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Today’s Lecture

1. The Baseball Elimination Problem

2. Linear Programming
2.1 Simplex Method
2.2 Duality in Linear Programming
2.3 Duality and the Max-Flow = Min-Cut Theorem

Reading:
e Chapter H in [Erickson, 2019] and lecture notes in [?]

Content adapted from the same references in [Erickson, 2019].
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https://jeffe.cs.illinois.edu/teaching/algorithms/notes/H-lp.pdf
https://math.mit.edu/~goemans/18310S15/lpnotes310.pdf

The Baseball Elimination Problem

And its reduction to max-flow problem



Can my team still win?

® Mid season: “Is Houston Astros mathematically alive?”

® Trivial check: if some opponent already has more wins than our max possible, we're

done.
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Can my team still win?

® But often it's not trivial: The outcomes of remaining games among other teams
constrain each other.
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Can my team still win?

® But often it's not trivial: The outcomes of remaining games among other teams
constrain each other.
® Two games left. Can Team C still win the championship?

Team | Current Wins
Team A 61
Team B 61
Team C 60

® No one is individually out of reach, yet the schedule makes it impossible:

® C's maximum possible wins are 62 (if C wins both remaining games).
® Assume Team A and Team B have a final game scheduled against each other.
® Since A and B play each other, at least one of them is guaranteed to reach 62 wins or

more.
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Problem Statement: Baseball Elimination

Setting:

® \We have a league of n teams labeled 1,2,...,n.
® For each team i:

® WI{i] — number of games already won.
® R[i] — number of remaining games.

e For each pair of teams (i,):
® GJ[i,j] — number of remaining head-to-head games between them.
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Problem Statement: Baseball Elimination

Setting:

® \We have a league of n teams labeled 1,2,...,n.
® For each team i:

® WI{i] — number of games already won.
® R[i] — number of remaining games.

e For each pair of teams (i,):
® GJ[i,j] — number of remaining head-to-head games between them.

Goal: Determine whether a specific team n (our team) is mathematically eliminated.

® If not, provide a certificate (subset of teams proving possibility).
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Our Appraoch

e We assume Team n wins all R[n] of its remaining games.
Wnax = W{[n] + R[n]
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® For all other teams i € [n — 1], we update the number of remaining games.

R[i] + RIi] — Gli, n]
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Our Appraoch

e We assume Team n wins all R[n] of its remaining games.
Wnax = W{[n] + R[n]

® For all other teams i € [n — 1], we update the number of remaining games.

R[i] + RIi] — Gli, n]

® Find a possible results for the remaining games among other teams in such a way that
no opponent to surpass Team n’'s maximum score.

new wins of i < Wpax — W/i]
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Why Max Flow Can Help

Max flow models the distribution of wins from unplayed games, testing if there's a
hypothetical outcome where a no team can catch the leader.
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Reduction to Max Flow: The Network G’

The problem of assigning outcomes to games is perfectly modeled by a maximum flow
network.
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Reduction to Max Flow: The Network G’

The problem of assigning outcomes to games is perfectly modeled by a maximum flow
network.

Nodes:

® s (source) and t (sink).
® Game Nodes g; j: For every pair i,j # n. (Represents G[i,j] games to be played).

e Team Nodes t;: For every opponent i # n.

Edges & Capacities:

® s — g;j: Capacity G[i,j]. (Total flow is the total number of games left).
® gij— tiand g; j — tj: Capacity co. (Game outcome: win for i or j).
o t; — t: Capacity Wmax — W[i]. (Constraint: t; cannot exceed Team n's max wins).
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The Flow Network
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The Flow Network
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The Flow Network

Winax — W[A] — 1
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Finding The Final Solution

® Team n can finish in first place if and only if a flow in G’ saturates every edge leaving
s.

® This has to be the max-flow, since the cut S = {s} and T = V'\ {s} is fully saturated.

¢ Certificate: the flow in gj; and t; indicates how many games between / and j are won
by t;.
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Proof of Correctness: The Two-Way Proof Structure

Part 1: Completeness Part 2: Soundness

We must show that a valid solution in the We must show that a valid (max) flow in
original problem results in a valid flow in our network gives us a valid solution back
our new network. in the original problem.

Original Solution = Valid Flow Valid Flow = Original Solution
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Completeness: Original Solution —> Valid Flow

¢ A solution exists: We can define a scenario (win assignment) where n finishes first.
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Completeness: Original Solution —> Valid Flow

¢ A solution exists: We can define a scenario (win assignment) where n finishes first.

® Map each win to 1 unit of flow: g;; — t; for a win by i.

Since every game G[i, j] is assigned, s — g; ; is saturated.

® Since no t; exceeds W,.x, the capacity t; — t is respected.

The flow conservation also holds at all nodes. All the outgoing edges of s are fully
saturated.

Hence, the flow is feasible and maximized.
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Soundness: Valid Flow — Original Solution

¢ |f a valid flow saturates outgoing edges of s: the flow conservation holds at every
node.
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Soundness: Valid Flow — Original Solution

¢ |f a valid flow saturates outgoing edges of s: the flow conservation holds at every
node.

® The flow values f(gjj — t;) define a valid win assignment for all remaining games:

f(gij — ti)+f(gij — t;) = G[i,Jj].
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Soundness: Valid Flow — Original Solution

¢ |f a valid flow saturates outgoing edges of s: the flow conservation holds at every
node.

® The flow values f(gjj — t;) define a valid win assignment for all remaining games:

f(gij — ti)+f(gij — t;) = G[i,Jj].

® Because of the t; — t capacity constraint, no opponent / can win more than Wi, —
WI[i] new games.
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Soundness: Valid Flow — Original Solution

¢ |f a valid flow saturates outgoing edges of s: the flow conservation holds at every
node.

® The flow values f(gjj — t;) define a valid win assignment for all remaining games:

f(gij — ti)+f(gij — t;) = G[i,Jj].

® Because of the t; — t capacity constraint, no opponent / can win more than Wi, —
WI[i] new games.

® Since team n can win Wy, the assignment implies a solution to the original
problem.
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The Equivalence

We have successfully mapped the baseball elimination problem to a flow problem:

Original Solution < Valid Flow

Therefore, finding the max flow value directly solves the baseball elimination problem.
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Complexity

Network Size (V, E)
* Vertices (V): 2 (s, t) +(n— 1) (teams) +(";") (games)

— V =0(n?)
* Edges (E): (",') (s—g) +2- (") (g = t) +(n—1) (t > t)

— E = 0(n?)
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Complexity

Network Size (V, E)
o Vertices (V): 2 (s, t) +(n— 1) (teams) +(",7) (games)
— V =0(n)
* Edges (E): (",') (s—g) +2- (") (g = t) +(n—1) (t > t)
— E = 0(n?)
Max Flow Computation

e Using Edmond-Karp algorithm: O(|V||E[*) = O(n®).
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The Max-Flow Reduction Paradigm

¢ Graph Construction. We model the problem as a directed graph G = (V, E) with
a designated source (s) and sink (t). Edge capacities c(u, v) are strategically defined
to enforce the constraints of the original problem.
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® Flow Translates to Solution. The flow value f(e) on specific edges directly maps
back to a solution in the original problem.
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The Max-Flow Reduction Paradigm

¢ Graph Construction. We model the problem as a directed graph G = (V, E) with
a designated source (s) and sink (t). Edge capacities c(u, v) are strategically defined
to enforce the constraints of the original problem.

® Flow Translates to Solution. The flow value f(e) on specific edges directly maps
back to a solution in the original problem.

® Soundness and Completeness. A successful reduction establishes a two-way equiv-
alence relationship:

Original Solution Exists <=  Required Flow is Achieved

This proves that the flow network precisely captures the constraints and objectives of
the original problem.
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Conclusion

Modeling Feasibility and Optimization. Max Flow provides a powerful framework for
solving a wide class of discrete decision and optimization problems by transforming them
into a network representation.

This method is particularly effective for problems involving:

® Resource allocation
® Matching
® Feasibility checks subject to capacity constraints.
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Linear Programming



Problems with Linear Constraints

e Making the best choice under limits (budget, time, capacity).

® When relationships are linear, we get Linear Programming (LP).

® | P appears in scheduling, transport, game theory, and machine learning.

Next: real-life examples
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The Diet Problem

® \We must plan a daily diet using two grains: G; and G,.
® Each grain provides carb, protein, and vitamins, and has a cost per kg.

® Goal: meet daily nutritional requirements at minimum cost.

| Carb  Protein  Vitamins | Cost ($/0z)
G| 5 4 2 0.60
G, 7 2 1 0.35

Requirements per day: 8 units carb, 15 units protein, 3 units vitamins.
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The Diet Problem

Variables (amount/day): x; - amount of Gy, x, +— amount of G,

min 0.6x; 4+ 0.35x;

5x; +7x, > 8 (starch)
4x; + 2x, > 15 (protein)
2x1+x2 >3 (vitamins)
X1, X2 > 0

Interpretation: pick amounts to meet each need as cheaply as possible.
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The Transportation Problem

Two factories Fyi, F» and three cities C;, G, Gs.

Cl C2 C3 Supply
F 5 5 3 6
Fs 6 4 1 9
Demand | 8 5 2

Minimize total cost subject to all supplies and demands being met
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The Transportation Problem

Decision variables: x; = thousands of widgets shipped from F; to C;.

min 5X11 + 5X12 + 3X13 + 6X21 + 4X22 + X23

x11 + X1 =8 (demand G)

X2 + X0 = 5 (demand &)

X3 + Xp3 = 2 (demand G)

X11 + X2 + x13 =6 (supply F1)
Xo1 + X2 + X23 = 9 (supply F2)
xij > 0 (no negative shipments)

Interpretation: ship goods to meet all demands at minimum total cost.
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What is Linear Programming?

Definition

A linear program (LP) optimizes a linear function subject to a set of linear equality or
inequality constraints.

e \We can always rewrite any LP in a canonical form.
® Geometry: intersection of half-spaces (a polyhedron).
e Algorithms: solved efficiently (e.g., Simplex method).
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From real problems to canonical form

Linear programs can look very different:

min 2X1 — X2

s.t.

)
X1+ xp > 2,

3X1 + 2X2 S 4-,
x|+ 2x = 3,

& free, x, > 0.
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From real problems to canonical form

Linear programs can look very different:

)
X1+ xp > 2,

. 3X1 + 2X2 S 4-,
min2x; — Xx»  s.t.
X1+ 2x2 = 3,

& free, x, > 0.
To solve any LP systematically or design algorithms for them, we need to convert it

into a unified template...
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Canonical Form

max ¢ x s.t. Ax < b, x>0

® x: decision variables
® c: objective coefficients
e A: constraint matrix, b: resource limits

Every LP can be written in this form by adding slack variables or sign changes.
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Feasibility Region: From half-spaces to polygons

Step 1. Half-space. X2

One inequality defines a line and the Half-space
side that satisfies it.

— —x < -1
2 < H,

Feasible set: half-space. /

X1
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Feasibility Region: From half-spaces to polygons

Step 2. Wedge. X0
Two inequalities = intersection of two | Wedge = HinH,
half-spaces.

Feasible set: wedge (two half-spaces).
Hy
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Feasibility Region: From half-spaces to polygons

Step 3. Triangle. Xy Hs
A third inequality can bound the region Triangle = H;NH,NH;
in 2D. TN
Feasible set: triangle (bounded).
Hq
1 H,
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Feasibility Region: From half-spaces to polygons

Step 4. Polygon. xy Hs
Additional constraints cut off corners Polygon (more cuts)  H,
. . N
= refined feasible set. RN
Feasible set: polygon. 4
Hy
X1
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Feasibility Region: From half-spaces to polygons

Step 5. Optimum at a vertex. x> Hs Hs
Maximizing ¢'x pushes along ¢ to Final polygon Ha
N /
(usually) a vertex of the polygon. N
. c V
Feasible set: polygon; 4 ‘/
H1

4 optimum H,
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Simplex Method

A short overview



Simplex Method

® Every LP’s feasible region is a polyhedron (a polygon in 2D, polytope in 3D).
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Simplex Method

® Every LP’s feasible region is a polyhedron (a polygon in 2D, polytope in 3D).

e A linear objective reaches its maximum (or minimum) at a vertex (in non-
degenrate cases).

e Why? Linear programs are like “flat” landscapes — no hills or valleys.
® The Simplex method:
1. Starts from one feasible vertex.
2. Moves along edges to neighboring vertices that improve the objective.
3. Stops when no further improvement is possible.
® Each move improves the objective value — and there are finitely many vertices.
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Simplex Method

® Every LP’s feasible region is a polyhedron (a polygon in 2D, polytope in 3D).

e A linear objective reaches its maximum (or minimum) at a vertex (in non-
degenrate cases).

e Why? Linear programs are like “flat” landscapes — no hills or valleys.
® The Simplex method:
1. Starts from one feasible vertex.
2. Moves along edges to neighboring vertices that improve the objective.
3. Stops when no further improvement is possible.
® Each move improves the objective value — and there are finitely many vertices.
e Simplex always ends at an optimal vertex (if one exists).

30/45



Simplex Path on a Polygon (2D intuition)

Each step: move along an edge to a better vertex.

“Walk around the polygon” until no edge improves the objective.

4

optimum
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Time Complexity of the Simplex Method

® n < number of variables

In the worst case, there can be exponentially many vertices:
Worst case: O(2")

(Klee—Minty cube example).

In practice, Simplex is extremely fast — polynomial time.

Theoretical guarantee (polynomial time) comes from interior-point methods
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Duality in Linear Programming



An Example of Duality

Primal:
max z = bx; + 4x

x1 < 4 (1)
x1+2x <10 (2)
3x1 +2x% <16 (3)
x1, % >0

s.t.

e Feasible solution (xi, x2) = (4,2) gives z =28 = lower bound.
e Multiply (3) by 2: 6x; +4x, <32 = z <32 = upper bound.

e Adding (1)4+(2)+(3): 5x1 +4x <30 = z < 30.
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Combining Inequalities to Bound the Optimum

Multiply constraints by nonnegative multipliers y1, y», ys:

(y1 +y2 +3y3)x1 + (202 + 2y3)x2 < 4y + 10y, + 16y3.
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Combining Inequalities to Bound the Optimum

Multiply constraints by nonnegative multipliers y1, y», ys:
(V1 +y2 + 3y3)x1 + (2y2 + 2y3)x < 4y1 + 10y + 16y3.
To ensure an upper bound on z = 5x; + 4x,, impose:

yi+ys+3y3>5, 2y, +2y3; > 4.
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Combining Inequalities to Bound the Optimum

Multiply constraints by nonnegative multipliers y1, y», y3:
(v1 + y2 +3y3)x1 + (2y2 + 2y3)x2 < 4yy + 10y, + 16ys.
To ensure an upper bound on z = 5x; + 4x,, impose:
ity2+3y3>5, 2 +2p >4

Then minimize the RHS 4y; + 10y, + 16y53.
Dual:
min w = 4y; + 10y, + 16y3
yi+y2+3y3 25,
s.t. 2_)/2 + 2y3 > 4,
y1,¥2,¥3 = 0.
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Verifying Optimality via Duality

® \We have established that for any pair of feasible solutions:

z(x) < w(y)

® Try (x1,%) =(3,3.5) = z=5(3) +4(3.5) = 29.
® Try (y1,¥2,y3) =(0,0.5,1.5) = w = 4(0) + 10(0.5) + 16(1.5) = 29.
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Verifying Optimality via Duality

® \We have established that for any pair of feasible solutions:

z(x) < w(y)

® Try (x1,%) =(3,3.5) = z=5(3) +4(3.5) = 29.
® Try (y1,¥2,y3) =(0,0.5,1.5) = w = 4(0) + 10(0.5) + 16(1.5) = 29.

* *

® Therefore, when they match, both are optimal: z* = w* = 29.

Duality provides certificates of optimality: when a feasible x and y give equal
objective values, they must be optimal.
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Duality in Canonical Form

(P) maxc'x st. Ax<b, x>0
(D) minb'y st. Aly>c, y>0

® Each primal constraint = dual variable.
® Each primal variable = dual constraint.
® The two problems are mirrors of one another.
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Weak Duality

c'x<y'Ax<y'b

® For any feasible x (primal) and y (dual): z=c'x<w=0b"y.
® Dual feasible solutions give upper bounds on the primal optimum.

Convention: max{) = —oo, min) = +oo = always z* < w*.
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Strong Duality

If both (P) and (D) have feasible solutions and one is bounded, then both attain the

same finite optimum.

® Proof idea: simplex optimality conditions produce a dual feasible y with equal objective
value.
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Summary of primal—dual relationships

\ Dual finite Dual unbounded Dual infeasible

Primal finite zZf=w* impossible impossible
Primal unbounded | impossible impossible possible
Primal infeasible impossible possible possible

Interpretation:

® |f one is unbounded, the other is infeasible.
® |f one has a finite optimum, so does the other, with equal value.

® Both can be infeasible simultaneously.
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Duality and the Max-Flow = Min-Cut
Theorem



Max-Flow Problem as a Linear Program

Given a directed graph G = (V/, E) with capacities uj;, source s, sink t.

max Y fy— Y f

(sJ)EE (i,s)eE
st EIVEE Z(vd EE 07 \V/VE V\{57t}7
o< f <y, v(i,j) € E.

e Decision variables: f; = amount of flow on edge (i, ).
® Objective: maximize net flow leaving s (equals entering t).
e Constraints: capacity limits and flow conservation.
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The Dual: Minimum s—t Cut

Introduce dual variables:

e 1, for each vertex conservation constraint (potential or “height”).
® )\ > 0 for each capacity constraint f; < uj;.

The dual LP becomes

min E ujj Ajj

(iJ)eE
s.t. 7T,'—7Tj—|—)\,j20 V(I',j)EE,
ms—me>1, X\j >0.

® 7 encodes a potential difference between s and t.
® )\j > 0 only on edges where the inequality is tight — these edges “cross the
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Dual = a Cut; Equality via Strong Duality

From the dual constraints:
T — 7Tj + /\U Z 0

we can take m, € {0,1} (thresholding the potentials):

. , . N
Wi—ﬂj:{l ifieS, jeT Sy _{1 if (7,/) € 07(S)

0 otherwise 710 else.

Then
min Z ujj = Z uj = capacity of the cut (5, T).
(iJ)eE (i)ed*(S)

By strong duality: max flow = min cut.

Feasible flow = lower bound; feasible cut = upper bound; when they meet, we have optimality 445
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