
COMP 382: Reasoning about Algorithms

P, NP, NP-Hardness, NP-Completeness

Prof. Maryam Aliakbarpour

co-instructors: Prof. Anjum Chida & Prof. Konstantinos Mamouras

November 17, 2025



Today’s Lecture

1. What Is NP-Hardness?

Reading:

• Chapter 19 of [Roughgarden, 2022]

Content adapted from the same reference.

2 / 41



What Is NP-Hardness?



The Core Problem: Selection Bias

• Introductory algorithm books suffer from selection bias.

• They focus on problems with clever, fast algorithms (e.g., sorting, shortest paths,
MSTs).

• Many important problems have no fast algorithms known.

• These problems are deemed “intractable.”

4 / 41



The Core Problem: Selection Bias

• Introductory algorithm books suffer from selection bias.

• They focus on problems with clever, fast algorithms (e.g., sorting, shortest paths,
MSTs).

• Many important problems have no fast algorithms known.

• These problems are deemed “intractable.”

4 / 41



MST vs TSP

An Algorithmic Mystery



“Easy”: Minimum Spanning Tree (MST)

Problem: Find a spanning tree (a subset of edges that connects all vertices without
cycles) of minimum total edge cost.

• Solvable by blazingly fast algorithms:
• Prim’s
• Kruskal’s

• Running Time: O((m + n) log n).

• This is a computationally easy problem.

3

4

2

5

8

9

7

6 / 41



“Hard”: Traveling Salesman Problem (TSP)

Problem: Find a tour (a cycle visiting every vertex exactly once) of minimum total edge
cost.

• The definition looks deceptively similar to MST.

• No fast algorithm is known.

• Exhaustive search is O(n!), which is infeasible.

• This is computationally hard.

7 / 41



Why TSP Matters: Real-World Intractability

TSP is a powerful template for many practical optimization problems.

Mail Deliveries

finding the shortest

route for deliveries.

Factory Assembly

Minimizing setup costs

between assembling

different car models.

Genome Sequencing

Finding the most plausible

ordering of overlap-

ping gene fragments.

8 / 41



Why TSP Matters: Real-World Intractability

TSP is a powerful template for many practical optimization problems.

Mail Deliveries

finding the shortest

route for deliveries.

Factory Assembly

Minimizing setup costs

between assembling

different car models.

Genome Sequencing

Finding the most plausible

ordering of overlap-

ping gene fragments.

8 / 41



Why TSP Matters: Real-World Intractability

TSP is a powerful template for many practical optimization problems.

Mail Deliveries

finding the shortest

route for deliveries.

Factory Assembly

Minimizing setup costs

between assembling

different car models.

Genome Sequencing

Finding the most plausible

ordering of overlap-

ping gene fragments.

8 / 41



Defining “Easy” and “Hard” Problems

Or, a gentle introduction to complexity classes



Easy and Hard Problems

An oversimplified view:

• Easy: can be solved with a polynomial-time algorithm.

• Hard: require exponential time in the worst case.

10 / 41



Polynomial vs. Exponential Time

Input Size (n)

Running Time

Polynomial (O(nk))

Exponential (O(cn))

1 2 3 40

• Polynomial Time (P): Computable in time O(nk) for some constant k . We consider
this “fast.”

• Exponential Time: Time grows as O(cn). This is too slow for large n.
• The gulf between the two grows impossibly large.

11 / 41



P: Polynomial Time Solvable Problems

• Complexity theory classifies problems based on their inherent difficulty;

• Algorithms can be fast or slow, clever or naive, but our statements about the problem
itself.

• A problem is polynomial time solvable if there is an algorithm that correctly solves it
in O(nk) time, for some constant k , where n is the input length.

• still polynomial even k = 1010.

• This is worst-case running time. (maximum running time over all possible inputs of
size n)

• P: Problems solvable in Polynomial time (easy to solve).

12 / 41



P: Examples

• Typical examples:
• Shortest paths (without nasty conditions like negative cycles).
• Minimum spanning tree, maximum flow, bipartite matching, etc.

• Non-example: the standard dynamic programming for knapsack runs in Θ(nW ) time,
where W is the capacity; since the input size is only logW , this is actually pseu-
dopolynomial, not polynomial, in the input length.

P
MST

Shortest Path

Max-Flow

Knapsack (?)

Taveling Salesman Problem (?)

13 / 41



Decision Problems: The Formal Foundation

• Complexity classes are formally defined using problems that yield a simple YES or NO
answer.

• This restriction is necessary to create a clean mathematical framework for verification.

• Optimization problems (finding the minimum or the maximum) are closely connected
to their related decision problems (is the minimum ≤ k?).

Decision

• MST (Decision): Is there a spanning
tree with total cost ≤ k?

• TSP (Decision): Is there a tour with
total cost ≤ k?

Optimization

• MST (Optimization): Find the min-
imum cost spanning tree.

• TSP (Optimization): Find the short-
est tour.

14 / 41



Decision Problems: The Formal Foundation

• Complexity classes are formally defined using problems that yield a simple YES or NO
answer.

• This restriction is necessary to create a clean mathematical framework for verification.

• Optimization problems (finding the minimum or the maximum) are closely connected
to their related decision problems (is the minimum ≤ k?).

Decision

• MST (Decision): Is there a spanning
tree with total cost ≤ k?

• TSP (Decision): Is there a tour with
total cost ≤ k?

Optimization

• MST (Optimization): Find the min-
imum cost spanning tree.

• TSP (Optimization): Find the short-
est tour.

14 / 41



Decision Problems: The Formal Foundation

• Complexity classes are formally defined using problems that yield a simple YES or NO
answer.

• This restriction is necessary to create a clean mathematical framework for verification.

• Optimization problems (finding the minimum or the maximum) are closely connected
to their related decision problems (is the minimum ≤ k?).

Decision

• MST (Decision): Is there a spanning
tree with total cost ≤ k?

• TSP (Decision): Is there a tour with
total cost ≤ k?

Optimization

• MST (Optimization): Find the min-
imum cost spanning tree.

• TSP (Optimization): Find the short-
est tour.

14 / 41



The Class NP



The Class NP

NP is the class of problems for which solutions can be efficiently recognized, even if we
don’t know how to find them efficiently.

A problem is in NP if:

• YES-instances have short witnesses (certificates) whose length is polynomial in the
input size.

• We can verify a witness in polynomial time.

Input x

Witness w

Poly-time
verifier

YES

NO

“check”

16 / 41



Decision Version of TSP and Its Witness

• Input: Complete graph G = (V ,E ) with edge lengths duv and a budget k .

• Question: Is there a tour (Hamiltonian cycle) of total length ≤ k?

• Example:
witness: A → B → C → D → E → A , k = 25 .

A
B

C

D

E

tour 1: 2 + 4 + 3 + 6 + 5 = 20 Yes!

17 / 41



Decision Version of TSP and Its Witness

• Input: Complete graph G = (V ,E ) with edge lengths duv and a budget k .

• Question: Is there a tour (Hamiltonian cycle) of total length ≤ k?

• Example:
witness: A → B → C → D → E → A , k = 25 .

A
B

C

D

E

2

4

3
6

5

tour 1: 2 + 4 + 3 + 6 + 5 = 20 Yes!

17 / 41



Decision Version of TSP and Its Witness

• Input: Complete graph G = (V ,E ) with edge lengths duv and a budget k .

• Question: Is there a tour (Hamiltonian cycle) of total length ≤ k?

• Example:
witness: A → B → C → D → E → A , k = 25 .

A
B

C

D

E

2

4

3
6

5

tour 1: 2 + 4 + 3 + 6 + 5 = 20 Yes!

17 / 41



Solving TSP via Brute-Force Algorithm

1. Enumerate all possible tours (Hamiltonian cycles) on V .

2. For each tour C :
• Check it visits every vertex exactly once.
• Compute its total length L(C ).
• If L(C ) ≤ k, accept.

3. If no tour passes the test, reject.

A
B

C

D

E

18 / 41



Solving TSP via Brute-Force Algorithm

1. Enumerate all possible tours (Hamiltonian cycles) on V .

2. For each tour C :
• Check it visits every vertex exactly once.
• Compute its total length L(C ).
• If L(C ) ≤ k, accept.

3. If no tour passes the test, reject.

A
B

C

D

E

2

4

3
6

5

tour 1: A → B → C → D → E → A

2 + 4 + 3 + 6 + 5 = 20

18 / 41



Solving TSP via Brute-Force Algorithm

1. Enumerate all possible tours (Hamiltonian cycles) on V .

2. For each tour C :
• Check it visits every vertex exactly once.
• Compute its total length L(C ).
• If L(C ) ≤ k, accept.

3. If no tour passes the test, reject.

A
B

C

D

E

2

7

3

2

5

tour 2: A → B → D → C → E → A

2 + 7 + 3 + 2 + 5 = 19 (better)

18 / 41



Solving TSP via Brute-Force Algorithm

1. Enumerate all possible tours (Hamiltonian cycles) on V .

2. For each tour C :
• Check it visits every vertex exactly once.
• Compute its total length L(C ).
• If L(C ) ≤ k, accept.

3. If no tour passes the test, reject.

A
B

C

D

E

5

2

3

4

2

tour 3: A → B → E → C → D → A

2 + 5 + 2 + 3 + 5 = 17 (best)

18 / 41



The Class NP as “Guess and Check”

• For problems in NP, we can always solve them by:
1. Enumerating all candidate solutions (witnesses) of polynomial length. [guess a solution]
2. Checking each one using the polynomial-time verifier.

• Number of candidates is typically exponential in input size ⇒ exponential-time brute
force.

• Vast majority of important natural problems (scheduling, routing, puzzles, many opti-
mization problems) live in NP.

Input x

Witness w

Poly-time
verifier

YES

NO

“guess”

“check”

19 / 41



What Does “NP” Stand For?

• Common wrong guess: “not polynomial”.

• Correct: Nondeterministic Polynomial time.

• Historically defined using nondeterministic Turing machines: machines that can
“guess” a solution and then verify it in polynomial time.

• Modern viewpoint (equivalent and more intuitive for us): NP is the set of problems
with polynomial-time verifiers and polynomial-length witnesses.

20 / 41



Is P = NP?



Is P = NP?

• We know that P ⊆ NP, e.g., MST ∈ NP.

• For many problems in NP, no polynomial-time algorithm is known, (e.g., TSP).

NP

P
MST

Shortest Path

Max-Flow

Knapsack (?)

TSP (?)

22 / 41



Is P = NP?

• We know that P ⊆ NP, e.g., MST ∈ NP.

• For many problems in NP, no polynomial-time algorithm is known, (e.g., TSP).

NP

P
MST

Shortest Path

Max-Flow

Knapsack (?)

TSP (?)

22 / 41



The P vs. NP Conjecture

Conjecture: P ̸= NP. Most experts believe this is true.

If P=NP, then the world would be a profoundly different place than we usually
assume it to be. There would be no special value in “creative leaps,” no fun-
damental gap between solving a problem and recognizing the solution once it’s
found. Everyone who could appreciate a symphony would be Mozart; everyone
who could follow a step-by-step argument would be Gauss; everyone who could
recognize a good investment strategy would be Warren Buffett. It’s possible to
put the point in Darwinian terms: if this is the sort of universe we inhabited, why
wouldn’t we already have evolved to take advantage of it?

— Scott Aaronson, on Shtetl-Optimized

23 / 41

https://www.overleaf.com/project/6887f00b4c5b5ef78ff8b647


Reductions

Comparing Problem Difficulty



Reductions as Black-Box Transformations

• To show problem A is no harder than B:

• Convert any instance of A to an instance of B in polynomial time.
• Use a black-box solver for B.
• Convert the answer back to an answer for A.

• If B is easy (in P), then A is also easy.

Instance of A
Poly-time

transformation

Poly-time
transformation

Instance of B

Poly-time
solver for B

Answer for A

Reduction: A ≤p B

black-box for B
25 / 41



Reductions as Black-Box Transformations

• To show problem A is no harder than B:
• Convert any instance of A to an instance of B in polynomial time.

• Use a black-box solver for B.
• Convert the answer back to an answer for A.

• If B is easy (in P), then A is also easy.

Instance of A
Poly-time

transformation

Poly-time
transformation

Instance of B

Poly-time
solver for B

Answer for A

Reduction: A ≤p B

black-box for B
25 / 41



Reductions as Black-Box Transformations

• To show problem A is no harder than B:
• Convert any instance of A to an instance of B in polynomial time.
• Use a black-box solver for B.

• Convert the answer back to an answer for A.
• If B is easy (in P), then A is also easy.

Instance of A
Poly-time

transformation

Poly-time
transformation

Instance of B

Poly-time
solver for B

Answer for A

Reduction: A ≤p B

black-box for B
25 / 41



Reductions as Black-Box Transformations

• To show problem A is no harder than B:
• Convert any instance of A to an instance of B in polynomial time.
• Use a black-box solver for B.
• Convert the answer back to an answer for A.

• If B is easy (in P), then A is also easy.

Instance of A
Poly-time

transformation

Poly-time
transformation

Instance of B

Poly-time
solver for B

Answer for A

Reduction: A ≤p B

black-box for B
25 / 41



Reductions as Black-Box Transformations

• To show problem A is no harder than B:
• Convert any instance of A to an instance of B in polynomial time.
• Use a black-box solver for B.
• Convert the answer back to an answer for A.

• If B is easy (in P), then A is also easy.

Instance of A
Poly-time

transformation

Poly-time
transformation

Instance of B

Poly-time
solver for B

Answer for A

Reduction: A ≤p B

black-box for B
25 / 41



Reductions: Comparing Problem Difficulty

Big idea: If B were easy (poly-time), then A would also be easy.

Problem A reduces to problem B if, given a polynomial-time subroutine (“oracle”) for B,
we can solve A in polynomial time.

• We’ll use reductions to show many problems are “as hard as” TSP.

• Examples:
• Computing the median reduces to sorting.
• Detecting a cycle in a graph reduces to depth-first search.
• All-pairs shortest paths reduces to repeated single-source shortest paths.

26 / 41



Reductions: Comparing Problem Difficulty

Big idea: If B were easy (poly-time), then A would also be easy.

Problem A reduces to problem B if, given a polynomial-time subroutine (“oracle”) for B,
we can solve A in polynomial time.

• We’ll use reductions to show many problems are “as hard as” TSP.

• Examples:
• Computing the median reduces to sorting.
• Detecting a cycle in a graph reduces to depth-first search.
• All-pairs shortest paths reduces to repeated single-source shortest paths.

26 / 41



Reductions: Comparing Problem Difficulty

Big idea: If B were easy (poly-time), then A would also be easy.

Problem A reduces to problem B if, given a polynomial-time subroutine (“oracle”) for B,
we can solve A in polynomial time.

• We’ll use reductions to show many problems are “as hard as” TSP.

• Examples:
• Computing the median reduces to sorting.
• Detecting a cycle in a graph reduces to depth-first search.
• All-pairs shortest paths reduces to repeated single-source shortest paths.

26 / 41



NP-hardness and NP-Completeness



NP-Hard Problems

NP-Hard Problem

A problem B is NP-hard if for every problem A ∈ NP, A reduces to B.

• If you find a polynomial-time algorithm for an NP-hard problem, then every problem
in NP becomes easy (poly-time).

• That is B is as hard as any problem in NP, or it could be even harder.

28 / 41



NP-Hard Problems

NP-Hard Problem

A problem B is NP-hard if for every problem A ∈ NP, A reduces to B.

• If you find a polynomial-time algorithm for an NP-hard problem, then every problem
in NP becomes easy (poly-time).

• That is B is as hard as any problem in NP, or it could be even harder.

28 / 41



NP-Complete Problems

NP-Complete Problem

A problem B is NP-complete if:

1. B ∈ NP, and

2. For every problem A ∈ NP, A reduces to B.

• If you find a polynomial-time algorithm for a NP-complete problem, then every problem
in NP becomes easy (poly-time).

• B is one of the “hardest” problems in NP.

Example: TSP is an NP-complete problem.

29 / 41



NP-Complete Problems

NP-Complete Problem

A problem B is NP-complete if:

1. B ∈ NP, and

2. For every problem A ∈ NP, A reduces to B.

• If you find a polynomial-time algorithm for a NP-complete problem, then every problem
in NP becomes easy (poly-time).

• B is one of the “hardest” problems in NP.

Example: TSP is an NP-complete problem.

29 / 41



NP-Complete Problems

NP-Complete Problem

A problem B is NP-complete if:

1. B ∈ NP, and

2. For every problem A ∈ NP, A reduces to B.

• If you find a polynomial-time algorithm for a NP-complete problem, then every problem
in NP becomes easy (poly-time).

• B is one of the “hardest” problems in NP.

Example: TSP is an NP-complete problem.

29 / 41



Is TSP as Hard as All Problems?

No! There are problems that are not even computable.

The Halting Problem:

Input: a program & an input.
Question: will the program eventually halt on that input?

• Turing (1936): no algorithm, however slow, can solve the halting problem.

• Contrast: TSP is definitely solvable in finite time (e.g., by exhaustive search over all
tours).

The halting problem is NP-hard.

30 / 41



Is TSP as Hard as All Problems?

No! There are problems that are not even computable.

The Halting Problem:

Input: a program & an input.
Question: will the program eventually halt on that input?

• Turing (1936): no algorithm, however slow, can solve the halting problem.

• Contrast: TSP is definitely solvable in finite time (e.g., by exhaustive search over all
tours).

The halting problem is NP-hard.

30 / 41



Is TSP as Hard as All Problems?

No! There are problems that are not even computable.

The Halting Problem:

Input: a program & an input.
Question: will the program eventually halt on that input?

• Turing (1936): no algorithm, however slow, can solve the halting problem.

• Contrast: TSP is definitely solvable in finite time (e.g., by exhaustive search over all
tours).

The halting problem is NP-hard.

30 / 41



The Landscape

NP

P
MST

Shortest Path

Max-Flow

TSP

Knapsack

Halting Problem

NP-hard

N
P
-c
om

p
le
te

31 / 41



The Landscape

NP

P
MST

Shortest Path

Max-Flow

TSP

Knapsack

Halting Problem

NP-hard

N
P
-c
om

p
le
te

31 / 41



The Landscape

NP

P
MST

Shortest Path

Max-Flow

TSP

Knapsack

Halting Problem

NP-hard

N
P
-c
om

p
le
te

31 / 41



The Landscape

NP

P
MST

Shortest Path

Max-Flow

TSP

Knapsack

Halting Problem

NP-hard

N
P
-c
om

p
le
te

31 / 41



So your problem is NP-complete... now what?

• NP-complete does not mean “hopeless.”

• It means: no known polytime algorithm for all inputs.

• We change strategy:

1. Special cases (easy structure)

2. Heuristics & approximations

3. Smarter exponential-time algorithms

32 / 41



Circuit Satisfiability (CIRCUIT-SAT)

where it all began



The Strange Power of NP-Completeness

It is a very strange concept.

• How can we argue that every problem in NP reduces to one particular problem?

• Is one problem really complex enough to capture all the nuances of every problem in
NP?

• Did someone actually sit down and write a reduction from all NP problems to a single
one?

• Do we even know all the problems that lie in NP?

This was the breakthrough of Cook–Levin: they proved that CIRCUIT-SAT is powerful
enough to express any NP computation.

34 / 41



The Strange Power of NP-Completeness

It is a very strange concept.

• How can we argue that every problem in NP reduces to one particular problem?

• Is one problem really complex enough to capture all the nuances of every problem in
NP?

• Did someone actually sit down and write a reduction from all NP problems to a single
one?

• Do we even know all the problems that lie in NP?

This was the breakthrough of Cook–Levin: they proved that CIRCUIT-SAT is powerful
enough to express any NP computation.

34 / 41



Circuit Satisfiability (CIRCUIT-SAT)

Input: A Boolean circuit C with input bits x1, . . . , xn (built from AND, OR, NOT gates).

Question: Is there an assignment to (x1, . . . , xn) such that the output of C is 1?

• Interpretation: Think of the circuit as a little machine of logic gates. We ask whether there
exists an input vector that makes the output wire “turn on”.

• CIRCUIT-SAT is the first NP-complete problem (Cook and Levin 1971).

x1

x2

x3

AND

OR

NOT 1?

final signal

35 / 41



CIRCUIT-SAT Captures All of NP

Cook–Levin Theorem (1971): CIRCUIT-SAT is NP-complete.

The proof consists of two main steps:

1. CIRCUIT-SAT ∈ NP.

Proof: an assignment to x1, . . . , xn can serve as a witness, and its correctness can be
verified in time polynomial in the size of the input.

2. For every problem A ∈ NP, we show A ≤p CIRCUIT-SAT.

Proof: Next!

36 / 41



CIRCUIT-SAT Captures All of NP

Cook–Levin Theorem (1971): CIRCUIT-SAT is NP-complete.

The proof consists of two main steps:

1. CIRCUIT-SAT ∈ NP.

Proof: an assignment to x1, . . . , xn can serve as a witness, and its correctness can be
verified in time polynomial in the size of the input.

2. For every problem A ∈ NP, we show A ≤p CIRCUIT-SAT.

Proof: Next!

36 / 41



CIRCUIT-SAT Captures All of NP

Cook–Levin Theorem (1971): CIRCUIT-SAT is NP-complete.

The proof consists of two main steps:

1. CIRCUIT-SAT ∈ NP.

Proof: an assignment to x1, . . . , xn can serve as a witness, and its correctness can be
verified in time polynomial in the size of the input.

2. For every problem A ∈ NP, we show A ≤p CIRCUIT-SAT.

Proof: Next!

36 / 41



CIRCUIT-SAT Captures All of NP

Cook–Levin Theorem (1971): CIRCUIT-SAT is NP-complete.

The proof consists of two main steps:

1. CIRCUIT-SAT ∈ NP.

Proof: an assignment to x1, . . . , xn can serve as a witness, and its correctness can be
verified in time polynomial in the size of the input.

2. For every problem A ∈ NP, we show A ≤p CIRCUIT-SAT.

Proof: Next!

36 / 41



What NP Really Means

For every decision problem A ∈ NP, each input instance x has a definite answer:

• YES (the property holds) or

• NO (it does not).

For example, in TSP an instance x consists of a weighted graph together with a number
k , and the question is: “Is there a Hamiltonian cycle of total length at most k?”

What characterizes problems in NP is how their YES-instances behave:

• If x is a YES-instance of A, then there exists a polynomial-size witness w that
certifies this.

• There is a polynomial-time verifier V (x ,w) that checks whether w is a valid witness
for x .

37 / 41



What NP Really Means

For every decision problem A ∈ NP, each input instance x has a definite answer:

• YES (the property holds) or

• NO (it does not).

For example, in TSP an instance x consists of a weighted graph together with a number
k , and the question is: “Is there a Hamiltonian cycle of total length at most k?”

What characterizes problems in NP is how their YES-instances behave:

• If x is a YES-instance of A, then there exists a polynomial-size witness w that
certifies this.

• There is a polynomial-time verifier V (x ,w) that checks whether w is a valid witness
for x .

37 / 41



What NP Really Means

For every decision problem A ∈ NP, each input instance x has a definite answer:

• YES (the property holds) or

• NO (it does not).

For example, in TSP an instance x consists of a weighted graph together with a number
k , and the question is: “Is there a Hamiltonian cycle of total length at most k?”

What characterizes problems in NP is how their YES-instances behave:

• If x is a YES-instance of A, then there exists a polynomial-size witness w that
certifies this.

• There is a polynomial-time verifier V (x ,w) that checks whether w is a valid witness
for x .

37 / 41



What NP Really Means

For YES-instances:

∃w such that V (x ,w) = YES.

input x

w∗

Verifier V YES

For NO-instances:

∀w , V (x ,w) = NO.

input x

w1

w2

w3

...

Verifier V NO

38 / 41



What NP Really Means

For YES-instances:

∃w such that V (x ,w) = YES.

input x

w∗

Verifier V YES

For NO-instances:

∀w , V (x ,w) = NO.

input x

w1

w2

w3

...

Verifier V NO

38 / 41



What NP Really Means

For YES-instances:

∃w such that V (x ,w) = YES.

input x

w∗

Verifier V YES

For NO-instances:

∀w , V (x ,w) = NO.

input x

w1

w2

w3

...

Verifier V NO

38 / 41



NP literally means CIRCUIT-SAT

For YES-instances:

input x

∃ w∗ Verifier V YES

“Treat this whole part as a circuit”

For NO-instances:

input x

∀ w1 Verifier V NO

“Treat this whole part as a circuit”

39 / 41



Cook–Levin Theorem

Key idea: SAT (via CIRCUIT-SAT) can act as a universal witness finder for every problem in NP.

For any decision problem A ∈ NP and any instance x of A:

• If x is a YES-instance, then there exists a witness w that convinces the verifier V (x ,w) to
accept.

• If x is a NO-instance, then no witness can make the verifier accept.

The Cook–Levin theorem encodes this verifier behavior into a CIRCUIT-SAT formula. Given an
instance x of A, we construct a Boolean formula Φx such that:

Φx is satisfiable ⇐⇒ ∃w : V (x ,w) = accept.

Thus SAT simulates the entire accepting computation of the verifier— it captures the witness and
every step showing that the witness is correct.

40 / 41



References

Roughgarden, T. (2022).

Algorithms Illuminated: Omnibus Edition.

Soundlikeyourself Publishing, LLC.

41 / 41


	What Is NP-Hardness?
	MST vs TSP
	Defining ``Easy'' and ``Hard'' Problems
	The Class NP
	Is P = NP?
	Reductions
	NP-hardness and NP-Completeness
	Circuit Satisfiability (CIRCUIT-SAT)


