
COMP 382: Reasoning about Algorithms

Linear Programming & Duality

Prof. Maryam Aliakbarpour

co-instructors: Prof. Anjum Chida & Prof. Konstantinos Mamouras

November 13, 2025

Today’s Lecture

1. Linear Programming

2. What Is NP-Hardness?

Reading:

• Lecture note in [Goemans, 2015]

• Lecture note in [Trevisan, 2011]

• Chapter 19 of [Roughgarden, 2022]

Content adapted from the same references.

2 / 56

https://math.mit.edu/~goemans/18310S15/lpnotes310.pdf
https://theory.stanford.edu/~trevisan/cs261/lecture15.pdf

Linear Programming

Problems with Linear Constraints

• Making the best choice under limits (budget, time, capacity).

• When relationships are linear, we get Linear Programming (LP).

• LP appears in scheduling, transport, game theory, and machine learning.

Next: real-life examples

4 / 56

The Diet Problem

• We must plan a daily diet using two grains: G1 and G2.

• Each grain provides carb, protein, and vitamins, and has a cost per kg.

• Goal: meet daily nutritional requirements at minimum cost.

Carb Protein Vitamins Cost ($/oz)
G1 5 4 2 0.60
G2 7 2 1 0.35

Requirements per day: 8 units carb, 15 units protein, 3 units vitamins.

5 / 56

The Diet Problem

Variables (amount/day): x1 ← amount of G1, x2 ← amount of G2

min 0.6x1 + 0.35x2

5x1 + 7x2 ≥ 8 (carb)

4x1 + 2x2 ≥ 15 (protein)

2x1 + x2 ≥ 3 (vitamins)

x1, x2 ≥ 0

Interpretation: pick amounts to meet each need as cheaply as possible.

6 / 56

The Transportation Problem

Two factories F1,F2 and three cities C1,C2,C3.

C1 C2 C3 Supply
F1 5 5 3 6
F2 6 4 1 9

Demand 8 5 2

Minimize total cost subject to all supplies and demands being met.

7 / 56

The Transportation Problem

Decision variables: xij = thousands of widgets shipped from Fi to Cj .

min 5x11 + 5x12 + 3x13 + 6x21 + 4x22 + x23

x11 + x21 = 8 (demand C1)

x12 + x22 = 5 (demand C2)

x13 + x23 = 2 (demand C3)

x11 + x12 + x13 = 6 (supply F1)

x21 + x22 + x23 = 9 (supply F2)

xij ≥ 0 (no negative shipments)

Interpretation: ship goods to meet all demands at minimum total cost.

8 / 56

What is Linear Programming?

Definition

A linear program (LP) optimizes a linear function subject to a set of linear equality or
inequality constraints.

• We can always rewrite any LP in a canonical form.

• Geometry: intersection of half-spaces (a polyhedron).

• Algorithms: solved efficiently (e.g., Simplex method).

9 / 56

From real problems to canonical form

Linear programs can look very different:

min 2x1 − x2 s.t.


x1 + x2 ≥ 2,

3x1 + 2x2 ≤ 4,

x1 + 2x2 = 3,

x1 free, x2 ≥ 0.

To solve any LP systematically or design algorithms for them, we need to convert it

into a unified template...

10 / 56

From real problems to canonical form

Linear programs can look very different:

min 2x1 − x2 s.t.


x1 + x2 ≥ 2,

3x1 + 2x2 ≤ 4,

x1 + 2x2 = 3,

x1 free, x2 ≥ 0.

To solve any LP systematically or design algorithms for them, we need to convert it

into a unified template...

10 / 56

Canonical Form

max c⊤x s.t. Ax ≤ b, x ≥ 0

• x : decision variables

• c : objective coefficients

• A: constraint matrix, b: resource limits

Every LP can be written in this form by adding slack variables or sign changes.

11 / 56

Feasibility Region: From half-spaces to polygons

Step 1. Half-space.

One inequality defines a line and the
side that satisfies it.

x1
3
− x2 ≤ −1

Feasible set: half-space.

H1

Half-space

x1

x2

12 / 56

Feasibility Region: From half-spaces to polygons

Step 2. Wedge.

Two inequalities ⇒ intersection of two
half-spaces.

Feasible set: wedge (two half-spaces).

H1

H2

Wedge = H1∩H2

x1

x2

12 / 56

Feasibility Region: From half-spaces to polygons

Step 3. Triangle.

A third inequality can bound the region
in 2D.

Feasible set: triangle (bounded).

H1

H2

H3

Triangle = H1∩H2∩H3

x1

x2

12 / 56

Feasibility Region: From half-spaces to polygons

Step 4. Polygon.

Additional constraints cut off corners
⇒ refined feasible set.

Feasible set: polygon.

H1

H2

H3

H4Polygon (more cuts)

x1

x2

12 / 56

Feasibility Region: From half-spaces to polygons

Step 5. Optimum at a vertex.

Maximizing c⊤x pushes along c to
(usually) a vertex of the polygon.

Feasible set: polygon;

H1

H2

H3

H4

H5

Final polygon

c

optimum
x1

x2

12 / 56

Simplex Method

A short overview

Simplex Method

• Every LP’s feasible region is a polyhedron (a polygon in 2D, polytope in 3D).

• A linear objective reaches its maximum (or minimum) at a vertex (in non-
degenrate cases).

• Why? Linear programs are like “flat” landscapes — no hills or valleys.

• The Simplex method:

1. Starts from one feasible vertex.
2. Moves along edges to neighboring vertices that improve the objective.
3. Stops when no further improvement is possible.

• Each move improves the objective value — and there are finitely many vertices.

• Simplex always ends at an optimal vertex (if one exists).

14 / 56

Simplex Method

• Every LP’s feasible region is a polyhedron (a polygon in 2D, polytope in 3D).

• A linear objective reaches its maximum (or minimum) at a vertex (in non-
degenrate cases).

• Why? Linear programs are like “flat” landscapes — no hills or valleys.

• The Simplex method:

1. Starts from one feasible vertex.
2. Moves along edges to neighboring vertices that improve the objective.
3. Stops when no further improvement is possible.

• Each move improves the objective value — and there are finitely many vertices.

• Simplex always ends at an optimal vertex (if one exists).

14 / 56

Simplex Method

• Every LP’s feasible region is a polyhedron (a polygon in 2D, polytope in 3D).

• A linear objective reaches its maximum (or minimum) at a vertex (in non-
degenrate cases).

• Why? Linear programs are like “flat” landscapes — no hills or valleys.

• The Simplex method:

1. Starts from one feasible vertex.
2. Moves along edges to neighboring vertices that improve the objective.
3. Stops when no further improvement is possible.

• Each move improves the objective value — and there are finitely many vertices.

• Simplex always ends at an optimal vertex (if one exists).

14 / 56

Simplex Method

• Every LP’s feasible region is a polyhedron (a polygon in 2D, polytope in 3D).

• A linear objective reaches its maximum (or minimum) at a vertex (in non-
degenrate cases).

• Why? Linear programs are like “flat” landscapes — no hills or valleys.

• The Simplex method:

1. Starts from one feasible vertex.
2. Moves along edges to neighboring vertices that improve the objective.
3. Stops when no further improvement is possible.

• Each move improves the objective value — and there are finitely many vertices.

• Simplex always ends at an optimal vertex (if one exists).

14 / 56

Simplex Method

• Every LP’s feasible region is a polyhedron (a polygon in 2D, polytope in 3D).

• A linear objective reaches its maximum (or minimum) at a vertex (in non-
degenrate cases).

• Why? Linear programs are like “flat” landscapes — no hills or valleys.

• The Simplex method:
1. Starts from one feasible vertex.

2. Moves along edges to neighboring vertices that improve the objective.
3. Stops when no further improvement is possible.

• Each move improves the objective value — and there are finitely many vertices.

• Simplex always ends at an optimal vertex (if one exists).

14 / 56

Simplex Method

• Every LP’s feasible region is a polyhedron (a polygon in 2D, polytope in 3D).

• A linear objective reaches its maximum (or minimum) at a vertex (in non-
degenrate cases).

• Why? Linear programs are like “flat” landscapes — no hills or valleys.

• The Simplex method:
1. Starts from one feasible vertex.
2. Moves along edges to neighboring vertices that improve the objective.

3. Stops when no further improvement is possible.

• Each move improves the objective value — and there are finitely many vertices.

• Simplex always ends at an optimal vertex (if one exists).

14 / 56

Simplex Method

• Every LP’s feasible region is a polyhedron (a polygon in 2D, polytope in 3D).

• A linear objective reaches its maximum (or minimum) at a vertex (in non-
degenrate cases).

• Why? Linear programs are like “flat” landscapes — no hills or valleys.

• The Simplex method:
1. Starts from one feasible vertex.
2. Moves along edges to neighboring vertices that improve the objective.
3. Stops when no further improvement is possible.

• Each move improves the objective value — and there are finitely many vertices.

• Simplex always ends at an optimal vertex (if one exists).

14 / 56

Simplex Method

• Every LP’s feasible region is a polyhedron (a polygon in 2D, polytope in 3D).

• A linear objective reaches its maximum (or minimum) at a vertex (in non-
degenrate cases).

• Why? Linear programs are like “flat” landscapes — no hills or valleys.

• The Simplex method:
1. Starts from one feasible vertex.
2. Moves along edges to neighboring vertices that improve the objective.
3. Stops when no further improvement is possible.

• Each move improves the objective value — and there are finitely many vertices.

• Simplex always ends at an optimal vertex (if one exists).

14 / 56

Simplex Method

• Every LP’s feasible region is a polyhedron (a polygon in 2D, polytope in 3D).

• A linear objective reaches its maximum (or minimum) at a vertex (in non-
degenrate cases).

• Why? Linear programs are like “flat” landscapes — no hills or valleys.

• The Simplex method:
1. Starts from one feasible vertex.
2. Moves along edges to neighboring vertices that improve the objective.
3. Stops when no further improvement is possible.

• Each move improves the objective value — and there are finitely many vertices.

• Simplex always ends at an optimal vertex (if one exists).

14 / 56

Simplex Path on a Polygon (2D intuition)

Each step: move along an edge to a better vertex.

“Walk around the polygon” until no edge improves the objective.

A B

C

D

E

c

optimum

15 / 56

Time Complexity of the Simplex Method

• n← number of variables

• In the worst case, there can be exponentially many vertices:

Worst case: O(2n)

(Klee–Minty cube example).

• In practice, Simplex is extremely fast — polynomial time.

• Theoretical guarantee (polynomial time) comes from interior-point methods

16 / 56

Duality in Linear Programming

An Example of Duality

Primal:
max z = 5x1 + 4x2

s.t.


x1 ≤ 4 (1)

x1 + 2x2 ≤ 10 (2)

3x1 + 2x2 ≤ 16 (3)

x1, x2 ≥ 0

• Feasible solution (x1, x2) = (4, 2) gives z = 28 =⇒ lower bound.

• Multiply (3) by 2: 6x1 + 4x2 ≤ 32 =⇒ z ≤ 32 =⇒ upper bound.

• Adding (1)+(2)+(3): 5x1 + 4x2 ≤ 30 =⇒ z ≤ 30.

18 / 56

Combining Inequalities to Bound the Optimum

Multiply constraints by nonnegative multipliers y1, y2, y3:

(y1 + y2 + 3y3)x1 + (2y2 + 2y3)x2 ≤ 4y1 + 10y2 + 16y3.

To ensure an upper bound on z = 5x1 + 4x2, impose:

y1 + y2 + 3y3 ≥ 5, 2y2 + 2y3 ≥ 4.

Then minimize the RHS 4y1 + 10y2 + 16y3.

Dual:
min w = 4y1 + 10y2 + 16y3

s.t.


y1 + y2 + 3y3 ≥ 5,

2y2 + 2y3 ≥ 4,

y1, y2, y3 ≥ 0.

Solution: y1 = 0, y2 = 0.5, y3 = 1.5 =⇒ w = 29 =⇒ z∗ ≤ 29.

19 / 56

Combining Inequalities to Bound the Optimum

Multiply constraints by nonnegative multipliers y1, y2, y3:

(y1 + y2 + 3y3)x1 + (2y2 + 2y3)x2 ≤ 4y1 + 10y2 + 16y3.

To ensure an upper bound on z = 5x1 + 4x2, impose:

y1 + y2 + 3y3 ≥ 5, 2y2 + 2y3 ≥ 4.

Then minimize the RHS 4y1 + 10y2 + 16y3.

Dual:
min w = 4y1 + 10y2 + 16y3

s.t.


y1 + y2 + 3y3 ≥ 5,

2y2 + 2y3 ≥ 4,

y1, y2, y3 ≥ 0.

Solution: y1 = 0, y2 = 0.5, y3 = 1.5 =⇒ w = 29 =⇒ z∗ ≤ 29.

19 / 56

Combining Inequalities to Bound the Optimum

Multiply constraints by nonnegative multipliers y1, y2, y3:

(y1 + y2 + 3y3)x1 + (2y2 + 2y3)x2 ≤ 4y1 + 10y2 + 16y3.

To ensure an upper bound on z = 5x1 + 4x2, impose:

y1 + y2 + 3y3 ≥ 5, 2y2 + 2y3 ≥ 4.

Then minimize the RHS 4y1 + 10y2 + 16y3.

Dual:
min w = 4y1 + 10y2 + 16y3

s.t.


y1 + y2 + 3y3 ≥ 5,

2y2 + 2y3 ≥ 4,

y1, y2, y3 ≥ 0.

Solution: y1 = 0, y2 = 0.5, y3 = 1.5 =⇒ w = 29 =⇒ z∗ ≤ 29.
19 / 56

Verifying Optimality via Duality

• We have established that for any pair of feasible solutions:

z(x) ≤ w(y)

• Try (x1, x2) = (3, 3.5) =⇒ z = 5(3) + 4(3.5) = 29.

• Try (y1, y2, y3) = (0, 0.5, 1.5) =⇒ w = 4(0) + 10(0.5) + 16(1.5) = 29.

• Therefore, when they match, both are optimal: z∗ = w ∗ = 29.

Duality provides certificates of optimality: when a feasible x and y give equal
objective values, they must be optimal.

20 / 56

Verifying Optimality via Duality

• We have established that for any pair of feasible solutions:

z(x) ≤ w(y)

• Try (x1, x2) = (3, 3.5) =⇒ z = 5(3) + 4(3.5) = 29.

• Try (y1, y2, y3) = (0, 0.5, 1.5) =⇒ w = 4(0) + 10(0.5) + 16(1.5) = 29.

• Therefore, when they match, both are optimal: z∗ = w ∗ = 29.

Duality provides certificates of optimality: when a feasible x and y give equal
objective values, they must be optimal.

20 / 56

Duality in Canonical Form

(P) max c⊤x s.t. Ax ≤ b, x ≥ 0

(D) min b⊤y s.t. A⊤y ≥ c , y ≥ 0

• Each primal constraint ⇒ dual variable.

• Each primal variable ⇒ dual constraint.

• The two problems are mirrors of one another.

21 / 56

Weak Duality

c⊤x ≤ y⊤Ax ≤ y⊤b

• For any feasible x (primal) and y (dual): z = c⊤x ≤ w = b⊤y .

• Dual feasible solutions give upper bounds on the primal optimum.

Convention: max ∅ = −∞, min ∅ = +∞ =⇒ always z∗ ≤ w∗.

22 / 56

Strong Duality

If both (P) and (D) have feasible solutions and one is bounded, then both attain the

same finite optimum.

z∗ = w ∗

• Proof idea: simplex optimality conditions produce a dual feasible y with equal objective
value.

23 / 56

Summary of primal–dual relationships

Dual finite Dual unbounded Dual infeasible
Primal finite z∗ = w ∗ impossible impossible
Primal unbounded impossible impossible possible
Primal infeasible impossible possible possible

Interpretation:

• If one is unbounded, the other is infeasible.

• If one has a finite optimum, so does the other, with equal value.

• Both can be infeasible simultaneously.

24 / 56

Max-Flow Min-Cut Theorem

with LP Duality

Max-Flow as a Linear Program

Given a directed network (G = (V ,E), s, t, c) with capacities c(u, v):

• We can formulate max-flow problem as an LP over variables f (u, v) for each edge
(u, v) ∈ E .
• Optimal value = value of the maximum s–t flow.
• Assuming there are no incoming edges to s and no outgoing edges from t.

max
∑

v :(s,v)∈E

f (s, v)

s.t.
∑

u:(u,v)∈E

f (u, v) =
∑

w :(v ,w)∈E

f (v ,w), ∀v ∈ V \ {s, t} (flow conservation)

0 ≤ f (u, v) ≤ c(u, v), ∀(u, v) ∈ E (capacity)

26 / 56

Flow Decomposition into Paths

By the flow decomposition theorem, max-flow can be viewed as set of s-t paths.

s

a

b

t

3/
5

4/5

2
/3

1/1

6/
6

Total Flow f = 7

s

a

b

t

4

s

a

b

t

1

s

a

b

t

2

27 / 56

Flow Decomposition into Paths

By the flow decomposition theorem, max-flow can be viewed as set of s-t paths.

s

a

b

t

3/
5

4/5

2
/3

1/1

6/
6

Total Flow f = 7

s

a

b

t

4

s

a

b

t

1

s

a

b

t

2

27 / 56

Alternative view: Path-Based LP Formulation

• Let P be the set of all simple s–t paths, and for each path p ∈ P, let xp be the
amount of flow sent along p (possibly exponentially many).

max
∑
p∈P

xp

s.t.
∑

p∈P:(u,v)∈p

xp ≤ c(u, v), ∀(u, v) ∈ E (capacity)

xp ≥ 0, ∀p ∈ P.

maxf |f | = OPTprimal Next: Very clean dual!

28 / 56

Alternative view: Path-Based LP Formulation

• Let P be the set of all simple s–t paths, and for each path p ∈ P, let xp be the
amount of flow sent along p (possibly exponentially many).

max
∑
p∈P

xp

s.t.
∑

p∈P:(u,v)∈p

xp ≤ c(u, v), ∀(u, v) ∈ E (capacity)

xp ≥ 0, ∀p ∈ P.

maxf |f | = OPTprimal Next: Very clean dual!

28 / 56

Alternative view: Path-Based LP Formulation

• Let P be the set of all simple s–t paths, and for each path p ∈ P, let xp be the
amount of flow sent along p (possibly exponentially many).

max
∑
p∈P

xp

s.t.
∑

p∈P:(u,v)∈p

xp ≤ c(u, v), ∀(u, v) ∈ E (capacity) ← yu,v

xp ≥ 0, ∀p ∈ P.

maxf |f | = OPTprimal Next: Very clean dual!

28 / 56

Dual of the Path-Based LP

Dual variables: yu,v ≥ 0 for each edge (u, v) ∈ E .

Dual LP:
min

∑
(u,v)∈E

c(u, v) yu,v

s.t.
∑

(u,v)∈p

yu,v ≥ 1, ∀s–t paths p ∈ P

yu,v ≥ 0, ∀(u, v) ∈ E .

29 / 56

Interpretation of Dual

• Interpret yu,v as a length on edge (u, v).

• Constraint: every s–t path has total length at least 1.
⇒ in the metric defined by y , distance(s, t) ≥ 1.

• Objective: minimize the capacity-weighted sum of edge lengths.

s a

b

c

d

t0.3

0.4

0.3

0.4

0.3

0.5

0.4

30 / 56

Interpretation of Dual

• Interpret yu,v as a length on edge (u, v).

• Constraint: every s–t path has total length at least 1.
⇒ in the metric defined by y , distance(s, t) ≥ 1.

• Objective: minimize the capacity-weighted sum of edge lengths.

sd(s) = 0 a

d(a) = 0.3

b

d(b) = 0.4

c

d(c) = 0.6

d

d(d) = 0.7

t d(t) = 1.10.3

0.4

0.3

0.4

0.3

0.5

0.4

30 / 56

Interpretation of Dual

• Interpret yu,v as a length on edge (u, v).

• Constraint: every s–t path has total length at least 1.
⇒ in the metric defined by y , distance(s, t) ≥ 1.

• Objective: minimize the capacity-weighted sum of edge lengths.

sd(s) = 0 a

d(a) = 0.3

b

d(b) = 0.4

c

d(c) = 0.6

d

d(d) = 0.7

t d(t) = 1.10.3

0.4

0.3

0.4

0.3

0.5

0.4

30 / 56

Cuts ⇒ Feasible Dual Solutions

• Given an (s − t)-cut A, define

yu,v :=

{
1 if u ∈ A, v /∈ A (edge crosses the cut),

0 otherwise.

s a

b

c

d

t

sd(s) = 0 a

d(a) = 0

b

d(b) = 0

c

d(c) = 1

d

d(d) = 1

t d(t) = 10

0

1

1

1

0

0

31 / 56

Cuts ⇒ Feasible Dual Solutions

• Given an (s − t)-cut A, define

yu,v :=

{
1 if u ∈ A, v /∈ A (edge crosses the cut),

0 otherwise.

s a

b

c

d

t

sd(s) = 0 a

d(a) = 0

b

d(b) = 0

c

d(c) = 1

d

d(d) = 1

t d(t) = 1

0

0

1

1

1

0

0

31 / 56

Cuts ⇒ Feasible Dual Solutions

• Given an (s − t)-cut A, define

yu,v :=

{
1 if u ∈ A, v /∈ A (edge crosses the cut),

0 otherwise.

s a

b

c

d

t

sd(s) = 0 a

d(a) = 0

b

d(b) = 0

c

d(c) = 1

d

d(d) = 1

t d(t) = 10

0

1

1

1

0

0

31 / 56

Cuts ⇒ Feasible Dual Solutions

• Every s–t path must cross the cut at least once, so the path constraints hold:∑
(u,v)∈p

yu,v ≥ 1 .

• Dual objective value:

OPTdual ≤
∑

(u,v)∈E

c(u, v) yu,v =
∑

u∈A, v /∈A

c(u, v) = capacity(A) .

• Therefore,

OPTdual ≤ min(s–t) cuts A capacity(A) .

32 / 56

Dual ⇒ Cut

Now go in the other direction: from any dual solution y to a cut.

Step 1: Distances from s

• Compute d(v) = shortest-path distance from s to v (e.g., Dijkstra).
• Dual constraints ⇒ d(t) ≥ 1.

sd(s) = 0 a

d(a) = 0.3

b

d(b) = 0.4

c

d(c) = 0.6

d

d(d) = 0.7

t d(t) = 1.10.3

0.4

0.3

0.4

0.3

0.5

0.4

33 / 56

Randomized Rounding: Dual ⇒ Cut

Step 2: Random threshold

• Pick T uniformly at random in [0, 1).

• Define the random cut
A := {v ∈ V : d(v) ≤ T}.

• Then s ∈ A but t /∈ A, so A is always a valid s–t cut.

sd(s) = 0 a

d(a) = 0.3

b

d(b) = 0.4

c

d(c) = 0.6

d

d(d) = 0.7

t d(t) = 1.1

sd(s) = 0 a

d(a) = 0.3

b

d(b) = 0.4

c

d(c) = 0.6

d

d(d) = 0.7

t d(t) = 1.1

T = 0.55

34 / 56

Randomized Rounding: Dual ⇒ Cut

Step 2: Random threshold

• Pick T uniformly at random in [0, 1).
• Define the random cut

A := {v ∈ V : d(v) ≤ T}.

• Then s ∈ A but t /∈ A, so A is always a valid s–t cut.

sd(s) = 0 a

d(a) = 0.3

b

d(b) = 0.4

c

d(c) = 0.6

d

d(d) = 0.7

t d(t) = 1.1

sd(s) = 0 a

d(a) = 0.3

b

d(b) = 0.4

c

d(c) = 0.6

d

d(d) = 0.7

t d(t) = 1.1

T = 0.55

34 / 56

Randomized Rounding: Dual ⇒ Cut

Step 2: Random threshold

• Pick T uniformly at random in [0, 1).
• Define the random cut

A := {v ∈ V : d(v) ≤ T}.

• Then s ∈ A but t /∈ A, so A is always a valid s–t cut.

sd(s) = 0 a

d(a) = 0.3

b

d(b) = 0.4

c

d(c) = 0.6

d

d(d) = 0.7

t d(t) = 1.1

sd(s) = 0 a

d(a) = 0.3

b

d(b) = 0.4

c

d(c) = 0.6

d

d(d) = 0.7

t d(t) = 1.1

T = 0.55

34 / 56

Probability of Being a Cut Edge

For an edge (u, v), what is the probability of u ∈ A, and v /∈ A?

• If d(u) > d(v) =⇒ u and v will not be part of a cut.

• So assume d(u) ≤ d(v):

Pr[[[u ∈ A, v /∈ A]]] = Pr[[[d(u) ≤ T < d(v)]]] ≤ d(v)− d(u)

provided 0 ≤ d(u) ≤ d(v) ≤ 1 (other cases only make this smaller).
• Shortest-path distances satisfy

d(v) ≤ d(u) + yu,v , =⇒ d(v)− d(u) ≤ yu,v

.
• Therefore

Pr[[[u ∈ A, v /∈ A]]] = Pr[[[d(u) ≤ T < d(v)]]] ≤ yu,v

35 / 56

Probability of Being a Cut Edge

For an edge (u, v), what is the probability of u ∈ A, and v /∈ A?

• If d(u) > d(v) =⇒ u and v will not be part of a cut.
• So assume d(u) ≤ d(v):

Pr[[[u ∈ A, v /∈ A]]] = Pr[[[d(u) ≤ T < d(v)]]] ≤ d(v)− d(u)

provided 0 ≤ d(u) ≤ d(v) ≤ 1 (other cases only make this smaller).

• Shortest-path distances satisfy

d(v) ≤ d(u) + yu,v , =⇒ d(v)− d(u) ≤ yu,v

.
• Therefore

Pr[[[u ∈ A, v /∈ A]]] = Pr[[[d(u) ≤ T < d(v)]]] ≤ yu,v

35 / 56

Probability of Being a Cut Edge

For an edge (u, v), what is the probability of u ∈ A, and v /∈ A?

• If d(u) > d(v) =⇒ u and v will not be part of a cut.
• So assume d(u) ≤ d(v):

Pr[[[u ∈ A, v /∈ A]]] = Pr[[[d(u) ≤ T < d(v)]]] ≤ d(v)− d(u)

provided 0 ≤ d(u) ≤ d(v) ≤ 1 (other cases only make this smaller).
• Shortest-path distances satisfy

d(v) ≤ d(u) + yu,v , =⇒ d(v)− d(u) ≤ yu,v

.

• Therefore
Pr[[[u ∈ A, v /∈ A]]] = Pr[[[d(u) ≤ T < d(v)]]] ≤ yu,v

35 / 56

Probability of Being a Cut Edge

For an edge (u, v), what is the probability of u ∈ A, and v /∈ A?

• If d(u) > d(v) =⇒ u and v will not be part of a cut.
• So assume d(u) ≤ d(v):

Pr[[[u ∈ A, v /∈ A]]] = Pr[[[d(u) ≤ T < d(v)]]] ≤ d(v)− d(u)

provided 0 ≤ d(u) ≤ d(v) ≤ 1 (other cases only make this smaller).
• Shortest-path distances satisfy

d(v) ≤ d(u) + yu,v , =⇒ d(v)− d(u) ≤ yu,v

.
• Therefore

Pr[[[u ∈ A, v /∈ A]]] = Pr[[[d(u) ≤ T < d(v)]]] ≤ yu,v

35 / 56

Bounding the Expected Capacity

Given any dual solution y , expected capacity:

ET [[[capacity(A)]]] =
∑

(u,v)∈E

c(u, v) Pr[[[u ∈ A, v /∈ A]]].

≤
∑

(u,v)∈E

c(u, v) yu,v .

• Averaging principle: There exists a (deterministic) choice of T ∗ with:

capacity(AT∗) ≤
∑

(u,v)∈E

c(u, v) yu,v .

• Hence,

min(s–t) cuts A capacity(A) ≤ OPTdual .

36 / 56

Bounding the Expected Capacity

Given any dual solution y , expected capacity:

ET [[[capacity(A)]]] =
∑

(u,v)∈E

c(u, v) Pr[[[u ∈ A, v /∈ A]]].

≤
∑

(u,v)∈E

c(u, v) yu,v .

• Averaging principle: There exists a (deterministic) choice of T ∗ with:

capacity(AT∗) ≤
∑

(u,v)∈E

c(u, v) yu,v .

• Hence,

min(s–t) cuts A capacity(A) ≤ OPTdual .

36 / 56

Dual ⇔ Min-Cut

We have shown:

• Any cut A gives a feasible dual solution:

OPTdual ≤ min(s–t) cuts A capacity(A) .

• Given any dual solution y , we can round it to a cut:

min(s–t) cuts A capacity(A) ≤ OPTdual .

Combining:

min(s–t) cuts A capacity(A) = OPTdual .

37 / 56

LP Duality ⇒ Max-Flow = Min-Cut

• We have shown:

maxf |f | = OPTprimal min(s–t) cuts A capacity(A) = OPTdual .

• Strong Duality implies:

OPTprimal = OPTdual

• Putting all of these together implies

maxf |f | = min(s–t) cuts A capacity(A)

38 / 56

What Is NP-Hardness?

The Core Problem: Selection Bias

• Introductory algorithm books suffer from selection bias.

• They focus on problems with clever, fast algorithms (e.g., sorting, shortest paths,
MSTs).

• Many important problems have no fast algorithms known.

• These problems are deemed “intractable.”

40 / 56

The Core Problem: Selection Bias

• Introductory algorithm books suffer from selection bias.

• They focus on problems with clever, fast algorithms (e.g., sorting, shortest paths,
MSTs).

• Many important problems have no fast algorithms known.

• These problems are deemed “intractable.”

40 / 56

MST vs TSP

An Algorithmic Mystery

“Easy”: Minimum Spanning Tree (MST)

Problem: Find a spanning tree (a subset of edges that connects all vertices without
cycles) of minimum total edge cost.

• Solvable by blazingly fast algorithms:
• Prim’s
• Kruskal’s

• Running Time: O((m + n) log n).

• This is a computationally easy problem.

3

4

2

5

8

9

7

42 / 56

“Hard”: Traveling Salesman Problem (TSP)

Problem: Find a tour (a cycle visiting every vertex exactly once) of minimum total edge
cost.

• The definition looks deceptively similar to MST.

• No fast algorithm is known.

• Exhaustive search is O(n!), which is infeasible.

• This is computationally hard.

43 / 56

Why TSP Matters: Real-World Intractability

TSP is a powerful template for many practical optimization problems.

Mail Deliveries

finding the shortest

route for deliveries.

Factory Assembly

Minimizing setup costs

between assembling

different car models.

Genome Sequencing

Finding the most plausible

ordering of overlap-

ping gene fragments.

44 / 56

Why TSP Matters: Real-World Intractability

TSP is a powerful template for many practical optimization problems.

Mail Deliveries

finding the shortest

route for deliveries.

Factory Assembly

Minimizing setup costs

between assembling

different car models.

Genome Sequencing

Finding the most plausible

ordering of overlap-

ping gene fragments.

44 / 56

Why TSP Matters: Real-World Intractability

TSP is a powerful template for many practical optimization problems.

Mail Deliveries

finding the shortest

route for deliveries.

Factory Assembly

Minimizing setup costs

between assembling

different car models.

Genome Sequencing

Finding the most plausible

ordering of overlap-

ping gene fragments.

44 / 56

Defining “Easy” and “Hard” Problems

Or, a gentle introduction to complexity classes

Easy and Hard Problems

An oversimplified view:

• Easy: can be solved with a polynomial-time algorithm.

• Hard: require exponential time in the worst case.

46 / 56

Polynomial vs. Exponential Time

Input Size (n)

Running Time

Polynomial (O(nk))

Exponential (O(cn))

1 2 3 40

• Polynomial Time (P): Computable in time O(nk) for some constant k . We consider
this “fast.”
• Exponential Time: Time grows as O(cn). This is too slow for large n.
• The gulf between the two grows impossibly large.

47 / 56

P: Polynomial Time Solvable Problems

• Complexity theory classifies problems based on their inherent difficulty;

• Algorithms can be fast or slow, clever or naive, but our statements about the problem
itself.

• A problem is polynomial time solvable if there is an algorithm that correctly solves it
in O(nk) time, for some constant k , where n is the input length.

• still polynomial even k = 1010.

• This is worst-case running time. (maximum running time over all possible inputs of
size n)

• P: Problems solvable in Polynomial time (easy to solve).

48 / 56

NP: Nondeterministic Polynomial time

• NP: Problems whose solutions are verifiable in Polynomial time (easy to check).

• We know that P ⊆ NP, e.g., MST ∈ NP.

• For many problems in NP, no polynomial-time algorithm is known, (e.g., TSP).

• A problem is NP-hard if every NP problem reduces to it.

49 / 56

NP: Nondeterministic Polynomial time

• NP: Problems whose solutions are verifiable in Polynomial time (easy to check).

• We know that P ⊆ NP, e.g., MST ∈ NP.

• For many problems in NP, no polynomial-time algorithm is known, (e.g., TSP).

• A problem is NP-hard if every NP problem reduces to it.

49 / 56

NP: Nondeterministic Polynomial time

• NP: Problems whose solutions are verifiable in Polynomial time (easy to check).

• We know that P ⊆ NP, e.g., MST ∈ NP.

• For many problems in NP, no polynomial-time algorithm is known, (e.g., TSP).

• A problem is NP-hard if every NP problem reduces to it.

49 / 56

NP: Nondeterministic Polynomial time

• NP: Problems whose solutions are verifiable in Polynomial time (easy to check).

• We know that P ⊆ NP, e.g., MST ∈ NP.

• For many problems in NP, no polynomial-time algorithm is known, (e.g., TSP).

• A problem is NP-hard if every NP problem reduces to it.

49 / 56

Decision Problems: The Formal Foundation

• Complexity classes are formally defined using problems that yield a simple YES or NO
answer.

• This restriction is necessary to create a clean mathematical framework for verification.

• Optimization problems (finding the minimum or the maximum) are closely connected
to their related decision problems (is the minimum ≤ k?).

Decision

• MST (Decision): Is there a spanning
tree with total cost ≤ k?

• TSP (Decision): Is there a tour with
total cost ≤ k?

Optimization

• MST (Optimization): Find the min-
imum cost spanning tree.

• TSP (Optimization): Find the short-
est tour.

50 / 56

Decision Problems: The Formal Foundation

• Complexity classes are formally defined using problems that yield a simple YES or NO
answer.

• This restriction is necessary to create a clean mathematical framework for verification.

• Optimization problems (finding the minimum or the maximum) are closely connected
to their related decision problems (is the minimum ≤ k?).

Decision

• MST (Decision): Is there a spanning
tree with total cost ≤ k?

• TSP (Decision): Is there a tour with
total cost ≤ k?

Optimization

• MST (Optimization): Find the min-
imum cost spanning tree.

• TSP (Optimization): Find the short-
est tour.

50 / 56

Decision Problems: The Formal Foundation

• Complexity classes are formally defined using problems that yield a simple YES or NO
answer.

• This restriction is necessary to create a clean mathematical framework for verification.

• Optimization problems (finding the minimum or the maximum) are closely connected
to their related decision problems (is the minimum ≤ k?).

Decision

• MST (Decision): Is there a spanning
tree with total cost ≤ k?

• TSP (Decision): Is there a tour with
total cost ≤ k?

Optimization

• MST (Optimization): Find the min-
imum cost spanning tree.

• TSP (Optimization): Find the short-
est tour.

50 / 56

The P vs. NP Conjecture

Conjecture: P ̸= NP. Most experts believe this is true.

If P=NP, then the world would be a profoundly different place than we usually
assume it to be. There would be no special value in “creative leaps,” no fun-
damental gap between solving a problem and recognizing the solution once it’s
found. Everyone who could appreciate a symphony would be Mozart; everyone
who could follow a step-by-step argument would be Gauss; everyone who could
recognize a good investment strategy would be Warren Buffett. It’s possible to
put the point in Darwinian terms: if this is the sort of universe we inhabited, why
wouldn’t we already have evolved to take advantage of it?

— Scott Aaronson, on Shtetl-Optimized

51 / 56

https://www.overleaf.com/project/6887f00b4c5b5ef78ff8b647

What is “NP-Hard”?

• A problem is NP-hard if a polynomial-time algorithm for it would refute the P ̸= NP
conjecture.

• It is one of the hardest problems in NP (or harder).

• A fast algorithm for one NP-hard problem (like TSP) would solve thousands of other
unsolved problems.

• This powerful implication is the “strong evidence” of its intractability.

52 / 56

What is “NP-Hard”?

• A problem is NP-hard if a polynomial-time algorithm for it would refute the P ̸= NP
conjecture.

• It is one of the hardest problems in NP (or harder).

• A fast algorithm for one NP-hard problem (like TSP) would solve thousands of other
unsolved problems.

• This powerful implication is the “strong evidence” of its intractability.

52 / 56

What is “NP-Hard”?

• A problem is NP-hard if a polynomial-time algorithm for it would refute the P ̸= NP
conjecture.

• It is one of the hardest problems in NP (or harder).

• A fast algorithm for one NP-hard problem (like TSP) would solve thousands of other
unsolved problems.

• This powerful implication is the “strong evidence” of its intractability.

52 / 56

What is “NP-Hard”?

• A problem is NP-hard if a polynomial-time algorithm for it would refute the P ̸= NP
conjecture.

• It is one of the hardest problems in NP (or harder).

• A fast algorithm for one NP-hard problem (like TSP) would solve thousands of other
unsolved problems.

• This powerful implication is the “strong evidence” of its intractability.

52 / 56

Algorithmic Strategies

The “You Can’t Have It All” Principle

An algorithm for an NP-hard problem cannot be all three (assuming P ̸= NP):

General-Purpose Solves all

possible inputs.

Correct Always finds the optimal

solution.

Fast Runs in polynomial time.

You must compromise on at least one.

54 / 56

Three Algorithmic Strategies

• Compromise on Generality: Solve only special cases or constrained versions of the
problem.
• Example: Weighted Independent Set on path graphs is easy, but on general graphs is

NP-hard.

• Compromise on Correctness: Use heuristics (e.g., Greedy, Local Search).
• They are fast but may not be optimal. Good for “approximate” answers.

• Compromise on Speed: Use an exact algorithm that is faster than exhaustive
search, but still exponential.
• Example: Dynamic Programming for TSP, or sophisticated SAT/MIP Solvers.

55 / 56

References

Goemans, M. (2015).

Lecture notes on linear programming.

Lecture notes for 18.310A Principles of Discrete Applied Mathematics.

Accessed on November 10, 2025.

Roughgarden, T. (2022).

Algorithms Illuminated: Omnibus Edition.

Soundlikeyourself Publishing, LLC.

Trevisan, L. (2011).

The linear programming formulation of maximum cut and its dual.

Lecture Notes for CS261: Optimization and Algorithmic Paradigms, Lecture 15.

56 / 56

	Linear Programming
	Simplex Method
	Duality in Linear Programming
	Max-Flow Min-Cut Theorem 5mm with LP Duality

	What Is NP-Hardness?
	MST vs TSP
	Defining ``Easy'' and ``Hard'' Problems
	Algorithmic Strategies

