
COMP 382: Reasoning about Algorithms

Linear Programming & Duality

Prof. Maryam Aliakbarpour

co-instructors: Prof. Anjum Chida & Prof. Konstantinos Mamouras

November 11, 2025

Today’s Lecture

1. The Baseball Elimination Problem

2. Linear Programming

2.1 Simplex Method

2.2 Duality in Linear Programming

2.3 Duality and the Max-Flow = Min-Cut Theorem

Reading:

• Chapter H in [Erickson, 2019] and lecture notes in [?]

Content adapted from the same references in [Erickson, 2019].

2 / 45

https://jeffe.cs.illinois.edu/teaching/algorithms/notes/H-lp.pdf
https://math.mit.edu/~goemans/18310S15/lpnotes310.pdf

The Baseball Elimination Problem

And its reduction to max-flow problem

Can my team still win?

• Mid season: “Is Houston Astros mathematically alive?”

• Trivial check: if some opponent already has more wins than our max possible, we’re
done.

4 / 45

Can my team still win?

• But often it’s not trivial: The outcomes of remaining games among other teams
constrain each other.

• Two games left. Can Team C still win the championship?

Team Current Wins
Team A 61

Team B 61

Team C 60

• No one is individually out of reach, yet the schedule makes it impossible:
• C’s maximum possible wins are 62 (if C wins both remaining games).
• Assume Team A and Team B have a final game scheduled against each other.
• Since A and B play each other, at least one of them is guaranteed to reach 62 wins or

more.

5 / 45

Can my team still win?

• But often it’s not trivial: The outcomes of remaining games among other teams
constrain each other.

• Two games left. Can Team C still win the championship?

Team Current Wins
Team A 61

Team B 61

Team C 60

• No one is individually out of reach, yet the schedule makes it impossible:
• C’s maximum possible wins are 62 (if C wins both remaining games).
• Assume Team A and Team B have a final game scheduled against each other.
• Since A and B play each other, at least one of them is guaranteed to reach 62 wins or

more.

5 / 45

Can my team still win?

• But often it’s not trivial: The outcomes of remaining games among other teams
constrain each other.

• Two games left. Can Team C still win the championship?

Team Current Wins
Team A 61

Team B 61

Team C 60

• No one is individually out of reach, yet the schedule makes it impossible:
• C’s maximum possible wins are 62 (if C wins both remaining games).
• Assume Team A and Team B have a final game scheduled against each other.
• Since A and B play each other, at least one of them is guaranteed to reach 62 wins or

more.

5 / 45

Problem Statement: Baseball Elimination

Setting:

• We have a league of n teams labeled 1, 2, . . . , n.
• For each team i :

• W [i] — number of games already won.
• R[i] — number of remaining games.

• For each pair of teams (i , j):
• G [i , j] — number of remaining head-to-head games between them.

Goal: Determine whether a specific team n (our team) is mathematically eliminated.

• If not, provide a certificate (subset of teams proving possibility).

6 / 45

Problem Statement: Baseball Elimination

Setting:

• We have a league of n teams labeled 1, 2, . . . , n.
• For each team i :

• W [i] — number of games already won.
• R[i] — number of remaining games.

• For each pair of teams (i , j):
• G [i , j] — number of remaining head-to-head games between them.

Goal: Determine whether a specific team n (our team) is mathematically eliminated.

• If not, provide a certificate (subset of teams proving possibility).

6 / 45

Our Appraoch

• We assume Team n wins all R[n] of its remaining games.

Wmax := W [n] + R[n]

• For all other teams i ∈ [n − 1], we update the number of remaining games.

R[i]← R[i]− G [i , n]

• Find a possible results for the remaining games among other teams in such a way that
no opponent to surpass Team n’s maximum score.

new wins of i < Wmax −W [i]

7 / 45

Our Appraoch

• We assume Team n wins all R[n] of its remaining games.

Wmax := W [n] + R[n]

• For all other teams i ∈ [n − 1], we update the number of remaining games.

R[i]← R[i]− G [i , n]

• Find a possible results for the remaining games among other teams in such a way that
no opponent to surpass Team n’s maximum score.

new wins of i < Wmax −W [i]

7 / 45

Our Appraoch

• We assume Team n wins all R[n] of its remaining games.

Wmax := W [n] + R[n]

• For all other teams i ∈ [n − 1], we update the number of remaining games.

R[i]← R[i]− G [i , n]

• Find a possible results for the remaining games among other teams in such a way that
no opponent to surpass Team n’s maximum score.

new wins of i < Wmax −W [i]

7 / 45

Why Max Flow Can Help

Max flow models the distribution of wins from unplayed games, testing if there’s a
hypothetical outcome where a no team can catch the leader.

A

B

C

D

A-B

A-C

A-D

B-C

B-D

C-D

8 / 45

Reduction to Max Flow: The Network G ′

The problem of assigning outcomes to games is perfectly modeled by a maximum flow
network.

Nodes:

• s (source) and t (sink).

• Game Nodes gi ,j : For every pair i , j ̸= n. (Represents G [i , j] games to be played).

• Team Nodes ti : For every opponent i ̸= n.

Edges & Capacities:

• s→ gi ,j : Capacity G [i , j]. (Total flow is the total number of games left).

• gi ,j → ti and gi ,j → tj : Capacity ∞. (Game outcome: win for i or j).

• ti → t: Capacity Wmax −W[i]. (Constraint: ti cannot exceed Team n’s max wins).

9 / 45

Reduction to Max Flow: The Network G ′

The problem of assigning outcomes to games is perfectly modeled by a maximum flow
network.

Nodes:

• s (source) and t (sink).

• Game Nodes gi ,j : For every pair i , j ̸= n. (Represents G [i , j] games to be played).

• Team Nodes ti : For every opponent i ̸= n.

Edges & Capacities:

• s→ gi ,j : Capacity G [i , j]. (Total flow is the total number of games left).

• gi ,j → ti and gi ,j → tj : Capacity ∞. (Game outcome: win for i or j).

• ti → t: Capacity Wmax −W[i]. (Constraint: ti cannot exceed Team n’s max wins).

9 / 45

The Flow Network

A

B

C

D

A-B

A-C

A-D

B-C

B-D

C-D

s t

G[A,B]

∞
∞

Wmax −W [A]− 1

10 / 45

The Flow Network

A

B

C

D

A-B

A-C

A-D

B-C

B-D

C-D

s t

G[A,B]

∞
∞

Wmax −W [A]− 1

10 / 45

The Flow Network

A

B

C

D

A-B

A-C

A-D

B-C

B-D

C-D

s t

G[A,B]

∞
∞

Wmax −W [A]− 1

10 / 45

The Flow Network

A

B

C

D

A-B

A-C

A-D

B-C

B-D

C-D

s t

G[A,B]

∞
∞

Wmax −W [A]− 1

10 / 45

The Flow Network

A

B

C

D

A-B

A-C

A-D

B-C

B-D

C-D

s t

G[A,B]

∞
∞

Wmax −W [A]− 1

10 / 45

Finding The Final Solution

• Team n can finish in first place if and only if a flow in G ′ saturates every edge leaving
s.

• This has to be the max-flow, since the cut S = {s} and T = V \{s} is fully saturated.

• Certificate: the flow in gij and tj indicates how many games between i and j are won
by tj .

11 / 45

Proof of Correctness: The Two-Way Proof Structure

Part 1: Completeness

We must show that a valid solution in the
original problem results in a valid flow in
our new network.

Original Solution =⇒ Valid Flow

Part 2: Soundness

We must show that a valid (max) flow in
our network gives us a valid solution back
in the original problem.

Valid Flow =⇒ Original Solution

12 / 45

Completeness: Original Solution =⇒ Valid Flow

• A solution exists: We can define a scenario (win assignment) where n finishes first.

• Map each win to 1 unit of flow: gi ,j → ti for a win by i .

• Since every game G [i , j] is assigned, s → gi ,j is saturated.

• Since no ti exceeds Wmax , the capacity ti → t is respected.

• The flow conservation also holds at all nodes. All the outgoing edges of s are fully
saturated.

• Hence, the flow is feasible and maximized.

13 / 45

Completeness: Original Solution =⇒ Valid Flow

• A solution exists: We can define a scenario (win assignment) where n finishes first.

• Map each win to 1 unit of flow: gi ,j → ti for a win by i .

• Since every game G [i , j] is assigned, s → gi ,j is saturated.

• Since no ti exceeds Wmax , the capacity ti → t is respected.

• The flow conservation also holds at all nodes. All the outgoing edges of s are fully
saturated.

• Hence, the flow is feasible and maximized.

13 / 45

Completeness: Original Solution =⇒ Valid Flow

• A solution exists: We can define a scenario (win assignment) where n finishes first.

• Map each win to 1 unit of flow: gi ,j → ti for a win by i .

• Since every game G [i , j] is assigned, s → gi ,j is saturated.

• Since no ti exceeds Wmax , the capacity ti → t is respected.

• The flow conservation also holds at all nodes. All the outgoing edges of s are fully
saturated.

• Hence, the flow is feasible and maximized.

13 / 45

Completeness: Original Solution =⇒ Valid Flow

• A solution exists: We can define a scenario (win assignment) where n finishes first.

• Map each win to 1 unit of flow: gi ,j → ti for a win by i .

• Since every game G [i , j] is assigned, s → gi ,j is saturated.

• Since no ti exceeds Wmax , the capacity ti → t is respected.

• The flow conservation also holds at all nodes. All the outgoing edges of s are fully
saturated.

• Hence, the flow is feasible and maximized.

13 / 45

Completeness: Original Solution =⇒ Valid Flow

• A solution exists: We can define a scenario (win assignment) where n finishes first.

• Map each win to 1 unit of flow: gi ,j → ti for a win by i .

• Since every game G [i , j] is assigned, s → gi ,j is saturated.

• Since no ti exceeds Wmax , the capacity ti → t is respected.

• The flow conservation also holds at all nodes. All the outgoing edges of s are fully
saturated.

• Hence, the flow is feasible and maximized.

13 / 45

Completeness: Original Solution =⇒ Valid Flow

• A solution exists: We can define a scenario (win assignment) where n finishes first.

• Map each win to 1 unit of flow: gi ,j → ti for a win by i .

• Since every game G [i , j] is assigned, s → gi ,j is saturated.

• Since no ti exceeds Wmax , the capacity ti → t is respected.

• The flow conservation also holds at all nodes. All the outgoing edges of s are fully
saturated.

• Hence, the flow is feasible and maximized.

13 / 45

Soundness: Valid Flow =⇒ Original Solution

• If a valid flow saturates outgoing edges of s: the flow conservation holds at every
node.

• The flow values f (gi ,j → ti) define a valid win assignment for all remaining games:

f (gi ,j → ti) + f (gi ,j → tj) = G [i , j] .

• Because of the ti → t capacity constraint, no opponent i can win more than Wmax −
W [i] new games.

• Since team n can win Wmax, the assignment implies a solution to the original
problem.

14 / 45

Soundness: Valid Flow =⇒ Original Solution

• If a valid flow saturates outgoing edges of s: the flow conservation holds at every
node.

• The flow values f (gi ,j → ti) define a valid win assignment for all remaining games:

f (gi ,j → ti) + f (gi ,j → tj) = G [i , j] .

• Because of the ti → t capacity constraint, no opponent i can win more than Wmax −
W [i] new games.

• Since team n can win Wmax, the assignment implies a solution to the original
problem.

14 / 45

Soundness: Valid Flow =⇒ Original Solution

• If a valid flow saturates outgoing edges of s: the flow conservation holds at every
node.

• The flow values f (gi ,j → ti) define a valid win assignment for all remaining games:

f (gi ,j → ti) + f (gi ,j → tj) = G [i , j] .

• Because of the ti → t capacity constraint, no opponent i can win more than Wmax −
W [i] new games.

• Since team n can win Wmax, the assignment implies a solution to the original
problem.

14 / 45

Soundness: Valid Flow =⇒ Original Solution

• If a valid flow saturates outgoing edges of s: the flow conservation holds at every
node.

• The flow values f (gi ,j → ti) define a valid win assignment for all remaining games:

f (gi ,j → ti) + f (gi ,j → tj) = G [i , j] .

• Because of the ti → t capacity constraint, no opponent i can win more than Wmax −
W [i] new games.

• Since team n can win Wmax, the assignment implies a solution to the original
problem.

14 / 45

The Equivalence

We have successfully mapped the baseball elimination problem to a flow problem:

Original Solution ⇔ Valid Flow

Therefore, finding the max flow value directly solves the baseball elimination problem.

15 / 45

Complexity

Network Size (V ,E)

• Vertices (V): 2 (s, t) +(n − 1) (teams) +
(n−1

2

)
(games)

=⇒ V = O(n2)

• Edges (E):
(n−1

2

)
(s → g) +2 ·

(n−1
2

)
(g → t) +(n − 1) (t → t)

=⇒ E = O(n2)

Max Flow Computation

• Using Edmond-Karp algorithm: O(|V | |E |2) = O(n6).

16 / 45

Complexity

Network Size (V ,E)

• Vertices (V): 2 (s, t) +(n − 1) (teams) +
(n−1

2

)
(games)

=⇒ V = O(n2)

• Edges (E):
(n−1

2

)
(s → g) +2 ·

(n−1
2

)
(g → t) +(n − 1) (t → t)

=⇒ E = O(n2)

Max Flow Computation

• Using Edmond-Karp algorithm: O(|V | |E |2) = O(n6).

16 / 45

The Max-Flow Reduction Paradigm

• Graph Construction. We model the problem as a directed graph G = (V ,E) with
a designated source (s) and sink (t). Edge capacities c(u, v) are strategically defined
to enforce the constraints of the original problem.

• Flow Translates to Solution. The flow value f (e) on specific edges directly maps
back to a solution in the original problem.

• Soundness and Completeness. A successful reduction establishes a two-way equiv-
alence relationship:

Original Solution Exists ⇐⇒ Required Flow is Achieved

This proves that the flow network precisely captures the constraints and objectives of
the original problem.

17 / 45

The Max-Flow Reduction Paradigm

• Graph Construction. We model the problem as a directed graph G = (V ,E) with
a designated source (s) and sink (t). Edge capacities c(u, v) are strategically defined
to enforce the constraints of the original problem.

• Flow Translates to Solution. The flow value f (e) on specific edges directly maps
back to a solution in the original problem.

• Soundness and Completeness. A successful reduction establishes a two-way equiv-
alence relationship:

Original Solution Exists ⇐⇒ Required Flow is Achieved

This proves that the flow network precisely captures the constraints and objectives of
the original problem.

17 / 45

The Max-Flow Reduction Paradigm

• Graph Construction. We model the problem as a directed graph G = (V ,E) with
a designated source (s) and sink (t). Edge capacities c(u, v) are strategically defined
to enforce the constraints of the original problem.

• Flow Translates to Solution. The flow value f (e) on specific edges directly maps
back to a solution in the original problem.

• Soundness and Completeness. A successful reduction establishes a two-way equiv-
alence relationship:

Original Solution Exists ⇐⇒ Required Flow is Achieved

This proves that the flow network precisely captures the constraints and objectives of
the original problem.

17 / 45

Conclusion

Modeling Feasibility and Optimization. Max Flow provides a powerful framework for
solving a wide class of discrete decision and optimization problems by transforming them
into a network representation.

This method is particularly effective for problems involving:

• Resource allocation

• Matching

• Feasibility checks subject to capacity constraints.

18 / 45

Linear Programming

Problems with Linear Constraints

• Making the best choice under limits (budget, time, capacity).

• When relationships are linear, we get Linear Programming (LP).

• LP appears in scheduling, transport, game theory, and machine learning.

Next: real-life examples

20 / 45

The Diet Problem

• We must plan a daily diet using two grains: G1 and G2.

• Each grain provides carb, protein, and vitamins, and has a cost per kg.

• Goal: meet daily nutritional requirements at minimum cost.

Carb Protein Vitamins Cost ($/oz)
G1 5 4 2 0.60
G2 7 2 1 0.35

Requirements per day: 8 units carb, 15 units protein, 3 units vitamins.

21 / 45

The Diet Problem

Variables (amount/day): x1 ← amount of G1, x2 ← amount of G2

min 0.6x1 + 0.35x2

5x1 + 7x2 ≥ 8 (starch)

4x1 + 2x2 ≥ 15 (protein)

2x1 + x2 ≥ 3 (vitamins)

x1, x2 ≥ 0

Interpretation: pick amounts to meet each need as cheaply as possible.

22 / 45

The Transportation Problem

Two factories F1,F2 and three cities C1,C2,C3.

C1 C2 C3 Supply
F1 5 5 3 6
F2 6 4 1 9

Demand 8 5 2

Minimize total cost subject to all supplies and demands being met.

23 / 45

The Transportation Problem

Decision variables: xij = thousands of widgets shipped from Fi to Cj .

min 5x11 + 5x12 + 3x13 + 6x21 + 4x22 + x23

x11 + x21 = 8 (demand C1)

x12 + x22 = 5 (demand C2)

x13 + x23 = 2 (demand C3)

x11 + x12 + x13 = 6 (supply F1)

x21 + x22 + x23 = 9 (supply F2)

xij ≥ 0 (no negative shipments)

Interpretation: ship goods to meet all demands at minimum total cost.

24 / 45

What is Linear Programming?

Definition

A linear program (LP) optimizes a linear function subject to a set of linear equality or
inequality constraints.

• We can always rewrite any LP in a canonical form.

• Geometry: intersection of half-spaces (a polyhedron).

• Algorithms: solved efficiently (e.g., Simplex method).

25 / 45

From real problems to canonical form

Linear programs can look very different:

min 2x1 − x2 s.t.


x1 + x2 ≥ 2,

3x1 + 2x2 ≤ 4,

x1 + 2x2 = 3,

x1 free, x2 ≥ 0.

To solve any LP systematically or design algorithms for them, we need to convert it

into a unified template...

26 / 45

From real problems to canonical form

Linear programs can look very different:

min 2x1 − x2 s.t.


x1 + x2 ≥ 2,

3x1 + 2x2 ≤ 4,

x1 + 2x2 = 3,

x1 free, x2 ≥ 0.

To solve any LP systematically or design algorithms for them, we need to convert it

into a unified template...

26 / 45

Canonical Form

max c⊤x s.t. Ax ≤ b, x ≥ 0

• x : decision variables

• c : objective coefficients

• A: constraint matrix, b: resource limits

Every LP can be written in this form by adding slack variables or sign changes.

27 / 45

Feasibility Region: From half-spaces to polygons

Step 1. Half-space.

One inequality defines a line and the
side that satisfies it.

x1
3
− x2 ≤ −1

Feasible set: half-space.

H1

Half-space

x1

x2

28 / 45

Feasibility Region: From half-spaces to polygons

Step 2. Wedge.

Two inequalities ⇒ intersection of two
half-spaces.

Feasible set: wedge (two half-spaces).

H1

H2

Wedge = H1∩H2

x1

x2

28 / 45

Feasibility Region: From half-spaces to polygons

Step 3. Triangle.

A third inequality can bound the region
in 2D.

Feasible set: triangle (bounded).

H1

H2

H3

Triangle = H1∩H2∩H3

x1

x2

28 / 45

Feasibility Region: From half-spaces to polygons

Step 4. Polygon.

Additional constraints cut off corners
⇒ refined feasible set.

Feasible set: polygon.

H1

H2

H3

H4Polygon (more cuts)

x1

x2

28 / 45

Feasibility Region: From half-spaces to polygons

Step 5. Optimum at a vertex.

Maximizing c⊤x pushes along c to
(usually) a vertex of the polygon.

Feasible set: polygon;

H1

H2

H3

H4

H5

Final polygon

c

optimum
x1

x2

28 / 45

Simplex Method

A short overview

Simplex Method

• Every LP’s feasible region is a polyhedron (a polygon in 2D, polytope in 3D).

• A linear objective reaches its maximum (or minimum) at a vertex (in non-
degenrate cases).

• Why? Linear programs are like “flat” landscapes — no hills or valleys.

• The Simplex method:

1. Starts from one feasible vertex.
2. Moves along edges to neighboring vertices that improve the objective.
3. Stops when no further improvement is possible.

• Each move improves the objective value — and there are finitely many vertices.

• Simplex always ends at an optimal vertex (if one exists).

30 / 45

Simplex Method

• Every LP’s feasible region is a polyhedron (a polygon in 2D, polytope in 3D).

• A linear objective reaches its maximum (or minimum) at a vertex (in non-
degenrate cases).

• Why? Linear programs are like “flat” landscapes — no hills or valleys.

• The Simplex method:

1. Starts from one feasible vertex.
2. Moves along edges to neighboring vertices that improve the objective.
3. Stops when no further improvement is possible.

• Each move improves the objective value — and there are finitely many vertices.

• Simplex always ends at an optimal vertex (if one exists).

30 / 45

Simplex Method

• Every LP’s feasible region is a polyhedron (a polygon in 2D, polytope in 3D).

• A linear objective reaches its maximum (or minimum) at a vertex (in non-
degenrate cases).

• Why? Linear programs are like “flat” landscapes — no hills or valleys.

• The Simplex method:

1. Starts from one feasible vertex.
2. Moves along edges to neighboring vertices that improve the objective.
3. Stops when no further improvement is possible.

• Each move improves the objective value — and there are finitely many vertices.

• Simplex always ends at an optimal vertex (if one exists).

30 / 45

Simplex Method

• Every LP’s feasible region is a polyhedron (a polygon in 2D, polytope in 3D).

• A linear objective reaches its maximum (or minimum) at a vertex (in non-
degenrate cases).

• Why? Linear programs are like “flat” landscapes — no hills or valleys.

• The Simplex method:

1. Starts from one feasible vertex.
2. Moves along edges to neighboring vertices that improve the objective.
3. Stops when no further improvement is possible.

• Each move improves the objective value — and there are finitely many vertices.

• Simplex always ends at an optimal vertex (if one exists).

30 / 45

Simplex Method

• Every LP’s feasible region is a polyhedron (a polygon in 2D, polytope in 3D).

• A linear objective reaches its maximum (or minimum) at a vertex (in non-
degenrate cases).

• Why? Linear programs are like “flat” landscapes — no hills or valleys.

• The Simplex method:
1. Starts from one feasible vertex.

2. Moves along edges to neighboring vertices that improve the objective.
3. Stops when no further improvement is possible.

• Each move improves the objective value — and there are finitely many vertices.

• Simplex always ends at an optimal vertex (if one exists).

30 / 45

Simplex Method

• Every LP’s feasible region is a polyhedron (a polygon in 2D, polytope in 3D).

• A linear objective reaches its maximum (or minimum) at a vertex (in non-
degenrate cases).

• Why? Linear programs are like “flat” landscapes — no hills or valleys.

• The Simplex method:
1. Starts from one feasible vertex.
2. Moves along edges to neighboring vertices that improve the objective.

3. Stops when no further improvement is possible.

• Each move improves the objective value — and there are finitely many vertices.

• Simplex always ends at an optimal vertex (if one exists).

30 / 45

Simplex Method

• Every LP’s feasible region is a polyhedron (a polygon in 2D, polytope in 3D).

• A linear objective reaches its maximum (or minimum) at a vertex (in non-
degenrate cases).

• Why? Linear programs are like “flat” landscapes — no hills or valleys.

• The Simplex method:
1. Starts from one feasible vertex.
2. Moves along edges to neighboring vertices that improve the objective.
3. Stops when no further improvement is possible.

• Each move improves the objective value — and there are finitely many vertices.

• Simplex always ends at an optimal vertex (if one exists).

30 / 45

Simplex Method

• Every LP’s feasible region is a polyhedron (a polygon in 2D, polytope in 3D).

• A linear objective reaches its maximum (or minimum) at a vertex (in non-
degenrate cases).

• Why? Linear programs are like “flat” landscapes — no hills or valleys.

• The Simplex method:
1. Starts from one feasible vertex.
2. Moves along edges to neighboring vertices that improve the objective.
3. Stops when no further improvement is possible.

• Each move improves the objective value — and there are finitely many vertices.

• Simplex always ends at an optimal vertex (if one exists).

30 / 45

Simplex Method

• Every LP’s feasible region is a polyhedron (a polygon in 2D, polytope in 3D).

• A linear objective reaches its maximum (or minimum) at a vertex (in non-
degenrate cases).

• Why? Linear programs are like “flat” landscapes — no hills or valleys.

• The Simplex method:
1. Starts from one feasible vertex.
2. Moves along edges to neighboring vertices that improve the objective.
3. Stops when no further improvement is possible.

• Each move improves the objective value — and there are finitely many vertices.

• Simplex always ends at an optimal vertex (if one exists).

30 / 45

Simplex Path on a Polygon (2D intuition)

Each step: move along an edge to a better vertex.

“Walk around the polygon” until no edge improves the objective.

A B

C

D

E

c

optimum

31 / 45

Time Complexity of the Simplex Method

• n← number of variables

• In the worst case, there can be exponentially many vertices:

Worst case: O(2n)

(Klee–Minty cube example).

• In practice, Simplex is extremely fast — polynomial time.

• Theoretical guarantee (polynomial time) comes from interior-point methods

32 / 45

Duality in Linear Programming

An Example of Duality

Primal:
max z = 5x1 + 4x2

s.t.


x1 ≤ 4 (1)

x1 + 2x2 ≤ 10 (2)

3x1 + 2x2 ≤ 16 (3)

x1, x2 ≥ 0

• Feasible solution (x1, x2) = (4, 2) gives z = 28 =⇒ lower bound.

• Multiply (3) by 2: 6x1 + 4x2 ≤ 32 =⇒ z ≤ 32 =⇒ upper bound.

• Adding (1)+(2)+(3): 5x1 + 4x2 ≤ 30 =⇒ z ≤ 30.

34 / 45

Combining Inequalities to Bound the Optimum

Multiply constraints by nonnegative multipliers y1, y2, y3:

(y1 + y2 + 3y3)x1 + (2y2 + 2y3)x2 ≤ 4y1 + 10y2 + 16y3.

To ensure an upper bound on z = 5x1 + 4x2, impose:

y1 + y2 + 3y3 ≥ 5, 2y2 + 2y3 ≥ 4.

Then minimize the RHS 4y1 + 10y2 + 16y3.

Dual:
min w = 4y1 + 10y2 + 16y3

s.t.


y1 + y2 + 3y3 ≥ 5,

2y2 + 2y3 ≥ 4,

y1, y2, y3 ≥ 0.

Solution: y1 = 0, y2 = 0.5, y3 = 1.5 =⇒ w = 29 =⇒ z∗ ≤ 29.

35 / 45

Combining Inequalities to Bound the Optimum

Multiply constraints by nonnegative multipliers y1, y2, y3:

(y1 + y2 + 3y3)x1 + (2y2 + 2y3)x2 ≤ 4y1 + 10y2 + 16y3.

To ensure an upper bound on z = 5x1 + 4x2, impose:

y1 + y2 + 3y3 ≥ 5, 2y2 + 2y3 ≥ 4.

Then minimize the RHS 4y1 + 10y2 + 16y3.

Dual:
min w = 4y1 + 10y2 + 16y3

s.t.


y1 + y2 + 3y3 ≥ 5,

2y2 + 2y3 ≥ 4,

y1, y2, y3 ≥ 0.

Solution: y1 = 0, y2 = 0.5, y3 = 1.5 =⇒ w = 29 =⇒ z∗ ≤ 29.

35 / 45

Combining Inequalities to Bound the Optimum

Multiply constraints by nonnegative multipliers y1, y2, y3:

(y1 + y2 + 3y3)x1 + (2y2 + 2y3)x2 ≤ 4y1 + 10y2 + 16y3.

To ensure an upper bound on z = 5x1 + 4x2, impose:

y1 + y2 + 3y3 ≥ 5, 2y2 + 2y3 ≥ 4.

Then minimize the RHS 4y1 + 10y2 + 16y3.

Dual:
min w = 4y1 + 10y2 + 16y3

s.t.


y1 + y2 + 3y3 ≥ 5,

2y2 + 2y3 ≥ 4,

y1, y2, y3 ≥ 0.

Solution: y1 = 0, y2 = 0.5, y3 = 1.5 =⇒ w = 29 =⇒ z∗ ≤ 29.
35 / 45

Verifying Optimality via Duality

• We have established that for any pair of feasible solutions:

z(x) ≤ w(y)

• Try (x1, x2) = (3, 3.5) =⇒ z = 5(3) + 4(3.5) = 29.

• Try (y1, y2, y3) = (0, 0.5, 1.5) =⇒ w = 4(0) + 10(0.5) + 16(1.5) = 29.

• Therefore, when they match, both are optimal: z∗ = w ∗ = 29.

Duality provides certificates of optimality: when a feasible x and y give equal
objective values, they must be optimal.

36 / 45

Verifying Optimality via Duality

• We have established that for any pair of feasible solutions:

z(x) ≤ w(y)

• Try (x1, x2) = (3, 3.5) =⇒ z = 5(3) + 4(3.5) = 29.

• Try (y1, y2, y3) = (0, 0.5, 1.5) =⇒ w = 4(0) + 10(0.5) + 16(1.5) = 29.

• Therefore, when they match, both are optimal: z∗ = w ∗ = 29.

Duality provides certificates of optimality: when a feasible x and y give equal
objective values, they must be optimal.

36 / 45

Duality in Canonical Form

(P) max c⊤x s.t. Ax ≤ b, x ≥ 0

(D) min b⊤y s.t. A⊤y ≥ c , y ≥ 0

• Each primal constraint ⇒ dual variable.

• Each primal variable ⇒ dual constraint.

• The two problems are mirrors of one another.

37 / 45

Weak Duality

c⊤x ≤ y⊤Ax ≤ y⊤b

• For any feasible x (primal) and y (dual): z = c⊤x ≤ w = b⊤y .

• Dual feasible solutions give upper bounds on the primal optimum.

Convention: max ∅ = −∞, min ∅ = +∞ =⇒ always z∗ ≤ w∗.

38 / 45

Strong Duality

If both (P) and (D) have feasible solutions and one is bounded, then both attain the

same finite optimum.

z∗ = w ∗

• Proof idea: simplex optimality conditions produce a dual feasible y with equal objective
value.

39 / 45

Summary of primal–dual relationships

Dual finite Dual unbounded Dual infeasible
Primal finite z∗ = w ∗ impossible impossible
Primal unbounded impossible impossible possible
Primal infeasible impossible possible possible

Interpretation:

• If one is unbounded, the other is infeasible.

• If one has a finite optimum, so does the other, with equal value.

• Both can be infeasible simultaneously.

40 / 45

Duality and the Max-Flow = Min-Cut
Theorem

Max-Flow Problem as a Linear Program

Given a directed graph G = (V ,E) with capacities uij , source s, sink t.

max
∑

(s,j)∈E

fsj −
∑

(i ,s)∈E

fis

s.t.

{∑
(i ,v)∈E fiv −

∑
(v ,j)∈E fvj = 0, ∀v ∈ V \ {s, t},

0 ≤ fij ≤ uij , ∀(i , j) ∈ E .

• Decision variables: fij = amount of flow on edge (i , j).

• Objective: maximize net flow leaving s (equals entering t).

• Constraints: capacity limits and flow conservation.

42 / 45

The Dual: Minimum s–t Cut

Introduce dual variables:

• πv for each vertex conservation constraint (potential or “height”).
• λij ≥ 0 for each capacity constraint fij ≤ uij .

The dual LP becomes

min
∑

(i ,j)∈E

uij λij

s.t. πi − πj + λij ≥ 0 ∀(i , j) ∈ E ,

πs − πt ≥ 1, λij ≥ 0.

• π encodes a potential difference between s and t.
• λij > 0 only on edges where the inequality is tight — these edges “cross the
cut”.

43 / 45

Dual ⇒ a Cut; Equality via Strong Duality

From the dual constraints:
πi − πj + λij ≥ 0

we can take πv ∈ {0, 1} (thresholding the potentials):

πi − πj =

{
1 if i ∈ S , j ∈ T

0 otherwise
⇒ λij =

{
1 if (i , j) ∈ δ+(S)

0 else.

Then
min

∑
(i ,j)∈E

uijλij =
∑

(i ,j)∈δ+(S)

uij = capacity of the cut (S ,T).

By strong duality: max flow = min cut.

Feasible flow ⇒ lower bound; feasible cut ⇒ upper bound; when they meet, we have optimality
and equality.

44 / 45

References

Erickson, J. (2019).

Algorithms.

Self-published.

45 / 45

	The Baseball Elimination Problem
	Linear Programming
	Simplex Method
	Duality in Linear Programming
	Duality and the Max-Flow = Min-Cut Theorem

