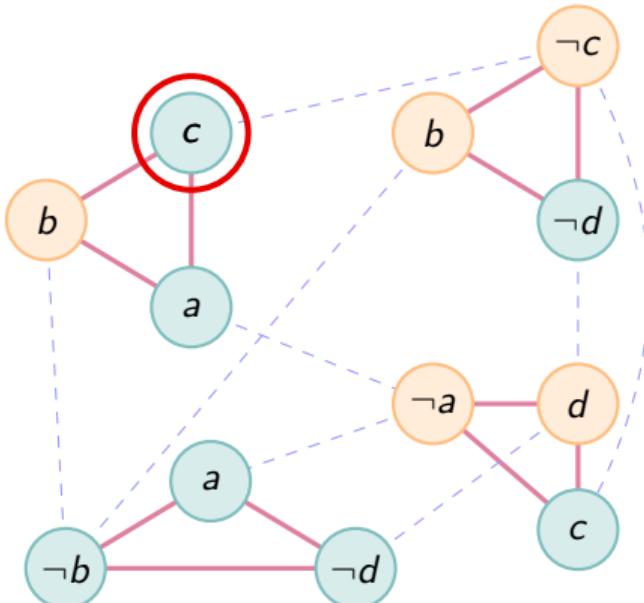
Assignment: $a =$ T $b =$ F $c =$ T $d =$ F



Correctness: Φ is Satisfiable $\implies |\text{MIS}| = k$

3-CNF: $\Phi = (a \vee b \vee c) \wedge (b \vee \neg c \vee \neg d) \wedge (\neg a \vee c \vee d) \wedge (a \vee \neg b \vee \neg d)$.

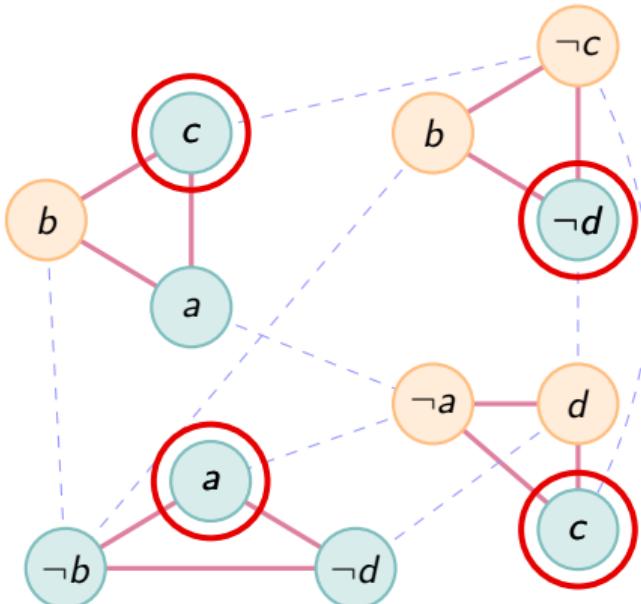
Assignment: $a = \text{True}$ $b = \text{False}$ $c = \text{True}$ $d = \text{False}$



Correctness: Φ is Satisfiable $\implies |\text{MIS}| = k$

3-CNF: $\Phi = (a \vee b \vee c) \wedge (b \vee \neg c \vee \neg d) \wedge (\neg a \vee c \vee d) \wedge (a \vee \neg b \vee \neg d)$.

Assignment: $a = \text{True}$ $b = \text{False}$ $c = \text{True}$ $d = \text{False}$



Correctness: Φ is Satisfiable $\implies |\text{MIS}| = k$

Why is S an independent set?

- S contains at most one vertex from each triangle, so no triangle edge connects two vertices in S .
- All literals in S are true, so S cannot contain both x and $\neg x$. Hence no negation edge connects two vertices in S .

Thus S is an independent set of size k in G .

Correctness: $|\text{MIS}| = k \implies \Phi \text{ is Satisfiable}$

Now assume G has an independent set S of size k .

Correctness: $|\text{MIS}| = k \implies \Phi \text{ is Satisfiable}$

Now assume G has an independent set S of size k .

- S can contain at most one vertex from each clause triangle.
- But $|S| = k$ and there are k triangles, so S must contain exactly one vertex from each clause triangle.

Correctness: $|\text{MIS}| = k \implies \Phi \text{ is Satisfiable}$

Now assume G has an independent set S of size k .

- S can contain at most one vertex from each clause triangle.
- But $|S| = k$ and there are k triangles, so S must contain exactly one vertex from each clause triangle.

Use S to build a truth assignment:

- For each literal in S , set that literal to true (that is, set the underlying variable accordingly).
- Because S is independent, it never contains both x and $\neg x$, so this assignment is consistent.
- Any variable not appearing in S can be set arbitrarily.
- Each clause has one vertex in S , so each clause has at least one true literal.

Correctness: $|\text{MIS}| = k \implies \Phi \text{ is Satisfiable}$

Now assume G has an independent set S of size k .

- S can contain at most one vertex from each clause triangle.
- But $|S| = k$ and there are k triangles, so S must contain exactly one vertex from each clause triangle.

Use S to build a truth assignment:

- For each literal in S , set that literal to true (that is, set the underlying variable accordingly).
- Because S is independent, it never contains both x and $\neg x$, so this assignment is consistent.
- Any variable not appearing in S can be set arbitrarily.
- Each clause has one vertex in S , so each clause has at least one true literal.

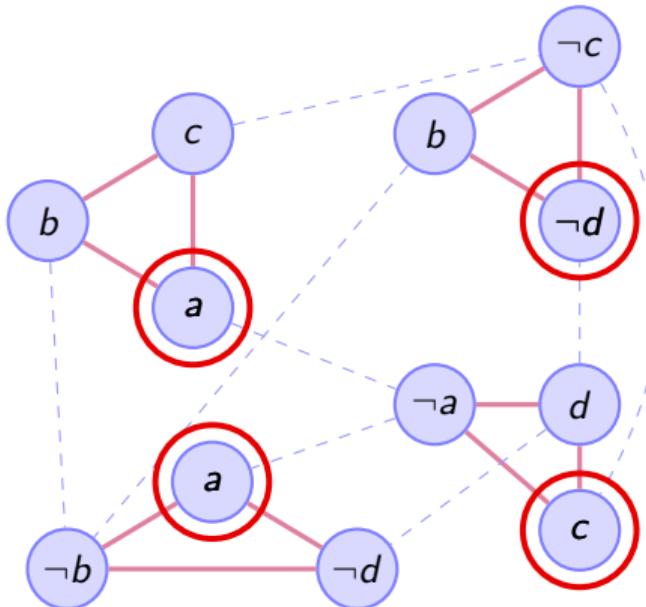
Therefore Φ is satisfiable.

Correctness: $|\text{MIS}| = k \implies \Phi \text{ is Satisfiable}$

Independent set: $\{a_1, \neg d_2, c_3, a_4\}$

Assignment: $a = \text{True}$ $b = \text{?}$ $c = \text{True}$ $d = \text{False}$

$$\Phi = (a \vee b \vee c) \wedge (b \vee \neg c \vee \neg d) \wedge (\neg a \vee c \vee d) \wedge (a \vee \neg b \vee \neg d).$$



Concluding the Reduction

- We transformed a 3-CNF formula Φ with k clauses into a graph G with $3k$ vertices.
- The transformation can be carried out in time polynomial in $|\Phi|$.
- We proved:

$$\Phi \text{ is satisfiable} \iff G \text{ has an independent set of size } k.$$

Concluding the Reduction

- We transformed a 3-CNF formula Φ with k clauses into a graph G with $3k$ vertices.
- The transformation can be carried out in time polynomial in $|\Phi|$.
- We proved:

$$\Phi \text{ is satisfiable} \iff G \text{ has an independent set of size } k.$$

Therefore, if we could solve the MIS decision problem in polynomial time, we could solve 3-SAT in polynomial time via this reduction.

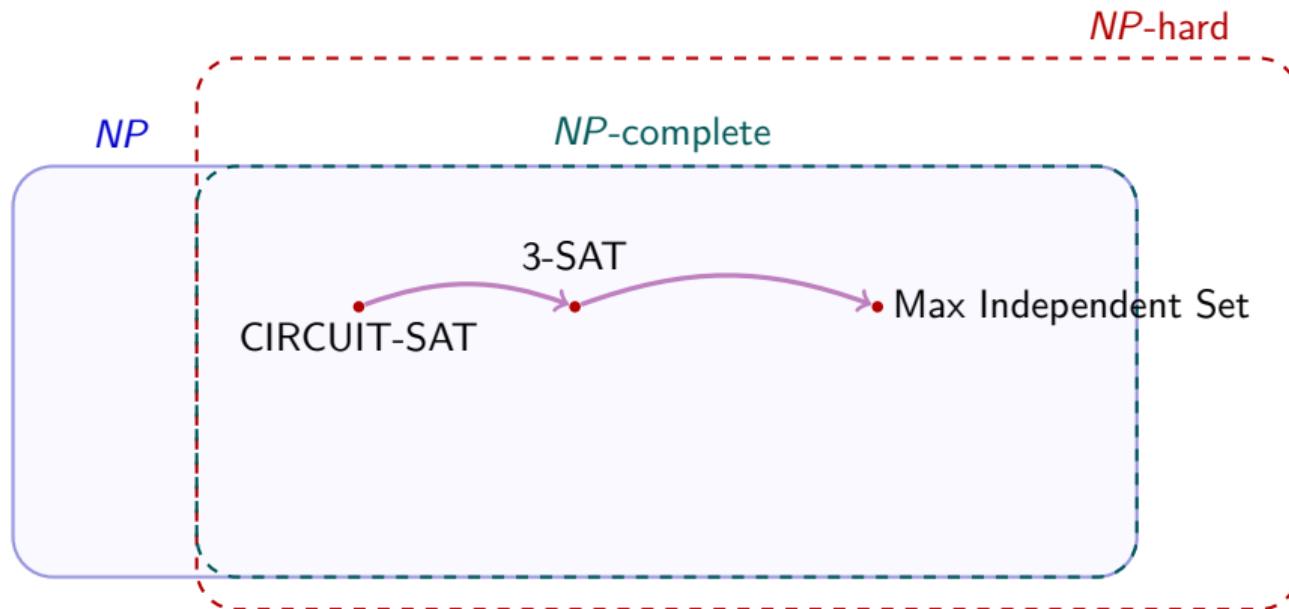
So MIS is NP-hard.

If an independent set of size at least k exists, that set serves as a polynomial-time verifiable witness for a YES-instance. Hence MIS is in NP, and together with NP-hardness, MIS is NP-complete.

=====

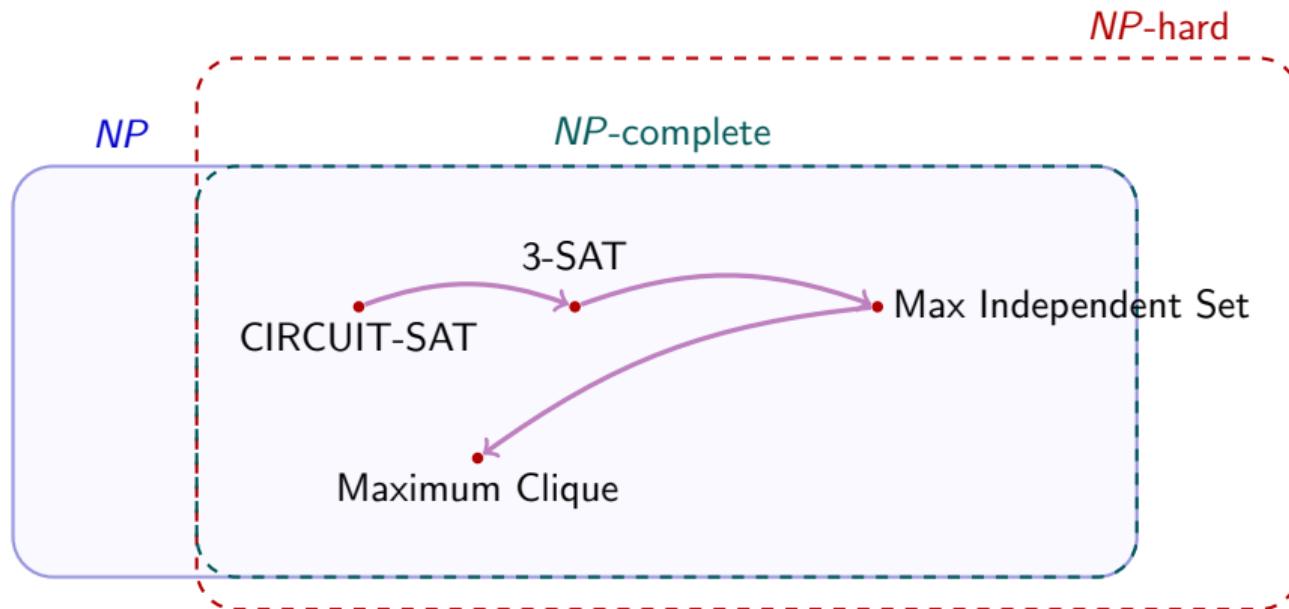
A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.



A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.



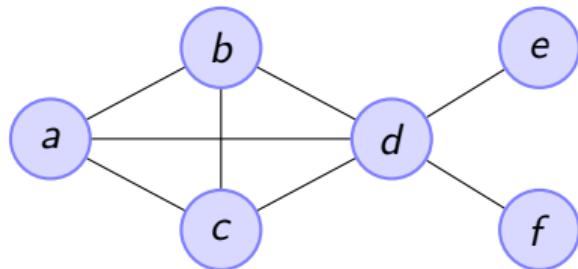
MAX-CLIQUE Is NP-Complete

A reduction from MIS to MAX-CLIQUE

Cliques

Let $G = (V, E)$ be a simple undirected graph.

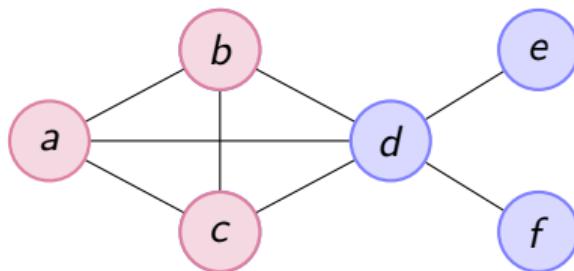
A **clique** in G is a subset $C \subseteq V$ such that every two distinct vertices in C are adjacent.



Cliques

Let $G = (V, E)$ be a simple undirected graph.

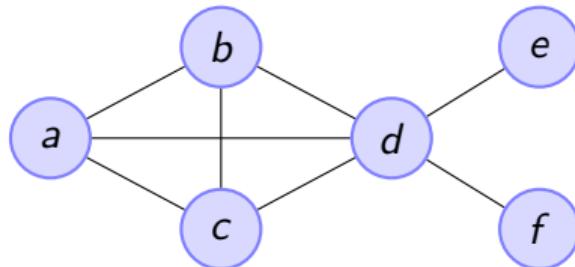
A **clique** in G is a subset $C \subseteq V$ such that every two distinct vertices in C are adjacent.



A clique $C = \{a, b, c\}$ (all vertices connected to each other).

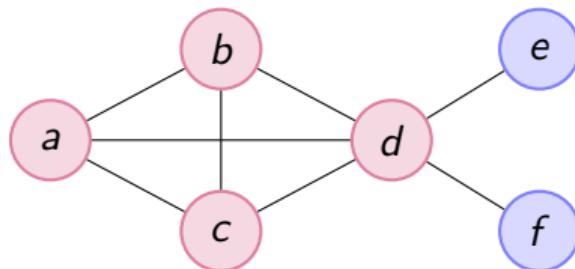
Maximum Clique Problem

Maximum Clique (decision): Given a graph G and an integer k , does G contain a clique of size at least k ?



Maximum Clique Problem

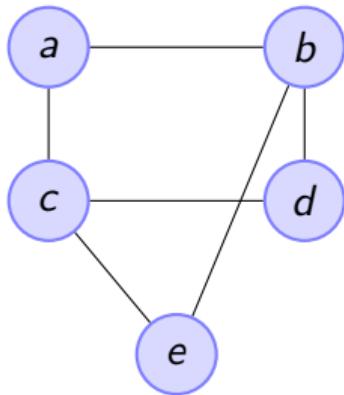
Maximum Clique (decision): Given a graph G and an integer k , does G contain a clique of size at least k ?



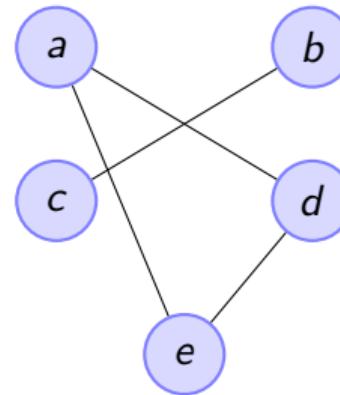
A clique $C = \{a, b, c, d\}$ with size ≥ 4 .

Observation: Complement Graph

Graph G



Complement \overline{G}



Observation: Complement Graph

In G , $\{a, d, e\}$ is an **independent set**
(no internal edges).

Observation: Complement Graph

In G , $\{a, d, e\}$ is an **independent set**
(no internal edges).

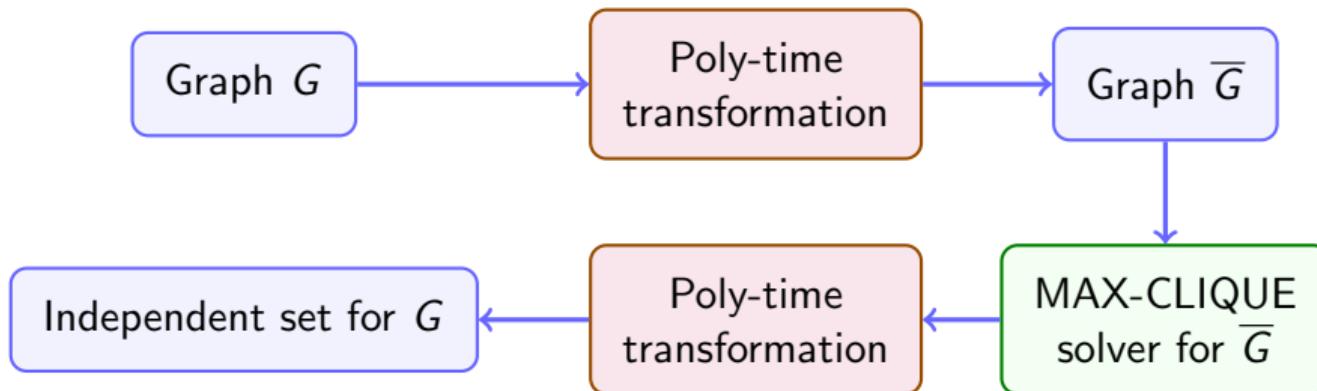
In \overline{G} , $\{a, d, e\}$ is a **clique**
(triangle formed).

Reduction from MIS to MAX-CLIQUE

Let $\overline{G} = (\overline{V}, \overline{E})$ be the complement of $G = (V, E)$.

A set S is independent in $G \iff S$ is a clique in \overline{G} .

Reduction: $\text{MIS} \leq_p \text{MAX-CLIQUE}$



Reduction from MIS to MAX-CLIQUE

- **Mapping:** The problem of finding the maximum independent set in G is *identical* to finding the maximum clique in \overline{G} .

Reduction from MIS to MAX-CLIQUE

- **Mapping:** The problem of finding the maximum independent set in G is *identical* to finding the maximum clique in \overline{G} .
- **Complexity:** We can construct \overline{G} from G in $O(|V|^2)$ time.

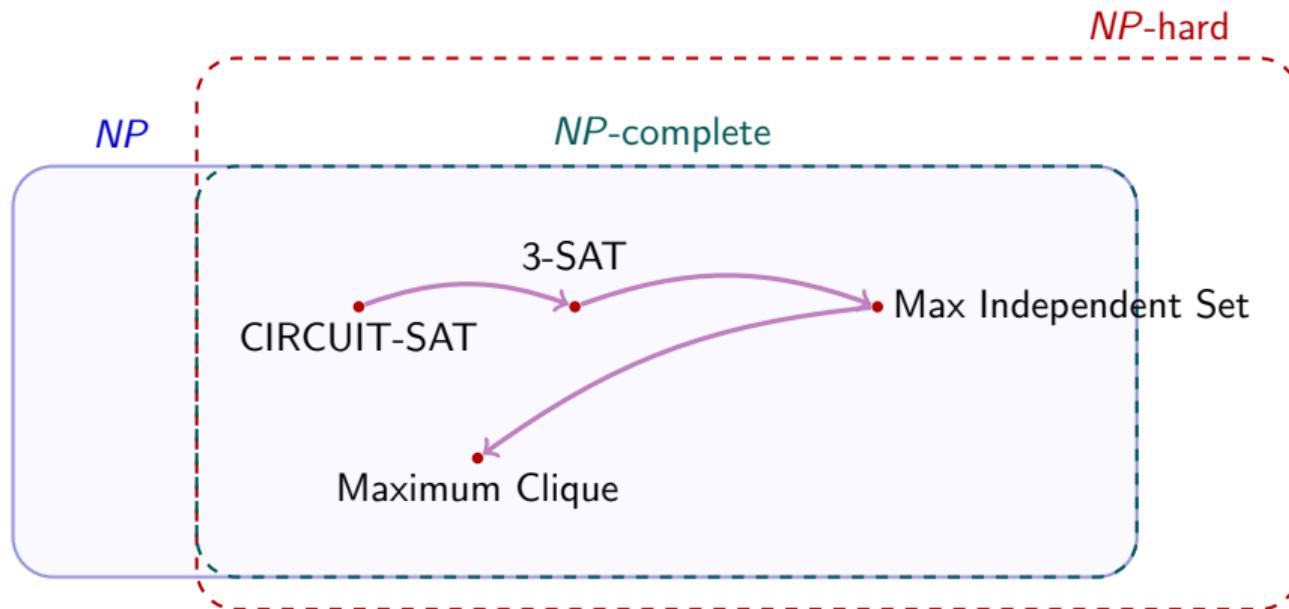
Reduction from MIS to MAX-CLIQUE

- **Mapping:** The problem of finding the maximum independent set in G is *identical* to finding the maximum clique in \overline{G} .
- **Complexity:** We can construct \overline{G} from G in $O(|V|^2)$ time.
- **MAX-CLIQUE is in NP-complete.**
 - The clique of size k can serve as a witness. Thus, MAX-CLIQUE is in NP.
 - Since Maximum Independent Set (MIS) is NP-hard, Maximum Clique must also be NP-hard.

$$\text{MIS} \leq_p \text{MAX-CLIQUE}$$

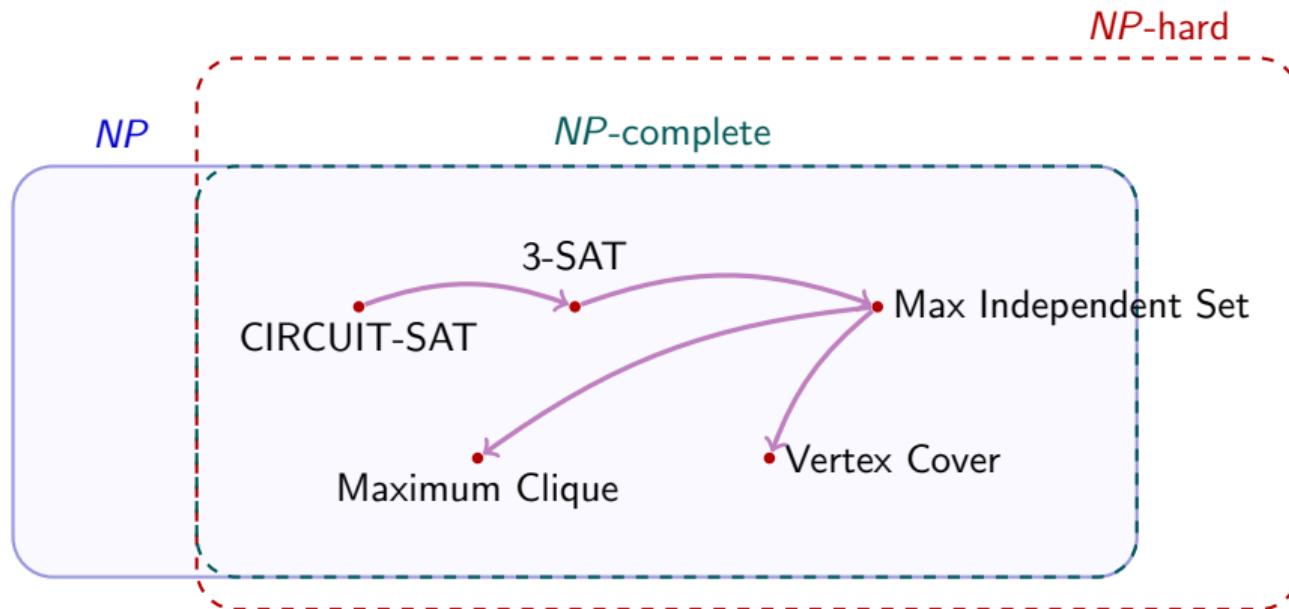
A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.



A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.



VERTEX-COVER Is NP-Complete

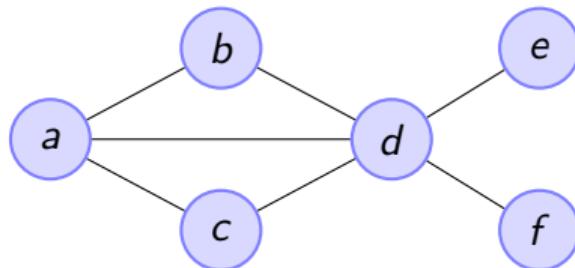
A reduction from MIS to VERTEX-COVER

Vertex Covers

Let $G = (V, E)$ be a simple undirected graph.

A **vertex cover** in G is a subset $C \subseteq V$ such that every edge of G has at least one endpoint in C .

Equivalently: every edge is “touched” by C .

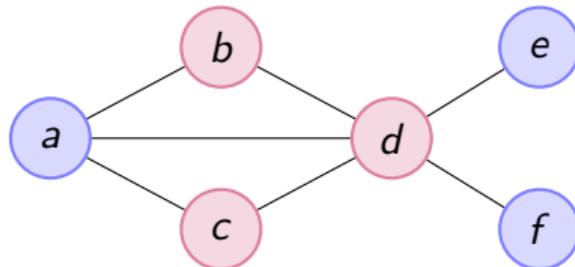


Vertex Covers

Let $G = (V, E)$ be a simple undirected graph.

A **vertex cover** in G is a subset $C \subseteq V$ such that every edge of G has at least one endpoint in C .

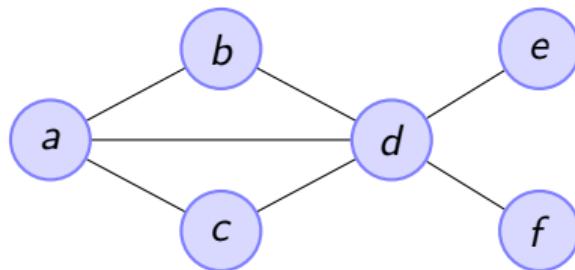
Equivalently: every edge is “touched” by C .



A vertex cover $C = \{b, c, d\}$ touches all edges.

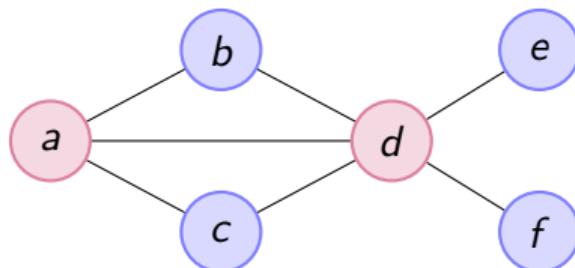
Minimum Vertex Cover Problem

Vertex Cover (decision): Given a graph G and an integer k , does G contain a vertex cover of size at most k ?



Minimum Vertex Cover Problem

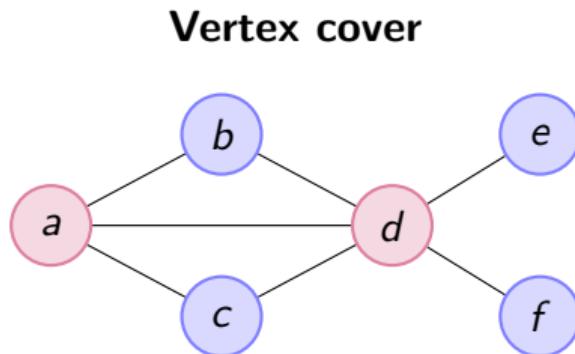
Vertex Cover (decision): Given a graph G and an integer k , does G contain a vertex cover of size at most k ?



Here $\{a, d\}$ is a vertex cover of size 2.

Independent Sets vs Vertex Covers

If we remove the vertices in a vertex cover from the graph, all edges disappear. The remaining vertices form an independent set.

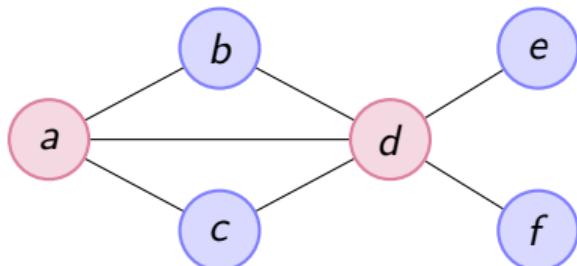


$\{a, d\}$ is a vertex cover.

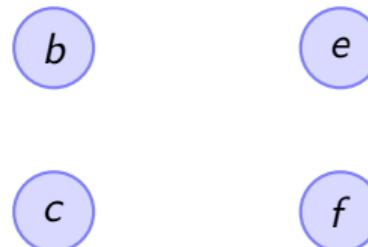
Independent Sets vs Vertex Covers

If we remove the vertices in a vertex cover from the graph, all edges disappear. The remaining vertices form an independent set.

Vertex cover



$\{a, d\}$ is a vertex cover.

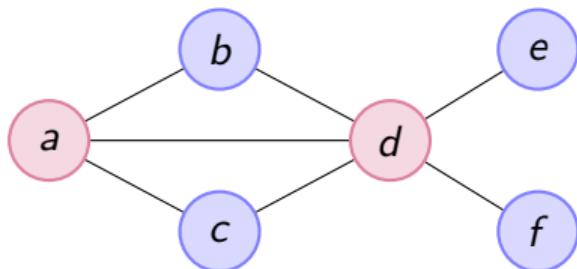


By removing $\{a, d\}$ from G , we obtain $\{b, c, e, f\}$

Independent Sets vs Vertex Covers

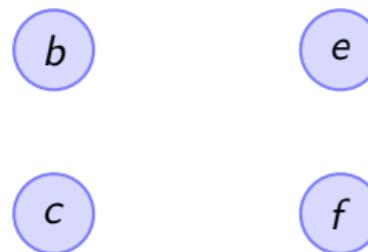
If we remove the vertices in a vertex cover from the graph, all edges disappear. The remaining vertices form an independent set.

Vertex cover



$\{a, d\}$ is a vertex cover.

Independent set



By removing $\{a, d\}$ from G , we obtain $\{b, c, e, f\}$ which is an independent set.

Key Relationship

Let $G = (V, E)$ be a graph with $n = |V|$.

Key relationship:

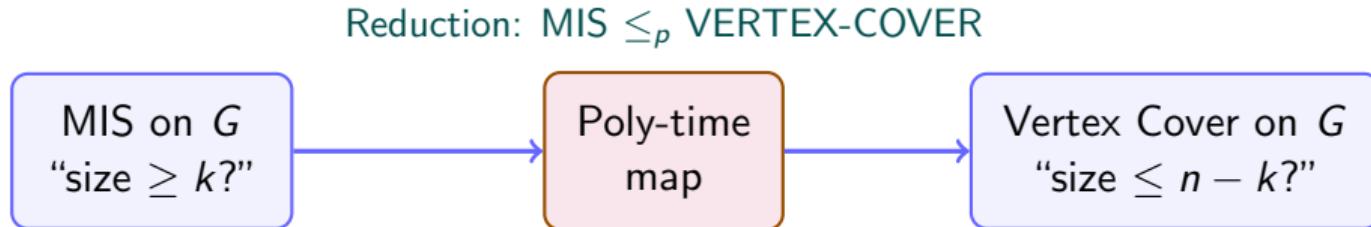
$$I \text{ is an independent set in } G \iff V \setminus I \text{ is a vertex cover of } G.$$

So finding a largest independent set is equivalent to finding a smallest vertex cover:

$$\max |\text{independent set}| + \min |\text{vertex cover}| = n,$$

Reduction from MIS to VERTEX-COVER

Mapping: Given (G, k) for MIS ("is there an independent set of size at least k ?"), map it to $(G, n - k)$ for Vertex Cover ("is there a vertex cover of size at most $n - k$?"),



VERTEX-COVER Is NP-Complete

- A vertex cover of size $\leq k$ is a polynomial-time verifiable witness, so Vertex Cover is in NP.
- Since MIS is NP-hard and $\text{MIS} \leq_p \text{VERTEX-COVER}$, Vertex Cover is NP-complete.

References

Erickson, J. (2019).
Algorithms.
Self-published.