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Today’s Lecture

1. NP-Complete Problems
1.1 3-SAT is NP-complete.

1.2 Maximum Independent Set (MIS)
is NP-complete

1.3 MAX-CLIQUE Is NP-Complete
1.4 VERTEX-COVER Is NP-Complete

Reading:
® Chapter 12 of the Algorithms book [Erickson, 2019]

Content adapted from the same reference.
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https://jeffe.cs.illinois.edu/teaching/algorithms/book/12-nphard.pdf

NP-Hard and NP-Complete Problems

NP-Hard Problem

A problem B is NP-hard if for every problem A € NP, A reduces to B.
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NP-Hard and NP-Complete Problems

NP-Hard Problem

A problem B is NP-hard if for every problem A € NP, A reduces to B.

NP-Complete Problem

A problem B is NP-complete if:
1. B € NP, and
2. For every problem A € NP, A reduces to B.
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The NP-Completeness Recipe

To show a new problem B is NP-complete, start from a known NP-complete problem A.
Show a polynomial-time reduction from A to B.

A is NP-complete: NP <, A

A poly-time reduction from A to B: A<, B
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The NP-Completeness Recipe

To show a new problem B is NP-complete, start from a known NP-complete problem A.

Show a polynomial-time reduction from A to B.

Cook-Levin Theorem

A is NP-complete: NP <, A
= NP <, B
A poly-time reduction from A to B: A<, B
B is NP-hard.
If we also show that B is in NP, then — B is NP-complete
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A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

NP
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3-SAT is NP-complete.

A Reduction from CIRCUIT-SAT to 3-SAT



Boolean Logic Basics

o A literal is a variable x or its negation —x.
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Boolean Logic Basics

o A literal is a variable x or its negation —x.

¢ A disjunction (a.k.a clause) is a logical OR of two or more literals:

by V by NV oo VA

® A conjunction is a logical AND of literals:

LNl N Nl

A 3-CNF formula is a CNF formula in which every clause has exactly 3 literals.

(av-bVvec) A (mavdV—e) A (bVcV—d).

A formula is in conjunctive normal form (CNF) if it is a conjunction of disjunctions.
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What Is 3-SAT?

3-SAT: Given a 3-CNF formula ®, does there exist a truth assignment that makes ¢
true?

8/48



What Is 3-SAT?

3-SAT: Given a 3-CNF formula ®, does there exist a truth assignment that makes ¢
true?

Example:
(av-bvec) A (mavdV-e) A (bVeVd).

8/48



What Is 3-SAT?

3-SAT: Given a 3-CNF formula ®, does there exist a truth assignment that makes ¢
true?

Example:
(av-bvec) A (mavdV-e) A (bVeVd).

Assignment: a=1I(T1 b=F c=(T d=I(T1 e=_F

8/48



What Is 3-SAT?
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What Is 3-SAT?

3-SAT: Given a 3-CNF formula ®, does there exist a truth assignment that makes ¢
true?

Example:

(av-bVc) A (mavdV-—e) A (bVeV—d).
Assignment: a=/I(T b=F c=(T d= (T e=(F
Why it works:

(Ca)v=bvec)A ((maVvid) v-e) A (-bV(c)V-d).
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Why Is 3-SAT Hard? (Intuition)

Clause 1 Clause 2 Clause 3

(aVvV-—bVc) [(—\avdVﬂe)]
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Why Is 3-SAT Hard? (Intuition)

Clause 1 v Clause 2 Clause 3

(aVv-bVc) [(ﬁavd\/ﬁe)] (bVcV—d)
Coome)s [bveva]-

To satisfy the first clause, we might choose

a=lT) b= F ,or c=(T

Satisfying one clause (Clause 1) can break others (Clauses 2 and 3).

This tug-of-war between clauses is what makes 3-SAT difficult.
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Plan: Reduce 3-SAT to MIS

® |nput on the 3-SAT side: A 3-CNF formula ® with k clauses, each with exactly three

literals.

P=CGANGAN---NCk

e We will build a graph G such that: @ is satisfiable if and only if G has an independent

set of size k.

Reduction: 3-SAT <, MIS

[ 3-CNF formula @ ]—>

-

(.

Poly-time
transformation

N

J

satisfying assignment
for ¢

}_

(.

Poly-time
transformation

———| Graph G

h 4

J

MIS solver
for G
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From CIRCUIT-SAT to 3-SAT

Goal: Show that 3-SAT is NP-complete by giving a polynomial-time reduction from
Circuit-SAT to 3-SAT.

gate clauses Tseitin force size 3
Boolean dq ®, ®3
circuit K formula CNF 3-CNF

Our reduction turns an arbitrary circuit K into an equivalent 3-CNF formula ®3:

K is satisfiable <= ®3 is satisfiable.
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Step 1: Make the Circuit Binary

Input: an arbitrary Boolean circuit ¢ built from A, V, and — gates.

First, ensure every A and V gate has exactly two inputs.

e If a gate has k > 2 inputs, replace it by a small binary tree of kK — 1 binary gates.

e Call the resulting circuit ®q.

X1
V
ONN %
?/v y:%/iv} v vy
5-input OR gate binary tree of 2-input gates
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Step 1: Make the Circuit Binary

® & and ®; are logically equivalent.
® Every satisfying input for ® is a satisfying input for ®; and vice versa.

(So we can pretend from now on that every gate is binary.)

X1
V
ONN S
2/ y:g/w v oy
5-input OR gate binary tree of 2-input gates
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Step 2: From Circuit to CNF ¢,

Introduce a Boolean variable for the output of every gate and input wire.
For each gate, add a constraint that relates the output variable to the input variables.

We get a formula ®, with one clause per gate, such that:

assignment to inputs satisfies ®; <= extended assignment satisfies ®.

Intuitively:

e Wire variables represent the value on each wire of the circuit.

e Gate clauses enforce that each gate output is computed correctly.
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Step 2: Gate Clauses as CNF (Tseitin)

Each gate in ®; becomes a small CNF formula in ®,.

Let a be the output of the gate, b and c be its inputs.
AND gate: a=bAc = (aV-bV-c)A(-aVb)A(-aVc)

ORgate: a=bVcec = (-aVvbVc)A(aVv-b)A(aV—c)
NOT gate: a=—b = (aV b)A(—aV —b)

A
A

®; and P, are logically equivalent, so they have exactly the same satisfying assignments.
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Tseitin Encoding on a Small Circuit

Example depth-2 circuit: y=01Ax) V —x3.

@ =
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Tseitin Encoding on a Small Circuit

Example depth-2 circuit: y=01Ax) V —x3.

@«

& ro
®

82

Introduce one variable per gate output:

81, 8, Y-

Tseitin constraints (CNF clauses):

g1 =x1 A\ X
= (g1 Vx1Vx) A(—g1Vxi)A(-g1Vx)

g2 = —|X3
= (82 Vx3) A (-8 V —x3)

y=aVvVeg
= (yvaVa)A(yV-g)AlyV-g)
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Step 3: Force Clauses to Have Size Exactly 3

Every clause in ®5 has at most three literals, but 3-CNF requires exactly three.
We fix short clauses by introducing new variables.
Two-literal clause:
(avb) = (avbVvx) A (aVbV—x),
using a new variable x.
One-literal clause:
(z) = (zVxVyY)A(zV—xVy)A(zVxV-y)A(zV-xV-y),

using new variables x, y.

Call the final 3-CNF formula 5.
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Correctness of the Construction

At every step, we obtained a new formula that was logically equivalent. Thus:

® is satisfiable <=  ®j is satisfiable.

The whole transformation runs in polynomial (in fact, linear) time in the size of ®, so we
have a valid reduction from Circuit-SAT to 3-SAT.
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Correctness of the Construction

At every step, we obtained a new formula that was logically equivalent. Thus:
® is satisfiable <=  ®j is satisfiable.

The whole transformation runs in polynomial (in fact, linear) time in the size of ®, so we
have a valid reduction from Circuit-SAT to 3-SAT.

If an input assignment makes the circuit output true, that assignment serves as a
polynomial-time verifiable witness for a YES-instance.

Hence CIRCUIT-SAT is in NP, and together with NP-hardness, CIRCUIT-SAT is
NP-complete.”
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A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

NP-hard
NP E NP-complete :
3-SAT : :
CIRCUIT-SAT
| 1
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A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

NP-hard
NP E NP-complete :
3-SAT | |
o . « Max Independent Set |
CIRCUIT-SAT : :
| 1
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Maximum Independent Set (MIS)
is NP-complete

A reduction from 3-SAT to MIS



Independent Sets and MIS

Let G = (V, E) be a simple undirected graph.

An independent set in G is a subset S C V such that no two vertices in S are adjacent.

oWy
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Independent Sets and MIS

Let G = (V, E) be a simple undirected graph.

An independent set in G is a subset S C V such that no two vertices in S are adjacent.
a \@/ d
An independent set S = {a, d} (no edges inside S).
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Maximum Independent Set Problem (MIS)

Maximum Independent Set (MIS): Given a graph G and an integer k, does G contain
an independent set of size at least k7

Oy ©
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Maximum Independent Set Problem (MIS)

Maximum Independent Set (MIS): Given a graph G and an integer k, does G contain
an independent set of size at least k7

S

An independent set S = {b, c, e, f} with size > 4.
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Plan: Reduce 3-SAT to MIS

® |nput on the 3-SAT side: A 3-CNF formula ® with k clauses, each with exactly three

literals.

P=CGANGAN---NCk

e We will build a graph G such that: @ is satisfiable if and only if G has an independent

set of size k.

Reduction: 3-SAT <, MIS

[ 3-CNF formula @ ]—>

-

(.

Poly-time
transformation

N

J

satisfying assignment
for ¢

}_

(.

Poly-time
transformation

———| Graph G

h 4

J

MIS solver
for G
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Constructing the Graph G from ¢

Let ® be a 3-CNF formula with k clauses.

P=CGANCGAN--ANC, C;Z(f;l\/ﬁm\/f,g)
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Constructing the Graph G from ¢

Let ® be a 3-CNF formula with k clauses.
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We build a graph G as follows:

1. For each clause C;, create a triangle of three vertices, one for each literal ¢;1, %2, 4;3.

® The resulting graph has exactly 3k vertices: one vertex per literal occurrence in é.
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Example of the Construction

Intuition: Each selected vertex in MIS represents a literal we use to make its clause true.

b= (aVbVec)A(bV-cV-d)A(-aVveVvd)A(aVv-bV-d).

©
©)

®
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Example of the Construction

Intuition: Each selected vertex in MIS represents a literal we use to make its clause true.

b= (aVbVec)A(bV-cV-d)A(-aVveVvd)A(aVv-bV-d).

0
C—9 ®
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Key Observation About Independent Sets

® Each clause corresponds to a triangle in G.
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Key Observation About Independent Sets

Each clause corresponds to a triangle in G.

An independent set can contain at most one vertex from each triangle, because every
pair of vertices in a triangle is connected by an edge.

Therefore, any independent set in G has size at most k (one vertex per clause).

The decision version of MIS was: |MIS| > k; The answer is YES iff |[MIS| = k;

We will show:

® is satisfiable <= G has an independent set of size k.
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Correctness: ¢ is Satisfiable — |MIS| = k

Assume @ is satisfiable and fix a satisfying assignment.
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Correctness: ¢ is Satisfiable — |MIS| = k

Assume @ is satisfiable and fix a satisfying assignment.
® |n each clause C;, at least one literal is true under this assignment.

® For each clause C;, choose exactly one vertex in the clause triangle whose literal is
true.

® et S be the set of these k chosen vertices.
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Correctness: ¢ is Satisfiable — |[MIS| = k

3-CNF: d=(avbVec)A(bV-cV-d)A(-aVecVd)A(aV-bV—d).

Assignment: a=|(T b= F c=I(T d=F
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Correctness: ¢ is Satisfiable — |MIS| = k

3-CNF: d=(avbVec)A(bV-cV-d)A(-aVecVd)A(aV-bV—d).
Assignment: a=|(T b=F c=I(T d=F
e
c b
b —d
a
—a d

_|b —|d
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Correctness: ¢ is Satisfiable — |MIS| = k

3-CNF: d=(avbVec)A(bV-cV-d)A(-aVecVd)A(aV-bV—d).
Assignment: a=|(T b=F c=I(T d=F
-C
© ¢
b —d
a
-a d
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Correctness: ¢ is Satisfiable — |MIS| = k

3-CNF: d=(avbVec)A(bV-cV-d)A(-aVecVd)A(aV-bV—d).

Assignment: a=|(T b=F c=I(T d="F
© -

—a

®ﬁd

J

b
-b
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Correctness: ¢ is Satisfiable — |MIS| = k

Why is S an independent set?

® S contains at most one vertex from each triangle, so no triangle edge connects two
vertices in S.

e All literals in S are true, so S cannot contain both x and —x. Hence no negation edge
connects two vertices in S.

Thus S is an independent set of size k in G.
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Correctness: |MIS| =k — & is Satisfiable

Now assume G has an independent set S of size k.
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Correctness: |MIS| =k — & is Satisfiable

Now assume G has an independent set S of size k.

® S can contain at most one vertex from each clause triangle.

® But |S| = k and there are k triangles, so S must contain exactly one vertex from each
clause triangle.
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Correctness: |MIS| =k — & is Satisfiable

Now assume G has an independent set S of size k.

® S can contain at most one vertex from each clause triangle.
® But |S| = k and there are k triangles, so S must contain exactly one vertex from each
clause triangle.

Use S to build a truth assignment:

® For each literal in S, set that literal to true (that is, set the underlying variable
accordingly).

® Because S is independent, it never contains both x and —x, so this assignment is
consistent.

® Any variable not appearing in S can be set arbitrarily.

® Each clause has one vertex in S, so each clause has at least one true literal.
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Correctness: |MIS| =k — & is Satisfiable

Now assume G has an independent set S of size k.

® S can contain at most one vertex from each clause triangle.
® But |S| = k and there are k triangles, so S must contain exactly one vertex from each
clause triangle.

Use S to build a truth assignment:

® For each literal in S, set that literal to true (that is, set the underlying variable
accordingly).

® Because S is independent, it never contains both x and —x, so this assignment is
consistent.

® Any variable not appearing in S can be set arbitrarily.

® Each clause has one vertex in S, so each clause has at least one true literal.

Therefore @ is satisfiable.
30/48



Correctness: |MIS| = k — & is Satisfiable

Independent set: {a1, ~da, 3, a4}

Assignment: a= (T b=1(> c=(T1 d=(F
d=(avbVc)A(bV-cV-d)A(—aVcVd)A

5.
& ] ‘0
—(a)

)-

@
IEONERO

5
jo
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Concluding the Reduction

® \We transformed a 3-CNF formula ® with k clauses into a graph G with 3k vertices.
® The transformation can be carried out in time polynomial in |®|.

® \We proved:

® is satisfiable <= G has an independent set of size k.
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Concluding the Reduction

® \We transformed a 3-CNF formula ® with k clauses into a graph G with 3k vertices.
® The transformation can be carried out in time polynomial in |®|.

® \We proved:
® is satisfiable <= G has an independent set of size k.

Therefore, if we could solve the MIS decision problem in polynomial time, we could solve
3-SAT in polynomial time via this reduction.

So MIS is NP-hard.

If an independent set of size at least k exists, that set serves as a polynomial-time
verifiable witness for a YES-instance. Hence MIS is in NP, and together with
NP-hardness, MIS is NP-complete.
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A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

NP-hard
NP E NP-complete :
3-SAT | |
o . « Max Independent Set |
CIRCUIT-SAT : :
| 1
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A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

CIRCUIT-SAT

Maximum Clique
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MAX-CLIQUE Is NP-Complete

A reduction from MIS to MAX-CLIQUE



Cliques

Let G = (V, E) be a simple undirected graph.

A clique in G is a subset C C V such that every two distinct vertices in C are adjacent.

(b) (e)
T
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Cliques

Let G = (V, E) be a simple undirected graph.

A clique in G is a subset C C V such that every two distinct vertices in C are adjacent.

A clique C = {a, b, c} (all vertices connected to each other).
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Maximum Clique Problem

Maximum Clique (decision): Given a graph G and an integer k, does G contain a
clique of size at least k?

(b) (e)
T
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Maximum Clique Problem

Maximum Clique (decision): Given a graph G and an integer k, does G contain a
clique of size at least k?

b e
T
S N

A clique C = {a, b, ¢, d} with size > 4.
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Observation: Complement Graph

Graph G

N/

(——)
& /o

Complement G

G"ﬁ
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Observation: Complement Graph

Graph G Complement G

}!3

In G, {a,d, e} is an independent set
(no internal edges).
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Observation: Complement Graph

Graph G Complement G

In G, {a,d, e} is an independent set In G, {a,d, e} is a clique
(no internal edges). (triangle formed).
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Reduction from MIS to MAX-CLIQUE

Let G = (V, E) be the complement of G

= (V,E).

A set S is independent in G <= Sisaclique in G.

Reduction: MIS <, MAX-CLIQUE

-

e

&

Poly-time
transformation

N

J

— Graph G

h 4

[ Independent set for G ](—

(.

Poly-time
transformation

solver for G

J

MAX-CLIQUE

|
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Reduction from MIS to MAX-CLIQUE

® Mapping: The problem of finding the maximum independent set in G is identical to
finding the maximum clique in G.
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Reduction from MIS to MAX-CLIQUE

® Mapping: The problem of finding the maximum independent set in G is identical to
finding the maximum clique in G.

e Complexity: We can construct G from G in O(|V|?) time.
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Reduction from MIS to MAX-CLIQUE

® Mapping: The problem of finding the maximum independent set in G is identical to
finding the maximum clique in G.

e Complexity: We can construct G from G in O(|V|?) time.

e MAX-CLIQUE is in NP-complete.

® The clique of size k can serve as a witness. Thus, MAX-CLIQUE is in NP.

® Since Maximum Independent Set (MIS) is NP-hard, Maximum Clique must also be NP-
hard.
MIS <, MAX-CLIQUE
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A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

CIRCUIT-SAT

Maximum Clique
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A Small NP-Completeness Family Portrait

Once one natural problem is shown NP-complete, the others follow by reductions.

NP-hard
NP E NP-complete
3-SAT |
. « Max Independent Set
]
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VERTEX-COVER Is NP-Complete

A reduction from MIS to VERTEX-COVER



Vertex Covers

Let G = (V, E) be a simple undirected graph.

A vertex cover in G is a subset C C V such that every edge of G has at least one
endpoint in C.

Equivalently: every edge is “touched” by C.
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Vertex Covers

Let G = (V, E) be a simple undirected graph.

A vertex cover in G is a subset C C V such that every edge of G has at least one
endpoint in C.

Equivalently: every edge is “touched” by C.

b

ﬁ/

(o

NG
A vertex cover C = {b, ¢, d} touches all edges.
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Minimum Vertex Cover Problem

Vertex Cover (decision): Given a graph G and an integer k, does G contain a vertex
cover of size at most k7
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o
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Minimum Vertex Cover Problem

Vertex Cover (decision): Given a graph G and an integer k, does G contain a vertex
cover of size at most k?

a @ d
Here {a, d} is a vertex cover of size 2.
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Independent Sets vs Vertex Covers

If we remove the vertices in a vertex cover from the graph, all edges disappear. The
remaining vertices form an independent set.

Vertex cover
{a,d} is a vertex cover.
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Independent Sets vs Vertex Covers

If we remove the vertices in a vertex cover from the graph, all edges disappear. The
remaining vertices form an independent set.

Vertex cover
{a, d} is a vertex cover. By removing {a, d} form G, we obtain

{b, c, e, f}
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Independent Sets vs Vertex Covers

If we remove the vertices in a vertex cover from the graph, all edges disappear. The
remaining vertices form an independent set.

Vertex cover Independent set

{a,d} is a vertex cover. By removing {a, d} form G, we obtain
{b, ¢, e, f} which is an independent set.
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Key Relationship

Let G = (V, E) be a graph with n=|V/|.
Key relationship:
I is an independent set in G <= V' \ | is a vertex cover of G.

So finding a largest independent set is equivalent to finding a smallest vertex cover:

max |independent set| 4+ min |vertex cover| = n,
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Reduction from MIS to VERTEX-COVER

Mapping: Given (G, k) for MIS ("“is there an independent set of size at least k?"), map
it to (G, n — k) for Vertex Cover (“is there a vertex cover of size at most n — k?"),

MIS on G
“size > k7"

Reduction: MIS <, VERTEX-COVER

Poly-time
map

“size < n— k?"

{ Vertex Cover on G }
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VERTEX-COVER Is NP-Complete

® A vertex cover of size < k is a polynomial-time verifiable witness, so Vertex Cover is
in NP.

® Since MIS is NP-hard and MIS <, VERTEX-COVER, Vertex Cover is NP-complete.

47 /48



References

[§ Erickson, J. (2019).
Algorithms.
Self-published.

48 /48



	NP-Complete Problems
	3-SAT is NP-complete.
	Maximum Independent Set (MIS)  is NP-complete
	MAX-CLIQUE Is NP-Complete
	VERTEX-COVER Is NP-Complete


