
COMP 382: Reasoning about Algorithms

Reductions and NP-Completeness

Prof. Maryam Aliakbarpour

co-instructors: Prof. Anjum Chida & Prof. Konstantinos Mamouras

November 20, 2025

Today’s Lecture

1. NP-Complete Problems

1.1 3-SAT is NP-complete.

1.2 Maximum Independent Set (MIS)
is NP-complete

1.3 MAX-CLIQUE Is NP-Complete

1.4 VERTEX-COVER Is NP-Complete

Reading:

• Chapter 12 of the Algorithms book [Erickson, 2019]

Content adapted from the same reference.

2 / 48

https://jeffe.cs.illinois.edu/teaching/algorithms/book/12-nphard.pdf

NP-Hard and NP-Complete Problems

NP-Hard Problem

A problem B is NP-hard if for every problem A ∈ NP, A reduces to B.

NP-Complete Problem

A problem B is NP-complete if:

1. B ∈ NP, and

2. For every problem A ∈ NP, A reduces to B.

3 / 48

NP-Hard and NP-Complete Problems

NP-Hard Problem

A problem B is NP-hard if for every problem A ∈ NP, A reduces to B.

NP-Complete Problem

A problem B is NP-complete if:

1. B ∈ NP, and

2. For every problem A ∈ NP, A reduces to B.

3 / 48

The NP-Completeness Recipe

To show a new problem B is NP-complete, start from a known NP-complete problem A.
Show a polynomial-time reduction from A to B.

Cook-Levin Theorem

A is NP-complete: NP ≤p A

A poly-time reduction from A to B: A ≤p B

 =⇒ NP ≤p B

B is NP-hard.

If we also show that B is in NP, then =⇒ B is NP-complete

4 / 48

The NP-Completeness Recipe

To show a new problem B is NP-complete, start from a known NP-complete problem A.
Show a polynomial-time reduction from A to B.

Cook-Levin Theorem

A is NP-complete: NP ≤p A

A poly-time reduction from A to B: A ≤p B

 =⇒ NP ≤p B

B is NP-hard.

If we also show that B is in NP, then =⇒ B is NP-complete

4 / 48

The NP-Completeness Recipe

To show a new problem B is NP-complete, start from a known NP-complete problem A.
Show a polynomial-time reduction from A to B.

Cook-Levin Theorem

A is NP-complete: NP ≤p A

A poly-time reduction from A to B: A ≤p B

 =⇒ NP ≤p B

B is NP-hard.

If we also show that B is in NP, then =⇒ B is NP-complete

4 / 48

The NP-Completeness Recipe

To show a new problem B is NP-complete, start from a known NP-complete problem A.
Show a polynomial-time reduction from A to B.

Cook-Levin Theorem

A is NP-complete: NP ≤p A

A poly-time reduction from A to B: A ≤p B

 =⇒ NP ≤p B

B is NP-hard.

If we also show that B is in NP, then =⇒ B is NP-complete

4 / 48

A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

NP

NP-hard

NP-complete

CIRCUIT-SAT

3-SAT

5 / 48

A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

NP

NP-hard

NP-complete

CIRCUIT-SAT

3-SAT

5 / 48

A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

NP

NP-hard

NP-complete

CIRCUIT-SAT

3-SAT

5 / 48

A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

NP

NP-hard

NP-complete

CIRCUIT-SAT

3-SAT

5 / 48

3-SAT is NP-complete.

A Reduction from CIRCUIT-SAT to 3-SAT

Boolean Logic Basics

• A literal is a variable x or its negation ¬x .

• A disjunction (a.k.a clause) is a logical OR of two or more literals:

ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓk .

• A conjunction is a logical AND of literals:

ℓ1 ∧ ℓ2 ∧ · · · ∧ ℓm.

• A formula is in conjunctive normal form (CNF) if it is a conjunction of disjunctions.

• A 3-CNF formula is a CNF formula in which every clause has exactly 3 literals.

(a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ (b ∨ c ∨ ¬d).

7 / 48

Boolean Logic Basics

• A literal is a variable x or its negation ¬x .
• A disjunction (a.k.a clause) is a logical OR of two or more literals:

ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓk .

• A conjunction is a logical AND of literals:

ℓ1 ∧ ℓ2 ∧ · · · ∧ ℓm.

• A formula is in conjunctive normal form (CNF) if it is a conjunction of disjunctions.

• A 3-CNF formula is a CNF formula in which every clause has exactly 3 literals.

(a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ (b ∨ c ∨ ¬d).

7 / 48

Boolean Logic Basics

• A literal is a variable x or its negation ¬x .
• A disjunction (a.k.a clause) is a logical OR of two or more literals:

ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓk .

• A conjunction is a logical AND of literals:

ℓ1 ∧ ℓ2 ∧ · · · ∧ ℓm.

• A formula is in conjunctive normal form (CNF) if it is a conjunction of disjunctions.

• A 3-CNF formula is a CNF formula in which every clause has exactly 3 literals.

(a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ (b ∨ c ∨ ¬d).

7 / 48

Boolean Logic Basics

• A literal is a variable x or its negation ¬x .
• A disjunction (a.k.a clause) is a logical OR of two or more literals:

ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓk .

• A conjunction is a logical AND of literals:

ℓ1 ∧ ℓ2 ∧ · · · ∧ ℓm.

• A formula is in conjunctive normal form (CNF) if it is a conjunction of disjunctions.

• A 3-CNF formula is a CNF formula in which every clause has exactly 3 literals.

(a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ (b ∨ c ∨ ¬d).

7 / 48

Boolean Logic Basics

• A literal is a variable x or its negation ¬x .
• A disjunction (a.k.a clause) is a logical OR of two or more literals:

ℓ1 ∨ ℓ2 ∨ · · · ∨ ℓk .

• A conjunction is a logical AND of literals:

ℓ1 ∧ ℓ2 ∧ · · · ∧ ℓm.

• A formula is in conjunctive normal form (CNF) if it is a conjunction of disjunctions.

• A 3-CNF formula is a CNF formula in which every clause has exactly 3 literals.

(a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ (b ∨ c ∨ ¬d).
7 / 48

What Is 3-SAT?

3-SAT: Given a 3-CNF formula Φ, does there exist a truth assignment that makes Φ
true?

Example:
(a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ (b ∨ c ∨ ¬d) .

Assignment: a = T b = F c = T d = T e = F

8 / 48

What Is 3-SAT?

3-SAT: Given a 3-CNF formula Φ, does there exist a truth assignment that makes Φ
true?

Example:
(a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ (b ∨ c ∨ ¬d) .

Assignment: a = T b = F c = T d = T e = F

8 / 48

What Is 3-SAT?

3-SAT: Given a 3-CNF formula Φ, does there exist a truth assignment that makes Φ
true?

Example:
(a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ (b ∨ c ∨ ¬d) .

Assignment: a = T b = F c = T d = T e = F

8 / 48

What Is 3-SAT?

3-SAT: Given a 3-CNF formula Φ, does there exist a truth assignment that makes Φ
true?

Example:
(a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ (b ∨ c ∨ ¬d) .

Assignment: a = T b = F c = T d = T e = F

Why it works:

(a ∨¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ (b ∨ c ∨ ¬d) .

8 / 48

What Is 3-SAT?

3-SAT: Given a 3-CNF formula Φ, does there exist a truth assignment that makes Φ
true?

Example:
(a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ (b ∨ c ∨ ¬d) .

Assignment: a = T b = F c = T d = T e = F

Why it works:

(a ∨¬b ∨ c) ∧ (¬a ∨d ∨ ¬e) ∧ (b ∨ c ∨ ¬d) .

8 / 48

What Is 3-SAT?

3-SAT: Given a 3-CNF formula Φ, does there exist a truth assignment that makes Φ
true?

Example:
(a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ (b ∨ c ∨ ¬d) .

Assignment: a = T b = F c = T d = T e = F

Why it works:

(a ∨¬b ∨ c) ∧ (¬a ∨ d ∨¬e) ∧ (b ∨ c ∨ ¬d) .

8 / 48

What Is 3-SAT?

3-SAT: Given a 3-CNF formula Φ, does there exist a truth assignment that makes Φ
true?

Example:
(a ∨ ¬b ∨ c) ∧ (¬a ∨ d ∨ ¬e) ∧ (b ∨ c ∨ ¬d) .

Assignment: a = T b = F c = T d = T e = F

Why it works:

(a ∨¬b ∨ c) ∧ (¬a ∨ d ∨¬e) ∧ (¬b ∨ c ∨¬d) .

8 / 48

Why Is 3-SAT Hard? (Intuition)

(a ∨ ¬b ∨ c) (¬a ∨ d ∨ ¬e) (b ∨ c ∨ ¬d)

Clause 1 Clause 2 Clause 3

✓

��¬a ∨d ∨ ¬e × �b ∨c ∨ ¬d ×

To satisfy the first clause, we might choose

a = T , b = F , or c = T

Satisfying one clause (Clause 1) can break others (Clauses 2 and 3).

This tug-of-war between clauses is what makes 3-SAT difficult.

9 / 48

Why Is 3-SAT Hard? (Intuition)

(a ∨ ¬b ∨ c) (¬a ∨ d ∨ ¬e) (b ∨ c ∨ ¬d)

Clause 1 Clause 2 Clause 3

✓

��¬a ∨d ∨ ¬e × �b ∨c ∨ ¬d ×

To satisfy the first clause, we might choose

a = T , b = F , or c = T

Satisfying one clause (Clause 1) can break others (Clauses 2 and 3).

This tug-of-war between clauses is what makes 3-SAT difficult.

9 / 48

Why Is 3-SAT Hard? (Intuition)

(a ∨ ¬b ∨ c) (¬a ∨ d ∨ ¬e) (b ∨ c ∨ ¬d)

Clause 1 Clause 2 Clause 3
✓

��¬a ∨d ∨ ¬e ×

�b ∨c ∨ ¬d ×

To satisfy the first clause, we might choose

a = T , b = F , or c = T

Satisfying one clause (Clause 1) can break others (Clauses 2 and 3).

This tug-of-war between clauses is what makes 3-SAT difficult.

9 / 48

Why Is 3-SAT Hard? (Intuition)

(a ∨ ¬b ∨ c) (¬a ∨ d ∨ ¬e) (b ∨ c ∨ ¬d)

Clause 1 Clause 2 Clause 3
✓

��¬a ∨d ∨ ¬e × �b ∨c ∨ ¬d ×

To satisfy the first clause, we might choose

a = T , b = F , or c = T

Satisfying one clause (Clause 1) can break others (Clauses 2 and 3).

This tug-of-war between clauses is what makes 3-SAT difficult.
9 / 48

Plan: Reduce 3-SAT to MIS

• Input on the 3-SAT side: A 3-CNF formula Φ with k clauses, each with exactly three
literals.

Φ = C1 ∧ C2 ∧ · · · ∧ Ck

• We will build a graph G such that: Φ is satisfiable if and only if G has an independent
set of size k .

3-CNF formula Φ
Poly-time

transformation

Poly-time
transformation

Graph G

MIS solver
for G

satisfying assignment
for Φ

Reduction: 3-SAT ≤p MIS

10 / 48

From CIRCUIT-SAT to 3-SAT

Goal: Show that 3-SAT is NP-complete by giving a polynomial-time reduction from
Circuit-SAT to 3-SAT.

Boolean
circuit K

Φ1

formula
Φ2

CNF
Φ3

3-CNF

gate clauses Tseitin force size 3

Our reduction turns an arbitrary circuit K into an equivalent 3-CNF formula Φ3:

K is satisfiable ⇐⇒ Φ3 is satisfiable.

11 / 48

Step 1: Make the Circuit Binary

Input: an arbitrary Boolean circuit Φ built from ∧, ∨, and ¬ gates.

First, ensure every ∧ and ∨ gate has exactly two inputs.

• If a gate has k > 2 inputs, replace it by a small binary tree of k − 1 binary gates.
• Call the resulting circuit Φ1.

x1

x2

x3

x4

x5

∨ y

5-input OR gate

=⇒

x1

x2

x3

x4

x5

∨

∨ ∨ ∨ y

binary tree of 2-input gates

12 / 48

Step 1: Make the Circuit Binary

• Φ and Φ1 are logically equivalent.
• Every satisfying input for Φ is a satisfying input for Φ1 and vice versa.

(So we can pretend from now on that every gate is binary.)

x1

x2

x3

x4

x5

∨ y

5-input OR gate

=⇒

x1

x2

x3

x4

x5

∨

∨ ∨ ∨ y

binary tree of 2-input gates

12 / 48

Step 2: From Circuit to CNF Φ2

Introduce a Boolean variable for the output of every gate and input wire.

For each gate, add a constraint that relates the output variable to the input variables.

We get a formula Φ2 with one clause per gate, such that:

assignment to inputs satisfies Φ1 ⇐⇒ extended assignment satisfies Φ2.

Intuitively:

• Wire variables represent the value on each wire of the circuit.

• Gate clauses enforce that each gate output is computed correctly.

13 / 48

Step 2: Gate Clauses as CNF (Tseitin)

Each gate in Φ1 becomes a small CNF formula in Φ2.

Let a be the output of the gate, b and c be its inputs.

AND gate: a = b ∧ c ⇒ (a ∨ ¬b ∨ ¬c) ∧ (¬a ∨ b) ∧ (¬a ∨ c)

OR gate: a = b ∨ c ⇒ (¬a ∨ b ∨ c) ∧ (a ∨ ¬b) ∧ (a ∨ ¬c)
NOT gate: a = ¬b ⇒ (a ∨ b) ∧ (¬a ∨ ¬b)

Φ1 and Φ2 are logically equivalent, so they have exactly the same satisfying assignments.

14 / 48

Tseitin Encoding on a Small Circuit

Example depth-2 circuit: y = (x1 ∧ x2) ∨ ¬x3.

x1

x2

x3

∧

¬

∨ y

g1

g2

y

Introduce one variable per gate output:

g1, g2, y .

Tseitin constraints (CNF clauses):

g1 = x1 ∧ x2
⇒ (g1 ∨ ¬x1 ∨ ¬x2) ∧ (¬g1 ∨ x1) ∧ (¬g1 ∨ x2)

g2 = ¬x3
⇒ (g2 ∨ x3) ∧ (¬g2 ∨ ¬x3)

y = g1 ∨ g2
⇒ (¬y ∨ g1 ∨ g2) ∧ (y ∨ ¬g1) ∧ (y ∨ ¬g2)

15 / 48

Tseitin Encoding on a Small Circuit

Example depth-2 circuit: y = (x1 ∧ x2) ∨ ¬x3.

x1

x2

x3

∧

¬

∨ y

g1

g2

y

Introduce one variable per gate output:

g1, g2, y .

Tseitin constraints (CNF clauses):

g1 = x1 ∧ x2
⇒ (g1 ∨ ¬x1 ∨ ¬x2) ∧ (¬g1 ∨ x1) ∧ (¬g1 ∨ x2)

g2 = ¬x3
⇒ (g2 ∨ x3) ∧ (¬g2 ∨ ¬x3)

y = g1 ∨ g2
⇒ (¬y ∨ g1 ∨ g2) ∧ (y ∨ ¬g1) ∧ (y ∨ ¬g2)

15 / 48

Tseitin Encoding on a Small Circuit

Example depth-2 circuit: y = (x1 ∧ x2) ∨ ¬x3.

x1

x2

x3

∧

¬

∨ y

g1

g2

y

Introduce one variable per gate output:

g1, g2, y .

Tseitin constraints (CNF clauses):

g1 = x1 ∧ x2
⇒ (g1 ∨ ¬x1 ∨ ¬x2) ∧ (¬g1 ∨ x1) ∧ (¬g1 ∨ x2)

g2 = ¬x3
⇒ (g2 ∨ x3) ∧ (¬g2 ∨ ¬x3)

y = g1 ∨ g2
⇒ (¬y ∨ g1 ∨ g2) ∧ (y ∨ ¬g1) ∧ (y ∨ ¬g2)

15 / 48

Step 3: Force Clauses to Have Size Exactly 3

Every clause in Φ2 has at most three literals, but 3-CNF requires exactly three.

We fix short clauses by introducing new variables.

Two-literal clause:

(a ∨ b) =⇒ (a ∨ b ∨ x) ∧ (a ∨ b ∨ ¬x),

using a new variable x .

One-literal clause:

(z) =⇒ (z ∨ x ∨ y) ∧ (z ∨ ¬x ∨ y) ∧ (z ∨ x ∨ ¬y) ∧ (z ∨ ¬x ∨ ¬y),

using new variables x , y .

Call the final 3-CNF formula Φ3.
16 / 48

Correctness of the Construction

At every step, we obtained a new formula that was logically equivalent. Thus:

Φ is satisfiable ⇐⇒ Φ3 is satisfiable.

The whole transformation runs in polynomial (in fact, linear) time in the size of Φ, so we
have a valid reduction from Circuit-SAT to 3-SAT.

If an input assignment makes the circuit output true, that assignment serves as a
polynomial-time verifiable witness for a YES-instance.

Hence CIRCUIT-SAT is in NP, and together with NP-hardness, CIRCUIT-SAT is
NP-complete.”

17 / 48

Correctness of the Construction

At every step, we obtained a new formula that was logically equivalent. Thus:

Φ is satisfiable ⇐⇒ Φ3 is satisfiable.

The whole transformation runs in polynomial (in fact, linear) time in the size of Φ, so we
have a valid reduction from Circuit-SAT to 3-SAT.

If an input assignment makes the circuit output true, that assignment serves as a
polynomial-time verifiable witness for a YES-instance.

Hence CIRCUIT-SAT is in NP, and together with NP-hardness, CIRCUIT-SAT is
NP-complete.”

17 / 48

A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

NP

NP-hard

NP-complete

CIRCUIT-SAT

3-SAT

Max Independent Set

18 / 48

A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

NP

NP-hard

NP-complete

CIRCUIT-SAT

3-SAT
Max Independent Set

18 / 48

Maximum Independent Set (MIS)
is NP-complete

A reduction from 3-SAT to MIS

Independent Sets and MIS

Let G = (V ,E) be a simple undirected graph.

An independent set in G is a subset S ⊆ V such that no two vertices in S are adjacent.

b

c

e

f

a d

a d

An independent set S = {a, d} (no edges inside S).

20 / 48

Independent Sets and MIS

Let G = (V ,E) be a simple undirected graph.

An independent set in G is a subset S ⊆ V such that no two vertices in S are adjacent.

b

c

e

f

a d

a d

An independent set S = {a, d} (no edges inside S).

20 / 48

Maximum Independent Set Problem (MIS)

Maximum Independent Set (MIS): Given a graph G and an integer k , does G contain
an independent set of size at least k?

a d

b

c

e

f

b

c

e

f

An independent set S = {b, c , e, f } with size ≥ 4.

21 / 48

Maximum Independent Set Problem (MIS)

Maximum Independent Set (MIS): Given a graph G and an integer k , does G contain
an independent set of size at least k?

a d

b

c

e

f

b

c

e

f

An independent set S = {b, c , e, f } with size ≥ 4.

21 / 48

Plan: Reduce 3-SAT to MIS

• Input on the 3-SAT side: A 3-CNF formula Φ with k clauses, each with exactly three
literals.

Φ = C1 ∧ C2 ∧ · · · ∧ Ck

• We will build a graph G such that: Φ is satisfiable if and only if G has an independent
set of size k .

3-CNF formula Φ
Poly-time

transformation

Poly-time
transformation

Graph G

MIS solver
for G

satisfying assignment
for Φ

Reduction: 3-SAT ≤p MIS

22 / 48

Constructing the Graph G from Φ

Let Φ be a 3-CNF formula with k clauses.

Φ = C1 ∧ C2 ∧ · · · ∧ Ck , Ci = (ℓi1 ∨ ℓi2 ∨ ℓi3)

We build a graph G as follows:

1. For each clause Ci , create a triangle of three vertices, one for each literal ℓi1, ℓi2, ℓi3.

• The resulting graph has exactly 3k vertices: one vertex per literal occurrence in Φ.

2. For every pair of complementary literals x and ¬x , connect all corresponding vertices
in G by an edge.

• These edges enforce that we do not pick both x and ¬x .

23 / 48

Constructing the Graph G from Φ

Let Φ be a 3-CNF formula with k clauses.

Φ = C1 ∧ C2 ∧ · · · ∧ Ck , Ci = (ℓi1 ∨ ℓi2 ∨ ℓi3)

We build a graph G as follows:

1. For each clause Ci , create a triangle of three vertices, one for each literal ℓi1, ℓi2, ℓi3.

• The resulting graph has exactly 3k vertices: one vertex per literal occurrence in Φ.

2. For every pair of complementary literals x and ¬x , connect all corresponding vertices
in G by an edge.

• These edges enforce that we do not pick both x and ¬x .

23 / 48

Constructing the Graph G from Φ

Let Φ be a 3-CNF formula with k clauses.

Φ = C1 ∧ C2 ∧ · · · ∧ Ck , Ci = (ℓi1 ∨ ℓi2 ∨ ℓi3)

We build a graph G as follows:

1. For each clause Ci , create a triangle of three vertices, one for each literal ℓi1, ℓi2, ℓi3.

• The resulting graph has exactly 3k vertices: one vertex per literal occurrence in Φ.

2. For every pair of complementary literals x and ¬x , connect all corresponding vertices
in G by an edge.

• These edges enforce that we do not pick both x and ¬x .

23 / 48

Constructing the Graph G from Φ

Let Φ be a 3-CNF formula with k clauses.

Φ = C1 ∧ C2 ∧ · · · ∧ Ck , Ci = (ℓi1 ∨ ℓi2 ∨ ℓi3)

We build a graph G as follows:

1. For each clause Ci , create a triangle of three vertices, one for each literal ℓi1, ℓi2, ℓi3.

• The resulting graph has exactly 3k vertices: one vertex per literal occurrence in Φ.

2. For every pair of complementary literals x and ¬x , connect all corresponding vertices
in G by an edge.

• These edges enforce that we do not pick both x and ¬x .

23 / 48

Example of the Construction

Intuition: Each selected vertex in MIS represents a literal we use to make its clause true.

Φ = (a ∨ b ∨ c) ∧ (b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ c ∨ d) ∧ (a ∨ ¬b ∨ ¬d).

a

b

c

b

¬c

¬d

¬a

c

d

a

¬b ¬d

24 / 48

Example of the Construction

Intuition: Each selected vertex in MIS represents a literal we use to make its clause true.

Φ = (a ∨ b ∨ c) ∧ (b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ c ∨ d) ∧ (a ∨ ¬b ∨ ¬d).

a

b

c

b

¬c

¬d

¬a

c

d

a

¬b ¬d

24 / 48

Example of the Construction

Intuition: Each selected vertex in MIS represents a literal we use to make its clause true.

Φ = (a ∨ b ∨ c) ∧ (b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ c ∨ d) ∧ (a ∨ ¬b ∨ ¬d).

a

b

c b

¬c

¬d

¬a

c

d

a

¬b ¬d

24 / 48

Example of the Construction

Intuition: Each selected vertex in MIS represents a literal we use to make its clause true.

Φ = (a ∨ b ∨ c) ∧ (b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ c ∨ d) ∧ (a ∨ ¬b ∨ ¬d).

a

b

c b

¬c

¬d

¬a

c

d

a

¬b ¬d
24 / 48

Example of the Construction

Intuition: Each selected vertex in MIS represents a literal we use to make its clause true.

Φ = (a ∨ b ∨ c) ∧ (b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ c ∨ d) ∧ (a ∨ ¬b ∨ ¬d).

a

b

c b

¬c

¬d

¬a

c

d

a

¬b ¬d
24 / 48

Example of the Construction

Intuition: Each selected vertex in MIS represents a literal we use to make its clause true.

Φ = (a ∨ b ∨ c) ∧ (b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ c ∨ d) ∧ (a ∨ ¬b ∨ ¬d).

a

b

c b

¬c

¬d

¬a

c

d

a

¬b ¬d
24 / 48

Example of the Construction

Intuition: Each selected vertex in MIS represents a literal we use to make its clause true.

Φ = (a ∨ b ∨ c) ∧ (b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ c ∨ d) ∧ (a ∨ ¬b ∨ ¬d).

a

b

c b

¬c

¬d

¬a

c

d

a

¬b ¬d
24 / 48

Key Observation About Independent Sets

• Each clause corresponds to a triangle in G .

• An independent set can contain at most one vertex from each triangle, because every
pair of vertices in a triangle is connected by an edge.

• Therefore, any independent set in G has size at most k (one vertex per clause).

• The decision version of MIS was: |MIS| ≥ k; The answer is YES iff |MIS| = k;

• We will show:

Φ is satisfiable ⇐⇒ G has an independent set of size k .

25 / 48

Key Observation About Independent Sets

• Each clause corresponds to a triangle in G .

• An independent set can contain at most one vertex from each triangle, because every
pair of vertices in a triangle is connected by an edge.

• Therefore, any independent set in G has size at most k (one vertex per clause).

• The decision version of MIS was: |MIS| ≥ k; The answer is YES iff |MIS| = k;

• We will show:

Φ is satisfiable ⇐⇒ G has an independent set of size k .

25 / 48

Key Observation About Independent Sets

• Each clause corresponds to a triangle in G .

• An independent set can contain at most one vertex from each triangle, because every
pair of vertices in a triangle is connected by an edge.

• Therefore, any independent set in G has size at most k (one vertex per clause).

• The decision version of MIS was: |MIS| ≥ k; The answer is YES iff |MIS| = k;

• We will show:

Φ is satisfiable ⇐⇒ G has an independent set of size k .

25 / 48

Key Observation About Independent Sets

• Each clause corresponds to a triangle in G .

• An independent set can contain at most one vertex from each triangle, because every
pair of vertices in a triangle is connected by an edge.

• Therefore, any independent set in G has size at most k (one vertex per clause).

• The decision version of MIS was: |MIS| ≥ k; The answer is YES iff |MIS| = k;

• We will show:

Φ is satisfiable ⇐⇒ G has an independent set of size k .

25 / 48

Key Observation About Independent Sets

• Each clause corresponds to a triangle in G .

• An independent set can contain at most one vertex from each triangle, because every
pair of vertices in a triangle is connected by an edge.

• Therefore, any independent set in G has size at most k (one vertex per clause).

• The decision version of MIS was: |MIS| ≥ k; The answer is YES iff |MIS| = k;

• We will show:

Φ is satisfiable ⇐⇒ G has an independent set of size k .

25 / 48

Correctness: Φ is Satisfiable =⇒ |MIS| = k

Assume Φ is satisfiable and fix a satisfying assignment.

• In each clause Ci , at least one literal is true under this assignment.

• For each clause Ci , choose exactly one vertex in the clause triangle whose literal is
true.

• Let S be the set of these k chosen vertices.

26 / 48

Correctness: Φ is Satisfiable =⇒ |MIS| = k

Assume Φ is satisfiable and fix a satisfying assignment.

• In each clause Ci , at least one literal is true under this assignment.

• For each clause Ci , choose exactly one vertex in the clause triangle whose literal is
true.

• Let S be the set of these k chosen vertices.

26 / 48

Correctness: Φ is Satisfiable =⇒ |MIS| = k

3-CNF: Φ = (a ∨ b ∨ c) ∧ (b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ c ∨ d) ∧ (a ∨ ¬b ∨ ¬d).
Assignment: a = T b = F c = T d = F

a

b

c b

¬c

¬d

¬a

c

d

a

¬b ¬d

27 / 48

Correctness: Φ is Satisfiable =⇒ |MIS| = k

3-CNF: Φ = (a ∨ b ∨ c) ∧ (b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ c ∨ d) ∧ (a ∨ ¬b ∨ ¬d).
Assignment: a = T b = F c = T d = F

a

c

¬d

c
a

¬b ¬d

b

b

¬c

¬a d

c

¬d

c
a

28 / 48

Correctness: Φ is Satisfiable =⇒ |MIS| = k

3-CNF: Φ = (a ∨ b ∨ c) ∧ (b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ c ∨ d) ∧ (a ∨ ¬b ∨ ¬d).
Assignment: a = T b = F c = T d = F

a

c

¬d

c
a

¬b ¬d

b

b

¬c

¬a d

c

¬d

c
a

28 / 48

Correctness: Φ is Satisfiable =⇒ |MIS| = k

3-CNF: Φ = (a ∨ b ∨ c) ∧ (b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ c ∨ d) ∧ (a ∨ ¬b ∨ ¬d).
Assignment: a = T b = F c = T d = F

a

c

¬d

c
a

¬b ¬d

b

b

¬c

¬a d

c

¬d

c
a

28 / 48

Correctness: Φ is Satisfiable =⇒ |MIS| = k

Why is S an independent set?

• S contains at most one vertex from each triangle, so no triangle edge connects two
vertices in S .

• All literals in S are true, so S cannot contain both x and ¬x . Hence no negation edge
connects two vertices in S .

Thus S is an independent set of size k in G .

29 / 48

Correctness: |MIS| = k =⇒ Φ is Satisfiable

Now assume G has an independent set S of size k.

• S can contain at most one vertex from each clause triangle.

• But |S | = k and there are k triangles, so S must contain exactly one vertex from each
clause triangle.

Use S to build a truth assignment:

• For each literal in S , set that literal to true (that is, set the underlying variable
accordingly).

• Because S is independent, it never contains both x and ¬x , so this assignment is
consistent.

• Any variable not appearing in S can be set arbitrarily.

• Each clause has one vertex in S , so each clause has at least one true literal.

Therefore Φ is satisfiable.

30 / 48

Correctness: |MIS| = k =⇒ Φ is Satisfiable

Now assume G has an independent set S of size k.

• S can contain at most one vertex from each clause triangle.

• But |S | = k and there are k triangles, so S must contain exactly one vertex from each
clause triangle.

Use S to build a truth assignment:

• For each literal in S , set that literal to true (that is, set the underlying variable
accordingly).

• Because S is independent, it never contains both x and ¬x , so this assignment is
consistent.

• Any variable not appearing in S can be set arbitrarily.

• Each clause has one vertex in S , so each clause has at least one true literal.

Therefore Φ is satisfiable.

30 / 48

Correctness: |MIS| = k =⇒ Φ is Satisfiable

Now assume G has an independent set S of size k.

• S can contain at most one vertex from each clause triangle.

• But |S | = k and there are k triangles, so S must contain exactly one vertex from each
clause triangle.

Use S to build a truth assignment:

• For each literal in S , set that literal to true (that is, set the underlying variable
accordingly).

• Because S is independent, it never contains both x and ¬x , so this assignment is
consistent.

• Any variable not appearing in S can be set arbitrarily.

• Each clause has one vertex in S , so each clause has at least one true literal.

Therefore Φ is satisfiable.

30 / 48

Correctness: |MIS| = k =⇒ Φ is Satisfiable

Now assume G has an independent set S of size k.

• S can contain at most one vertex from each clause triangle.

• But |S | = k and there are k triangles, so S must contain exactly one vertex from each
clause triangle.

Use S to build a truth assignment:

• For each literal in S , set that literal to true (that is, set the underlying variable
accordingly).

• Because S is independent, it never contains both x and ¬x , so this assignment is
consistent.

• Any variable not appearing in S can be set arbitrarily.

• Each clause has one vertex in S , so each clause has at least one true literal.

Therefore Φ is satisfiable.
30 / 48

Correctness: |MIS| = k =⇒ Φ is Satisfiable

Independent set: {a1, ¬d2, c3, a4}

Assignment: a = T b = ? c = T d = F

Φ = (a ∨ b ∨ c) ∧ (b ∨ ¬c ∨ ¬d) ∧ (¬a ∨ c ∨ d) ∧ (a ∨ ¬b ∨ ¬d).

a

b

c b

¬c

¬d

¬a

c

d

a

¬b ¬d

a

¬d

c
a

31 / 48

Concluding the Reduction

• We transformed a 3-CNF formula Φ with k clauses into a graph G with 3k vertices.

• The transformation can be carried out in time polynomial in |Φ|.

• We proved:

Φ is satisfiable ⇐⇒ G has an independent set of size k .

Therefore, if we could solve the MIS decision problem in polynomial time, we could solve
3-SAT in polynomial time via this reduction.

So MIS is NP-hard.

If an independent set of size at least k exists, that set serves as a polynomial-time
verifiable witness for a YES-instance. Hence MIS is in NP, and together with
NP-hardness, MIS is NP-complete.

32 / 48

Concluding the Reduction

• We transformed a 3-CNF formula Φ with k clauses into a graph G with 3k vertices.

• The transformation can be carried out in time polynomial in |Φ|.

• We proved:

Φ is satisfiable ⇐⇒ G has an independent set of size k .

Therefore, if we could solve the MIS decision problem in polynomial time, we could solve
3-SAT in polynomial time via this reduction.

So MIS is NP-hard.

If an independent set of size at least k exists, that set serves as a polynomial-time
verifiable witness for a YES-instance. Hence MIS is in NP, and together with
NP-hardness, MIS is NP-complete.

32 / 48

=====================

33 / 48

A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

NP

NP-hard

NP-complete

CIRCUIT-SAT

3-SAT
Max Independent Set

Maximum Clique

33 / 48

A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

NP

NP-hard

NP-complete

CIRCUIT-SAT

3-SAT
Max Independent Set

Maximum Clique

33 / 48

MAX-CLIQUE Is NP-Complete

A reduction from MIS to MAX-CLIQUE

Cliques

Let G = (V ,E) be a simple undirected graph.

A clique in G is a subset C ⊆ V such that every two distinct vertices in C are adjacent.

b

c

e

f

a d

a d

b

c

A clique C = {a, b, c} (all vertices connected to each other).

35 / 48

Cliques

Let G = (V ,E) be a simple undirected graph.

A clique in G is a subset C ⊆ V such that every two distinct vertices in C are adjacent.

b

c

e

f

a d

a d

b

c

A clique C = {a, b, c} (all vertices connected to each other).

35 / 48

Maximum Clique Problem

Maximum Clique (decision): Given a graph G and an integer k, does G contain a
clique of size at least k?

e

f

a

b

c

d

a

b

c

d

A clique C = {a, b, c , d} with size ≥ 4.

36 / 48

Maximum Clique Problem

Maximum Clique (decision): Given a graph G and an integer k, does G contain a
clique of size at least k?

e

f

a

b

c

d

a

b

c

d

A clique C = {a, b, c , d} with size ≥ 4.

36 / 48

Observation: Complement Graph

Graph G

a b

c d

e

a

d

e

In G , {a, d , e} is an independent set
(no internal edges).

Complement G

a b

c d

e

a

d

e

In G , {a, d , e} is a clique
(triangle formed).

37 / 48

Observation: Complement Graph

Graph G

a b

c d

e

a

d

e

In G , {a, d , e} is an independent set
(no internal edges).

Complement G

a b

c d

e

a

d

e

In G , {a, d , e} is a clique
(triangle formed).

37 / 48

Observation: Complement Graph

Graph G

a b

c d

e

a

d

e

In G , {a, d , e} is an independent set
(no internal edges).

Complement G

a b

c d

e

a

d

e

In G , {a, d , e} is a clique
(triangle formed).

37 / 48

Reduction from MIS to MAX-CLIQUE

Let G = (V ,E) be the complement of G = (V ,E).

A set S is independent in G ⇐⇒ S is a clique in G .

Graph G
Poly-time

transformation

Poly-time
transformation

Graph G

MAX-CLIQUE
solver for G

Independent set for G

Reduction: MIS ≤p MAX-CLIQUE

38 / 48

Reduction from MIS to MAX-CLIQUE

• Mapping: The problem of finding the maximum independent set in G is identical to
finding the maximum clique in G .

• Complexity: We can construct G from G in O(|V |2) time.

• MAX-CLIQUE is in NP-complete.

• The clique of size k can serve as a witness. Thus, MAX-CLIQUE is in NP.

• Since Maximum Independent Set (MIS) is NP-hard, Maximum Clique must also be NP-
hard.

MIS ≤p MAX-CLIQUE

39 / 48

Reduction from MIS to MAX-CLIQUE

• Mapping: The problem of finding the maximum independent set in G is identical to
finding the maximum clique in G .

• Complexity: We can construct G from G in O(|V |2) time.

• MAX-CLIQUE is in NP-complete.

• The clique of size k can serve as a witness. Thus, MAX-CLIQUE is in NP.

• Since Maximum Independent Set (MIS) is NP-hard, Maximum Clique must also be NP-
hard.

MIS ≤p MAX-CLIQUE

39 / 48

Reduction from MIS to MAX-CLIQUE

• Mapping: The problem of finding the maximum independent set in G is identical to
finding the maximum clique in G .

• Complexity: We can construct G from G in O(|V |2) time.

• MAX-CLIQUE is in NP-complete.

• The clique of size k can serve as a witness. Thus, MAX-CLIQUE is in NP.

• Since Maximum Independent Set (MIS) is NP-hard, Maximum Clique must also be NP-
hard.

MIS ≤p MAX-CLIQUE

39 / 48

A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

NP

NP-hard

NP-complete

CIRCUIT-SAT

3-SAT
Max Independent Set

Maximum Clique

Vertex Cover

40 / 48

A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

NP

NP-hard

NP-complete

CIRCUIT-SAT

3-SAT
Max Independent Set

Maximum Clique
Vertex Cover

40 / 48

VERTEX-COVER Is NP-Complete

A reduction from MIS to VERTEX-COVER

Vertex Covers

Let G = (V ,E) be a simple undirected graph.

A vertex cover in G is a subset C ⊆ V such that every edge of G has at least one
endpoint in C .

Equivalently: every edge is “touched” by C .

a

e

f

b

c

d

b

c

d

A vertex cover C = {b, c, d} touches all edges.

42 / 48

Vertex Covers

Let G = (V ,E) be a simple undirected graph.

A vertex cover in G is a subset C ⊆ V such that every edge of G has at least one
endpoint in C .

Equivalently: every edge is “touched” by C .

a

e

f

b

c

d

b

c

d

A vertex cover C = {b, c, d} touches all edges.

42 / 48

Minimum Vertex Cover Problem

Vertex Cover (decision): Given a graph G and an integer k , does G contain a vertex
cover of size at most k?

b

c

e

f

a d

a d

Here {a, d} is a vertex cover of size 2.

43 / 48

Minimum Vertex Cover Problem

Vertex Cover (decision): Given a graph G and an integer k , does G contain a vertex
cover of size at most k?

b

c

e

f

a d

a d

Here {a, d} is a vertex cover of size 2.

43 / 48

Independent Sets vs Vertex Covers

If we remove the vertices in a vertex cover from the graph, all edges disappear. The
remaining vertices form an independent set.

Vertex cover

b

c

e

f

a d

{a, d} is a vertex cover.

Independent set

b

c

e

f

By removing {a, d} form G , we obtain
{b, c, e, f } which is an independent set.

44 / 48

Independent Sets vs Vertex Covers

If we remove the vertices in a vertex cover from the graph, all edges disappear. The
remaining vertices form an independent set.

Vertex cover

b

c

e

f

a d

{a, d} is a vertex cover.

Independent set

b

c

e

f

By removing {a, d} form G , we obtain
{b, c, e, f }

which is an independent set.

44 / 48

Independent Sets vs Vertex Covers

If we remove the vertices in a vertex cover from the graph, all edges disappear. The
remaining vertices form an independent set.

Vertex cover

b

c

e

f

a d

{a, d} is a vertex cover.

Independent set

b

c

e

f

By removing {a, d} form G , we obtain
{b, c, e, f } which is an independent set.

44 / 48

Key Relationship

Let G = (V ,E) be a graph with n = |V |.

Key relationship:

I is an independent set in G ⇐⇒ V \ I is a vertex cover of G .

So finding a largest independent set is equivalent to finding a smallest vertex cover:

max |independent set|+min |vertex cover| = n,

45 / 48

Reduction from MIS to VERTEX-COVER

Mapping: Given (G , k) for MIS (“is there an independent set of size at least k?”), map
it to (G , n − k) for Vertex Cover (“is there a vertex cover of size at most n − k?”),

MIS on G
“size ≥ k?”

Poly-time
map

Vertex Cover on G
“size ≤ n − k?”

Reduction: MIS ≤p VERTEX-COVER

46 / 48

VERTEX-COVER Is NP-Complete

• A vertex cover of size ≤ k is a polynomial-time verifiable witness, so Vertex Cover is
in NP.

• Since MIS is NP-hard and MIS ≤p VERTEX-COVER, Vertex Cover is NP-complete.

47 / 48

References

Erickson, J. (2019).

Algorithms.

Self-published.

48 / 48

	NP-Complete Problems
	3-SAT is NP-complete.
	Maximum Independent Set (MIS) is NP-complete
	MAX-CLIQUE Is NP-Complete
	VERTEX-COVER Is NP-Complete

