

COMP 382: Reasoning about Algorithms

Max Flows and Its Applications

Prof. Maryam Aliakbarpour

co-instructors: Prof. Anjum Chida & Prof. Konstantinos Mamouras

November 6, 2025

Today's Lecture

1. Flow Decomposition

2. Reductions

3. Bipartite Matching

4. Edge-Disjoint Paths

5. Vertex-Disjoint Paths

Reading:

- Chapter 10 and Chapter 11 of the *Algorithms* book [Erickson, 2019]

Content adapted from the same chapters in [Erickson, 2019].

1. Flow Decomposition

Flow Components: Path and Cycle Flows

Every flow is a combination of these two fundamental unit flows.

1. Path Flow (Unit Flow)

For a directed path P from s to t :

- **Value:** $|P| = 1$.
- **Definition:** The unit flow $P : E \rightarrow \mathbb{R}$ is defined as:

$$P(u \rightarrow v) = \begin{cases} 1 & \text{if } u \rightarrow v \in P \\ -1 & \text{if } v \rightarrow u \in P \\ 0 & \text{otherwise} \end{cases}$$

Flow Components: Path and Cycle Flows

Every flow is a combination of these two fundamental unit flows.

2. Cycle Flow (Circulation)

For a directed cycle C :

- **Value:** $|C| = 0$.
- **Definition:** The unit flow $C : E \rightarrow \mathbb{R}$ is defined as:

$$C(u \rightarrow v) = \begin{cases} 1 & \text{if } u \rightarrow v \in C \\ -1 & \text{if } v \rightarrow u \in C \\ 0 & \text{otherwise} \end{cases}$$

Flow Linearity:

For now, ignore the capacities...

- A flow is essentially a function mapping an edge to a number.
- It also consistently maps the edge in the opposite direction to the negative of that number.

$$f(u, v) = -f(v, u)$$

- Any linear combination of (s, t) -flows is also an (s, t) -flow.

If $h = \alpha f + \beta g$

- shorthand for: $h(u, v) = \alpha f(u, v) + \beta g(u, v)$
- The size of the flow is also preserved:

$$|h| = \alpha|f| + \beta|g|$$

The Flow Decomposition Theorem

Every flow is a combination of these two fundamental unit flows: Paths and Cycles.

Theorem

Every **non-negative** (s, t) -flow f can be written as a **positive linear combination** of directed (s, t) -paths and directed cycles.

Applications: Many practical problems (e.g., transportation, communication, logistics) need a list of specific routes used by the flow, not just edge capacities. This theorem, and its associated algorithm, allow us to convert a flow solution to a path-based representation.

Proof Idea: Flow Decomposition (Induction I)

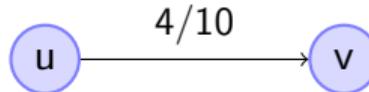
The proof uses induction on $\#f$, the number of edges carrying non-zero flow.

1. **Base Case:** If $\#f = 0$, the flow is trivially decomposed.

Proof Idea: Flow Decomposition (Induction I)

The proof uses induction on $\#f$, the number of edges carrying non-zero flow.

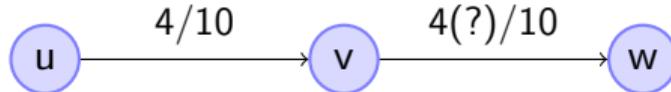
1. **Base Case:** If $\#f = 0$, the flow is trivially decomposed.
2. **Inductive Step (Finding a Flow Structure):**
 - Since $\#f > 1$ an edge (u, v) exists with positive flow.



Proof Idea: Flow Decomposition (Induction I)

The proof uses induction on $\#f$, the number of edges carrying non-zero flow.

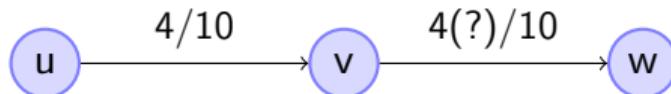
1. **Base Case:** If $\#f = 0$, the flow is trivially decomposed.
2. **Inductive Step (Finding a Flow Structure):**
 - Since $\#f > 1$ an edge (u, v) exists with positive flow.
 - By the *Flow Conservation Property* (for any node $v \in V \setminus \{s, t\}$), if flow enters v , it must also leave v .



Proof Idea: Flow Decomposition (Induction I)

The proof uses induction on $\#f$, the number of edges carrying non-zero flow.

1. **Base Case:** If $\#f = 0$, the flow is trivially decomposed.
2. **Inductive Step (Finding a Flow Structure):**
 - Since $\#f > 1$ an edge (u, v) exists with positive flow.
 - By the *Flow Conservation Property* (for any node $v \in V \setminus \{s, t\}$), if flow enters v , it must also leave v .
 - This property guarantees that as long as we are not at s or t , we can *always extend the walk* to an outgoing edge with positive flow.



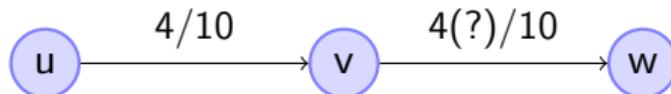
Proof Idea: Flow Decomposition (Induction I)

The proof uses induction on $\#f$, the number of edges carrying non-zero flow.

1. **Base Case:** If $\#f = 0$, the flow is trivially decomposed.

2. **Inductive Step (Finding a Flow Structure):**

- Since $\#f > 1$ an edge (u, v) exists with positive flow.
- By the *Flow Conservation Property* (for any node $v \in V \setminus \{s, t\}$), if flow enters v , it must also leave v .
- This property guarantees that as long as we are not at s or t , we can *always extend the walk* to an outgoing edge with positive flow.
- The walk must eventually either reach s/t (forming an $s \rightarrow t$ Path) or visit a vertex twice (forming a Cycle).



Proof Idea: Flow Decomposition

Once a path or cycle structure is found, we apply the recursive step.

3. Decompose and Recurse:

- Let S be the found structure (Path P or Cycle C).
- Determine the bottleneck flow $F = \min_{e \in S} f(e)$.
- Construct a new flow $f' = f - F \cdot S$.

Proof Idea: Flow Decomposition

Once a path or cycle structure is found, we apply the recursive step.

3. Decompose and Recurse:

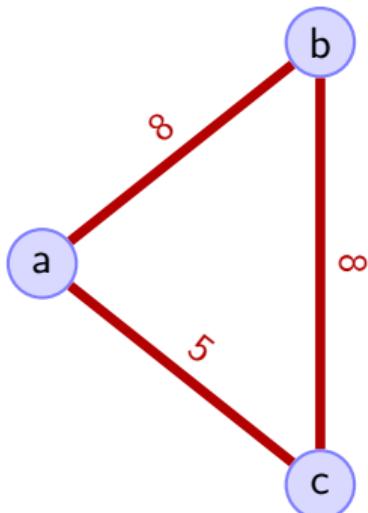
- Let S be the found structure (Path P or Cycle C).
- Determine the bottleneck flow $F = \min_{e \in S} f(e)$.
- Construct a new flow $f' = f - F \cdot S$.

4. Conclusion:

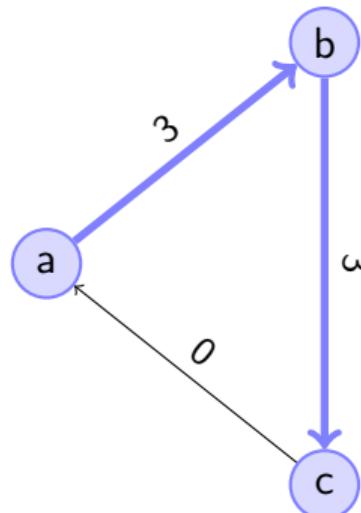
- Subtracting F units empties **at least one edge** in S , so the new flow $\#f' < \#f$.
- By the inductive hypothesis, f' is decomposed. Adding back $F \cdot S$ completes the decomposition of f .

$$f = f' + F \cdot S$$

Removing Flow Component



Cycle C : $a \rightarrow b \rightarrow c \rightarrow a$.
Bottleneck $F = \min(8, 8, 5) = 5$.



Flow after removing $5 \cdot C$.

Implications of Decomposition Theorem

- The proof also immediately translates directly into an algorithm.
 - The total number of paths and cycles in the decomposition is at most $|E|$, the number of edges in the network.
 - Finding a cycle or a path takes $O(|V|)$ (why not $O(|E|)$?)
 - The total time for decomposition is $O(|V| \cdot |E|)$.
- Any circulation ($|f| = 0$) can be decomposed into a weighted sum of cycles; no paths are necessary.
- Any acyclic (s, t) -flow can be decomposed into a weighted sum of (s, t) -paths; no cycles are necessary.

Flow of size $|f| \Rightarrow |f|$ Paths (Integral Case)

Goal. From an *integral* (s, t) -flow f of value $|f|$, produce exactly $|f|$ unit $s \rightarrow t$ paths whose sum equals f .

Key observations.

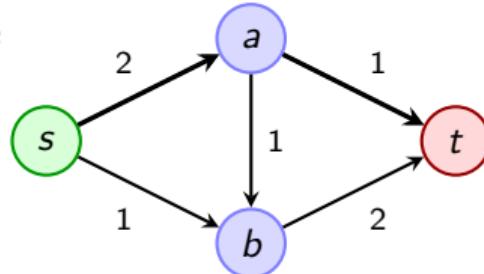
- **Decomposition:** $f = (\text{paths}) + (\text{cycles})$; cycles carry 0 value and can be removed.
- **Integrality:** With integral capacities, we can take a max flow that is integral.

Idea. Make f acyclic, then repeatedly extract unit $s \rightarrow t$ paths until no flow remains.

Greedy Extraction of $|f|$ Unit Paths

Algorithm.

1. **Acyclicity:** While a directed cycle exists in the support of f , subtract its bottleneck flow.
2. **Repeat $|f|$ times:**
 - 2.1 From s , follow any edge with $f(e) > 0$ until t .
 - 2.2 Record P_i and set $f(e) \leftarrow f(e) - 1$ for all $e \in P_i$.



Why it works.

- Acyclic positive flow lies on $s \rightarrow t$ paths.
- Each subtraction preserves feasibility and integrality.

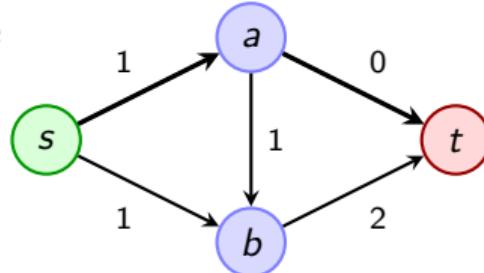
Bold edges: extracted path P_i
Labels: current $f(e)$ before subtracting 1

Running time: $O(|E| |V|)$.

Greedy Extraction of $|f|$ Unit Paths

Algorithm.

1. **Acyclicity:** While a directed cycle exists in the support of f , subtract its bottleneck flow.
2. **Repeat $|f|$ times:**
 - 2.1 From s , follow any edge with $f(e) > 0$ until t .
 - 2.2 Record P_i and set $f(e) \leftarrow f(e) - 1$ for all $e \in P_i$.



Why it works.

- Acyclic positive flow lies on $s \rightarrow t$ paths.
- Each subtraction preserves feasibility and integrality.

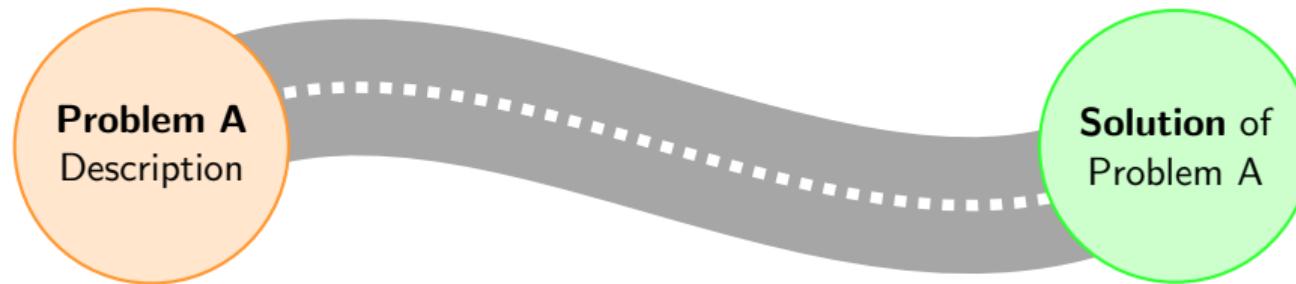
Bold edges: extracted path P_i
Labels: current $f(e)$ after subtracting 1

Running time: $O(|E| |V|)$.

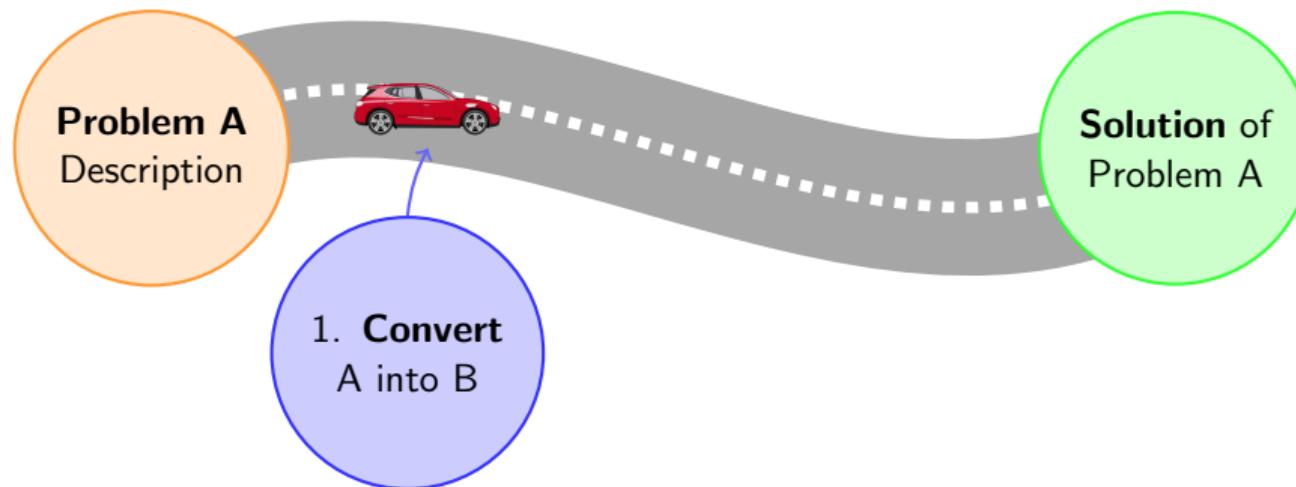
2. Reductions

Solving New Problems by Reusing Old Ones

Solving Problem A by Reduction to Problem B

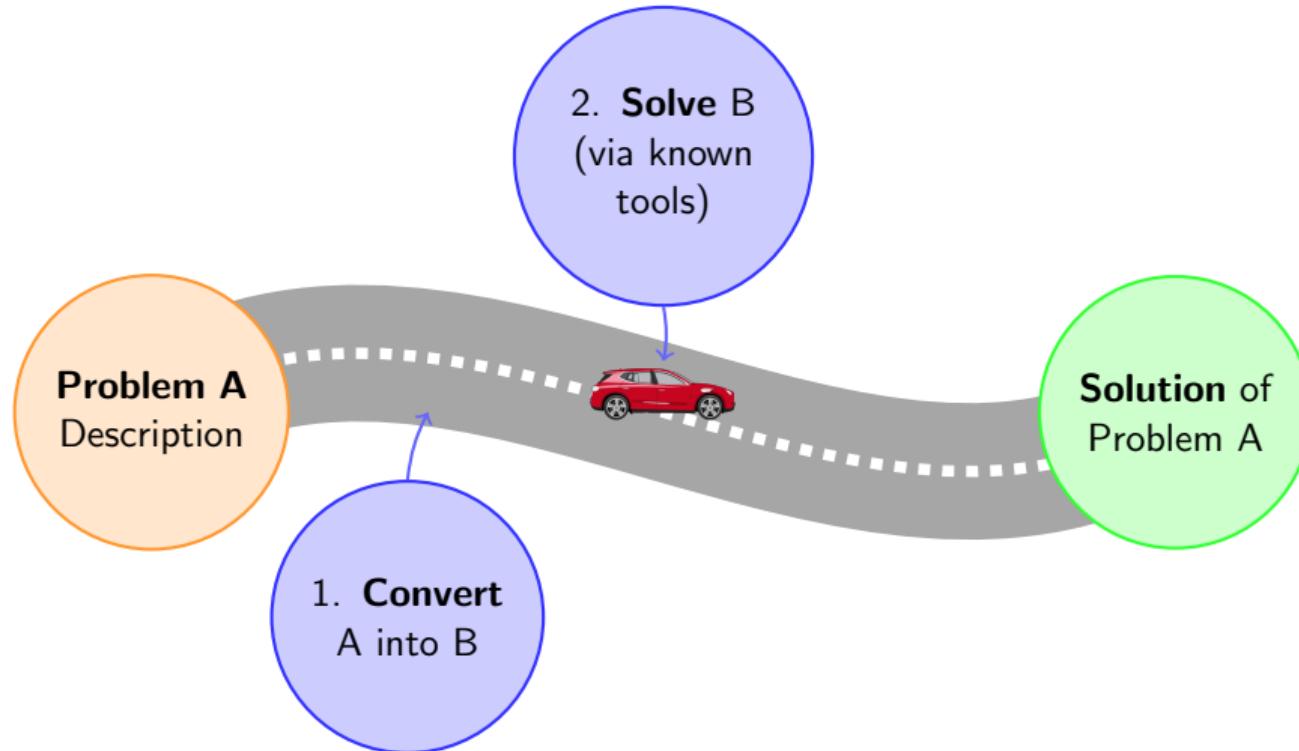


Solving Problem A by Reduction to Problem B



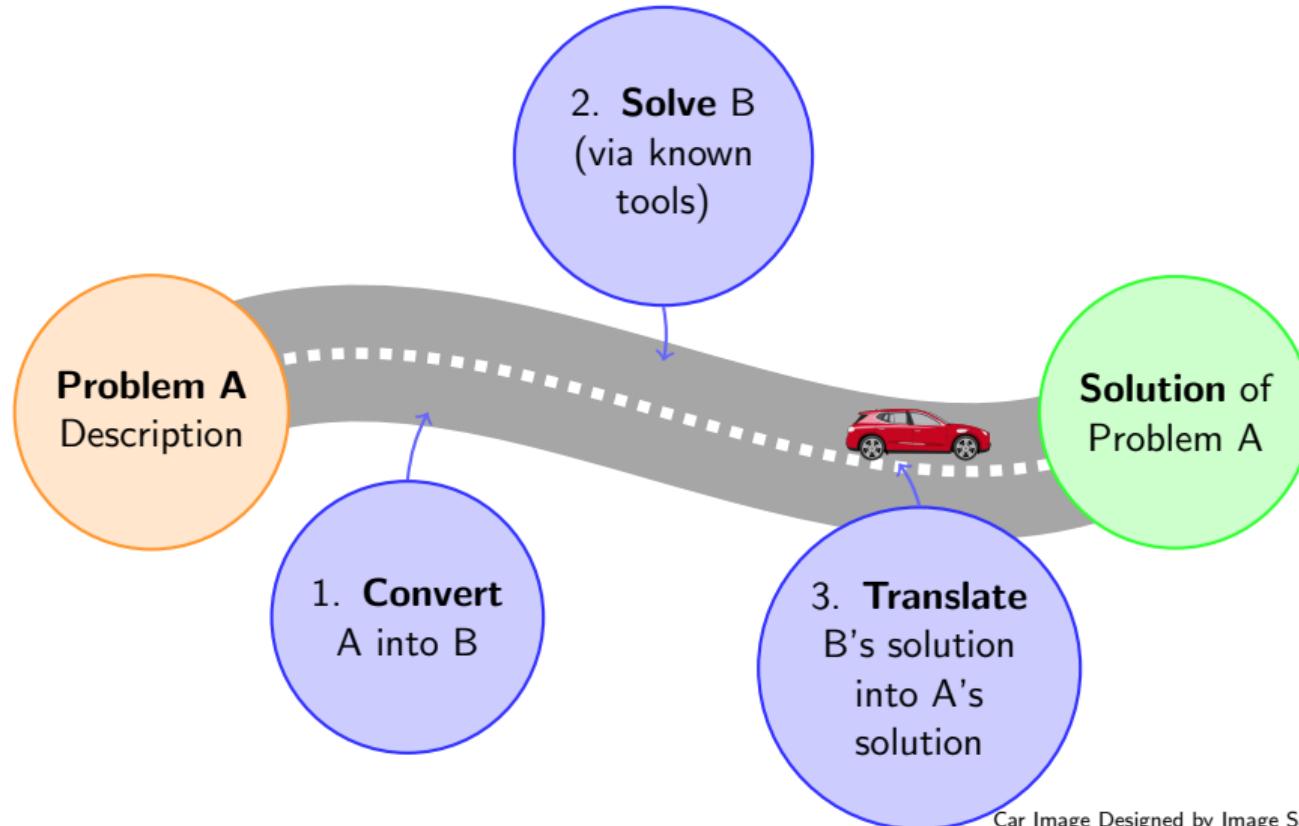
Car Image Designed by Image Sarovar

Solving Problem A by Reduction to Problem B



Car Image Designed by Image Sarovar

Solving Problem A by Reduction to Problem B



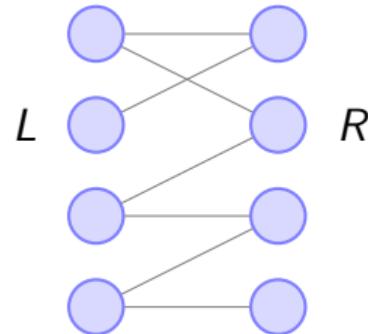
Car Image Designed by Image Sarovar

3. Bipartite Matching

Reducing bipartite matching to max-flow

The Bipartite Matching Problem

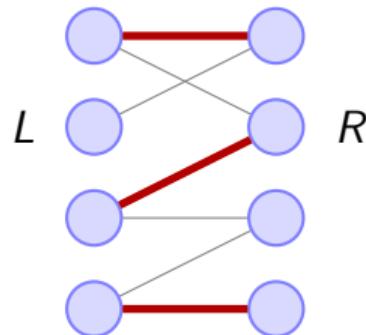
A **bipartite graph** is a graph where vertices can be divided into two disjoint sets, L and R , such that every edge connects a vertex in L to one in R .



The Bipartite Matching Problem

A **bipartite graph** is a graph where vertices can be divided into two disjoint sets, L and R , such that every edge connects a vertex in L to one in R .

A **matching** is a set of edges with no common vertices.

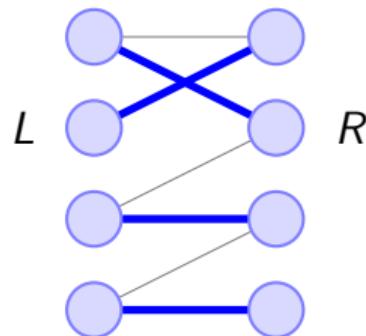


The Bipartite Matching Problem

A **bipartite graph** is a graph where vertices can be divided into two disjoint sets, L and R , such that every edge connects a vertex in L to one in R .

A **matching** is a set of edges with no common vertices.

Goal: Find the **maximum matching** - the matching with the largest possible number of edges.



Example: Assigning Jobs

Imagine we have a set of applicants and a set of available jobs. An edge exists if an applicant is qualified for a job.

Problem: How do we hire the maximum number of applicants, assigning each to a single job they are qualified for?

Applicants (L)

- Alice
- Bob
- Carol

Jobs (R)

- Coder
- Designer
- Analyst

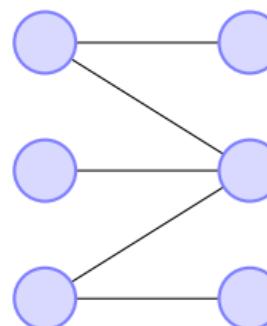
This is a maximum bipartite matching problem.

Convert Bipartite Matching to Max Flow

From Matching to Max Flow: The Construction

We are given a bipartite graph G for which we would like to find the maximum matching.

We convert the bipartite graph G into a flow network G' .

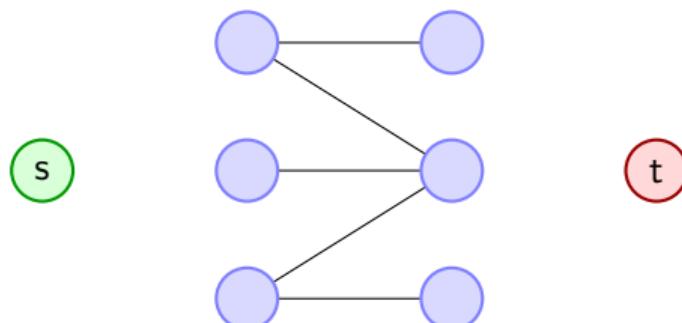


From Matching to Max Flow: The Construction

We are given a bipartite graph G for which we would like to find the maximum matching.

We convert the bipartite graph G into a flow network G' .

1. Create a **source** s and a **sink** t .

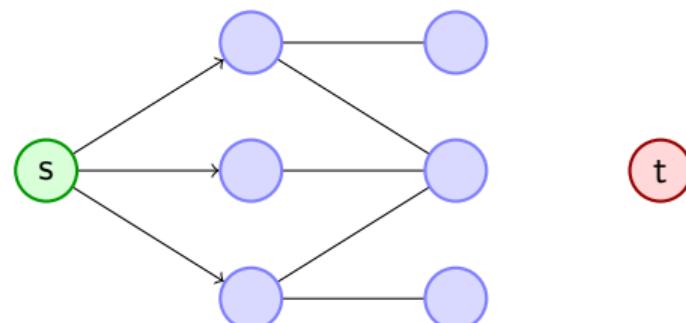


From Matching to Max Flow: The Construction

We are given a bipartite graph G for which we would like to find the maximum matching.

We convert the bipartite graph G into a flow network G' .

1. Create a **source** s and a **sink** t .
2. Add edges from s to every vertex in L .

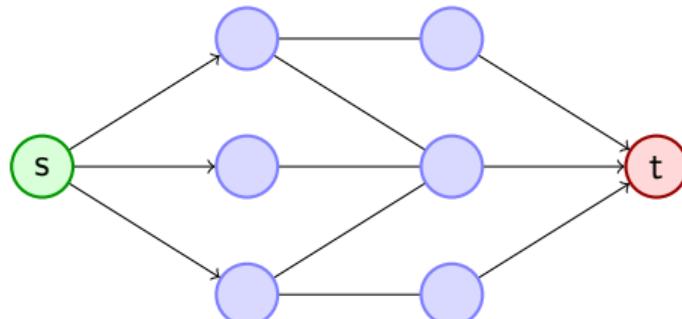


From Matching to Max Flow: The Construction

We are given a bipartite graph G for which we would like to find the maximum matching.

We convert the bipartite graph G into a flow network G' .

1. Create a **source** s and a **sink** t .
2. Add edges from s to every vertex in L .
3. Add edges from every vertex in R to t .

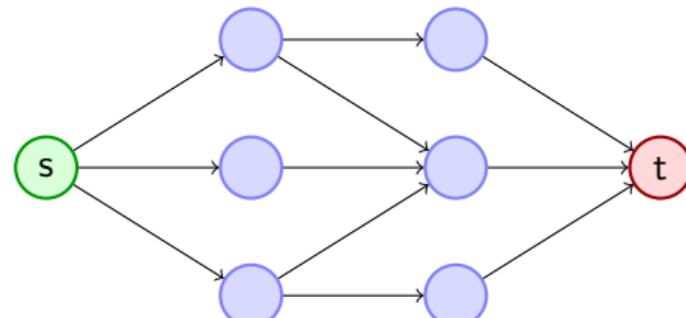


From Matching to Max Flow: The Construction

We are given a bipartite graph G for which we would like to find the maximum matching.

We convert the bipartite graph G into a flow network G' .

1. Create a **source** s and a **sink** t .
2. Add edges from s to every vertex in L .
3. Add edges from every vertex in R to t .
4. Direct original edges from L to R .

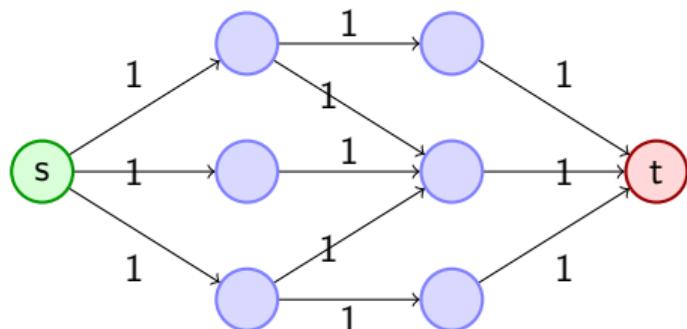


From Matching to Max Flow: The Construction

We are given a bipartite graph G for which we would like to find the maximum matching.

We convert the bipartite graph G into a flow network G' .

1. Create a **source** s and a **sink** t .
2. Add edges from s to every vertex in L .
3. Add edges from every vertex in R to t .
4. Direct original edges from L to R .
5. Assign **capacity 1** to ALL edges.



Why This Works: The Core Intuition

Key Idea

The value of the maximum flow in the constructed network G' is equal to the size of the maximum matching in the original bipartite graph G .

- Because all capacities are 1, the Ford-Fulkerson algorithm will produce an integer-valued flow (either 0 or 1 on each edge).

Why This Works: The Core Intuition

Key Idea

The value of the maximum flow in the constructed network G' is equal to the size of the maximum matching in the original bipartite graph G .

- Because all capacities are 1, the Ford-Fulkerson algorithm will produce an integer-valued flow (either 0 or 1 on each edge).
- A flow of 1 along a path $s \rightarrow u \rightarrow v \rightarrow t$ corresponds to selecting the edge (u, v) for our matching.

Why This Works: The Core Intuition

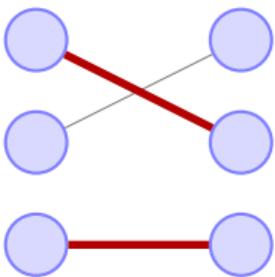
Key Idea

The value of the maximum flow in the constructed network G' is equal to the size of the maximum matching in the original bipartite graph G .

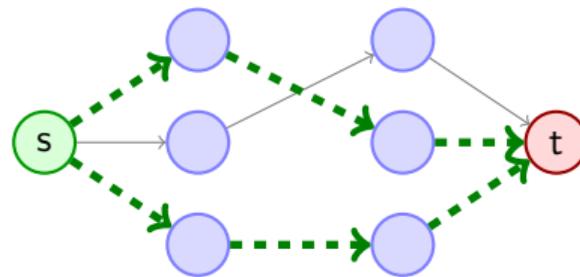
- Because all capacities are 1, the Ford-Fulkerson algorithm will produce an integer-valued flow (either 0 or 1 on each edge).
- A flow of 1 along a path $s \rightarrow u \rightarrow v \rightarrow t$ corresponds to selecting the edge (u, v) for our matching.
- The capacity constraints enforce the matching rules:
 - Edge $s \rightarrow u$ (cap 1): Vertex $u \in L$ is in at most one matched edge.
 - Edge $v \rightarrow t$ (cap 1): Vertex $v \in R$ is in at most one matched edge.

Example: Matching to Flow

A matching in G corresponds to a valid flow in G' .



A Matching of Size 2



A Flow of Value 2

Augmenting Paths vs. Alternating Paths

The Ford-Fulkerson algorithm's search for an **augmenting path** in the flow network G' has a direct parallel in the original bipartite graph G .

An augmenting path in G' corresponds to an **alternating path** in G .

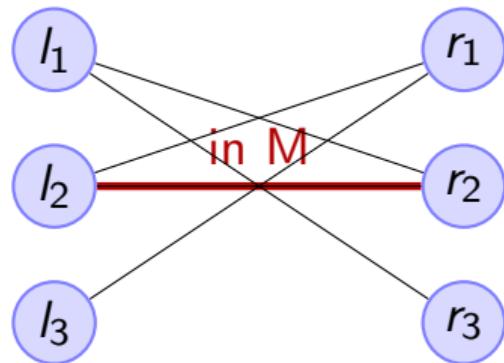
- An alternating path starts at an unmatched vertex in L .
- It ends at an unmatched vertex in R .
- It alternates between edges **not in** the current matching and edges **in** the current matching.

Finding and using an alternating path increases the size of the matching by one, just as an augmenting path increases the flow value by one.

Example: An Alternating Path

Flipping the edges along the alternating path gives a larger matching.

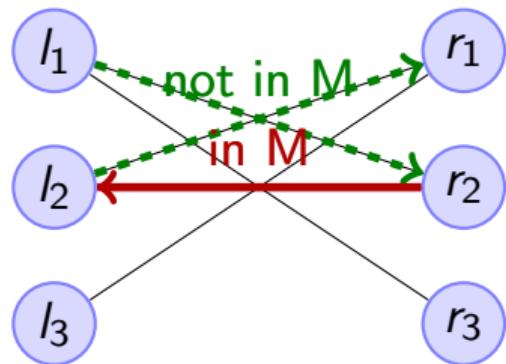
- Initial Matching: $\{(l_2, r_2)\}$



Example: An Alternating Path

Flipping the edges along the alternating path gives a larger matching.

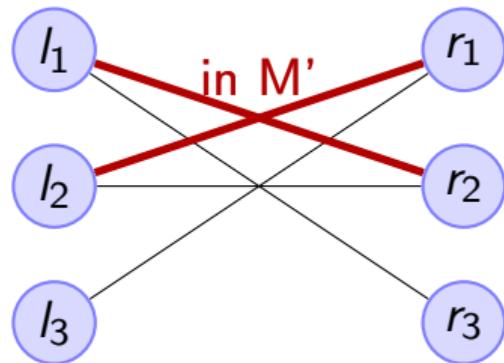
- Initial Matching: $\{(l_2, r_2)\}$
- Alternating Path: $l_1 \rightarrow r_2 \rightarrow l_2 \rightarrow r_1$



Example: An Alternating Path

Flipping the edges along the alternating path gives a larger matching.

- Initial Matching: $\{(l_2, r_2)\}$
- Alternating Path: $l_1 \rightarrow r_2 \rightarrow l_2 \rightarrow r_1$
- New Matching: $\{(l_1, r_2), (l_2, r_1)\}$



Algorithm Summary & Complexity

To find a maximum bipartite matching:

1. Construct the flow network G' from the bipartite graph G . This takes $O(V+E)$ time.
2. Compute the maximum flow from s to t in G' .
 - The value of the max flow, $|f^*|$, is the size of the maximum matching.
 - Using the standard Ford-Fulkerson algorithm, this takes $O(|f^*|E)$.
 - Since $|f^*| \leq V$, the complexity is $O(VE)$.
3. The set of edges from L to R with flow equal to 1 forms the maximum matching.

More advanced algorithms like Hopcroft-Karp can find maximum matchings in $O(E\sqrt{V})$ time.

Summary

- The **Maximum Bipartite Matching** problem is a fundamental problem with many applications (e.g., assignments, scheduling).
- It can be elegantly solved by reducing it to a **Maximum Flow** problem.
- The key is to construct a special flow network where all edge capacities are 1.
- The value of the max flow in this network equals the size of the max matching.
- The concept of an **augmenting path** in flow analysis corresponds directly to an **alternating path** in matching theory.

Edge-Disjoint Paths

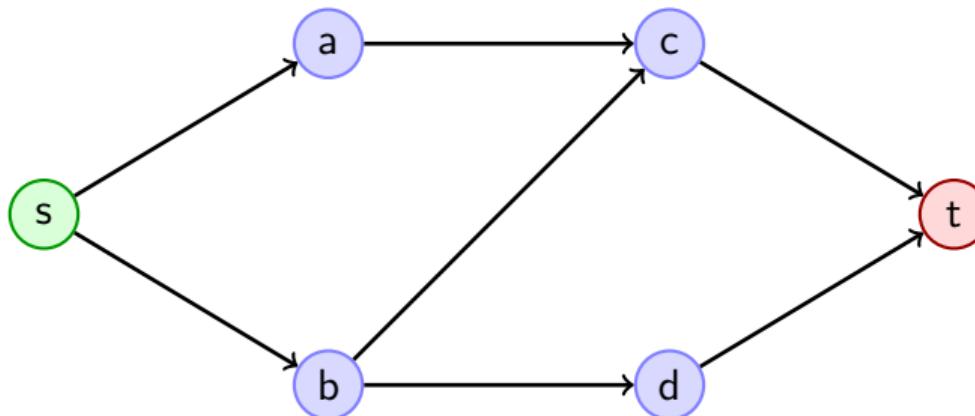
In directed graphs

The Edge-Disjoint Path Problem

Given a directed graph $G = (V, E)$ and two vertices s and t .

Problem: Find the *maximum* number of paths from s to t that are *edge-disjoint*.

- A set of paths is edge-disjoint if no two paths share an edge.
- Paths are allowed to share vertices.

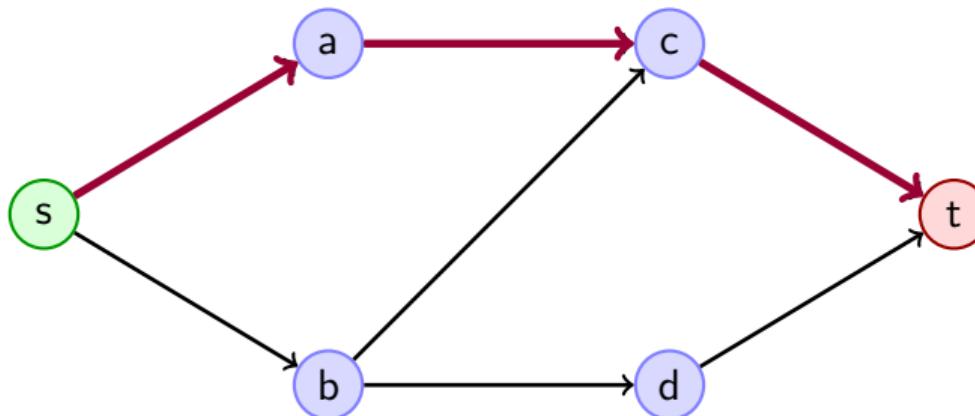


The Edge-Disjoint Path Problem

Given a directed graph $G = (V, E)$ and two vertices s and t .

Problem: Find the *maximum* number of paths from s to t that are *edge-disjoint*.

- A set of paths is edge-disjoint if no two paths share an edge.
- Paths are allowed to share vertices.

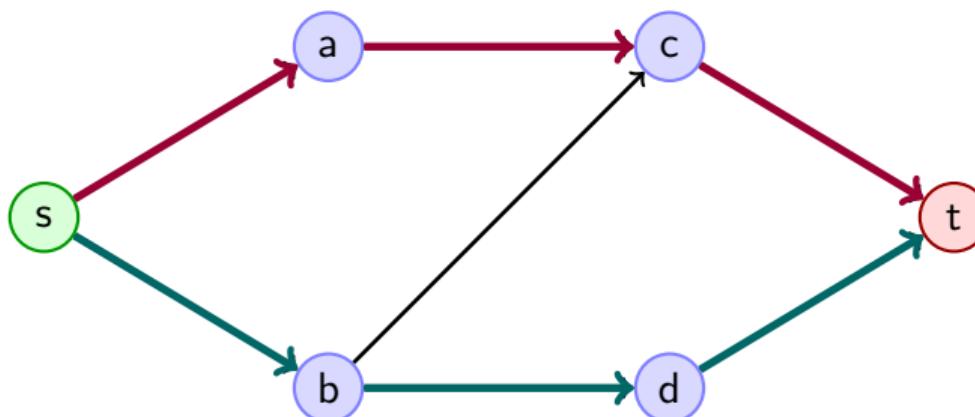


The Edge-Disjoint Path Problem

Given a directed graph $G = (V, E)$ and two vertices s and t .

Problem: Find the *maximum* number of paths from s to t that are *edge-disjoint*.

- A set of paths is edge-disjoint if no two paths share an edge.
- Paths are allowed to share vertices.

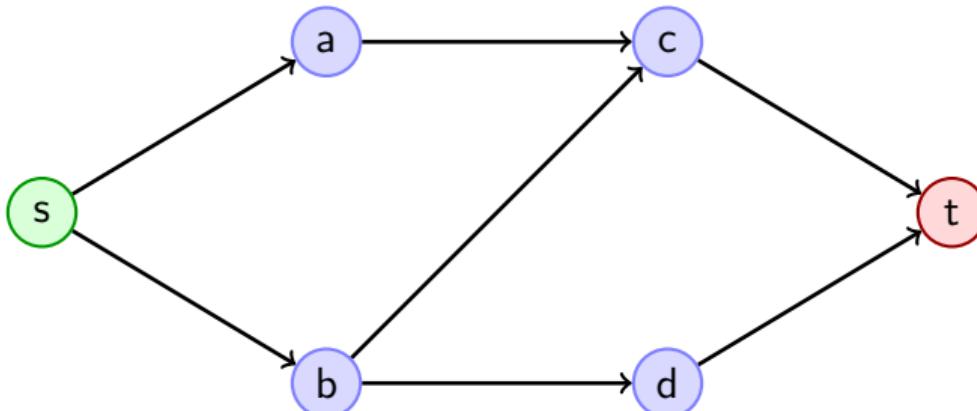


These two paths are edge-disjoint.

From Edge-Disjoint Paths to Max Flow

We can reduce this path problem to a max-flow problem:

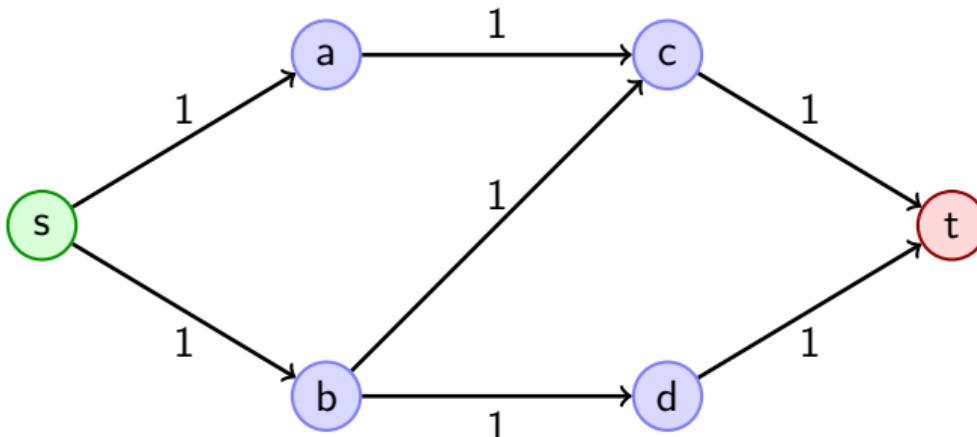
1. Take the original graph $G = (V, E)$, and create a flow network $G' = (V, E, s, t, c)$.



From Edge-Disjoint Paths to Max Flow

We can reduce this path problem to a max-flow problem:

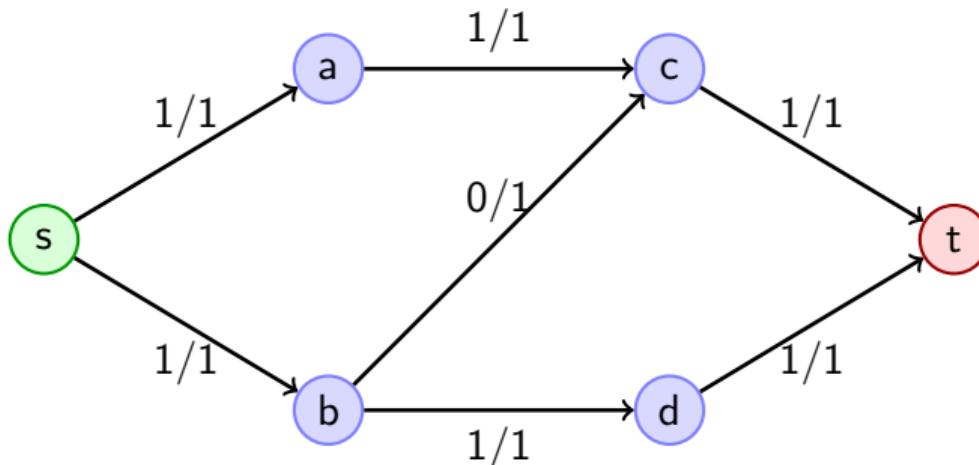
1. Take the original graph $G = (V, E)$, and create a flow network $G' = (V, E, s, t, c)$.
2. Assign a capacity of **1** to every edge $e \in E$.



From Edge-Disjoint Paths to Max Flow

We can reduce this path problem to a max-flow problem:

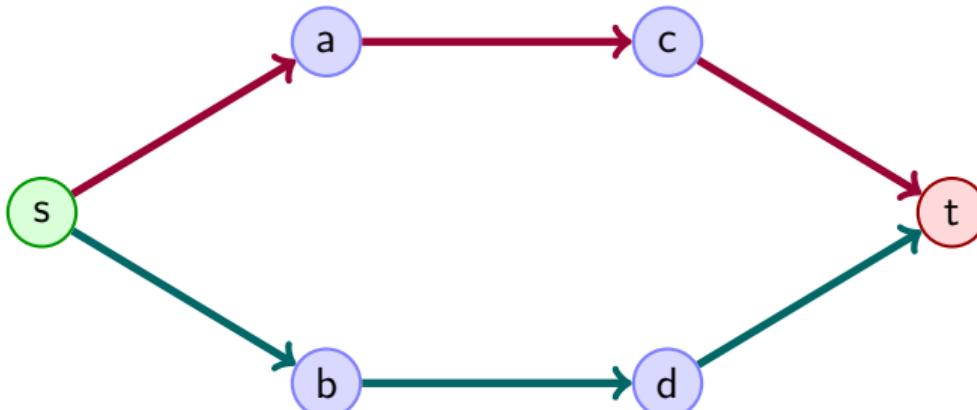
1. Take the original graph $G = (V, E)$, and create a flow network $G' = (V, E, s, t, c)$.
2. Assign a capacity of **1** to every edge $e \in E$.
3. Compute the maximum (s, t) -flow in G' .



From Edge-Disjoint Paths to Max Flow

We can reduce this path problem to a max-flow problem:

1. Take the original graph $G = (V, E)$, and create a flow network $G' = (V, E, s, t, c)$.
2. Assign a capacity of **1** to every edge $e \in E$.
3. Compute the maximum (s, t) -flow in G' .
4. Compute the path decomposition of the max flow



From Edge-Disjoint Paths to Max Flow

Running Time: The max flow value $|f^*|$ is at most $V - 1$ (the capacity of the cut $(\{s\}, V \setminus \{s\})$). Using Ford-Fulkerson, the time is $O(|f^*|E) = O(VE)$ time.

From Edge-Disjoint Paths to Max Flow

Running Time: The max flow value $|f^*|$ is at most $V - 1$ (the capacity of the cut $(\{s\}, V \setminus \{s\})$). Using Ford-Fulkerson, the time is $O(|f^*|E) = O(VE)$ time.

Proof of Correctness: Why does this algorithm work?

- If k edge-disjoint paths exist \Rightarrow A valid flow of size k exists.
- If flow of size k exists \Rightarrow We can construct k edge-disjoint paths.

Equivalence: Paths to Flow

Claim: A set of k edge-disjoint paths from s to t can be converted into a valid (s, t) -flow of value k .

How: Push 1 unit of flow along each of the k paths.

- *Capacity Constraint:* Since the paths are edge-disjoint, each edge is used at most once. The flow on any edge is either 0 or 1, which does not exceed its capacity of 1.
- *Flow Conservation:* This holds at every vertex $v \notin \{s, t\}$.

The total flow leaving s (and entering t) is exactly k .

The max-flow in that graph is at least k :

$$\text{Max Flow Value} \geq \text{Max Number of Edge-Disjoint Paths}$$

Equivalence: Flow to Paths

Claim: An integer-valued (s, t) -flow f of value k can be decomposed into k edge-disjoint paths from s to t .

How:

- Since all capacities are integers (they are all 1), the Ford-Fulkerson algorithm (and others) guarantees an integer-valued max flow. Every edge will have flow 0 or 1.
- By the *Flow Decomposition Theorem*, any valid s - t flow can be decomposed into a set of paths and cycles.
- The value of the flow, k , is exactly the number of s - t paths in this decomposition.
- Since each edge has capacity 1, no edge can be used by more than one path.

$$\text{Max Flow Value} \leq \text{Max Number of Edge-Disjoint Paths}$$

Edge-Disjoint Paths

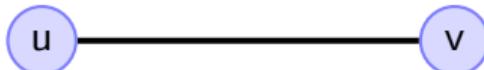
In **undirected** graphs

Edge-Disjoint Paths in Undirected Graphs

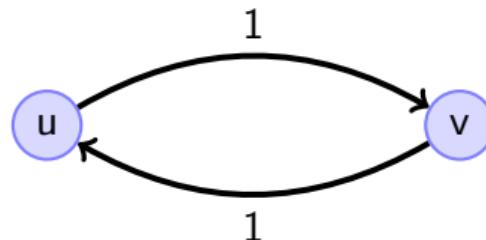
Problem: Find the max number of edge-disjoint paths from s to t in an *undirected* graph G .

Reduction:

1. Create a new *directed* graph G' .
2. For each undirected edge $\{u, v\}$ in G , add two directed edges to G' :
 - (u, v) with capacity 1
 - (v, u) with capacity 1
3. ...



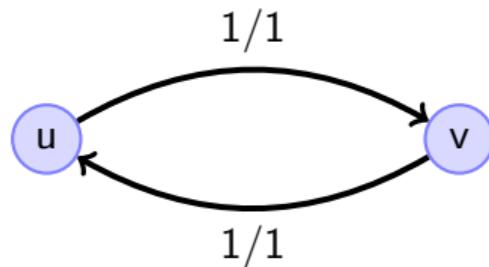
Undirected Edge



Becomes Two Directed Edges

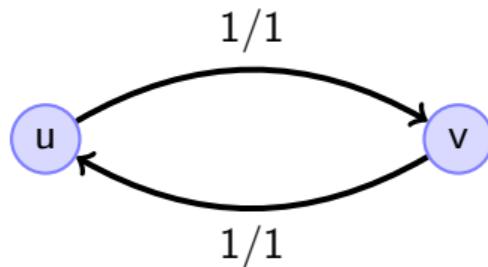
Edge-Disjoint Paths in Undirected Graphs

This situation is problematic because the effective capacity of edge (u, v) becomes 2, allowing two distinct paths to share the same edge.



Edge-Disjoint Paths in Undirected Graphs

This situation is problematic because the effective capacity of edge (u, v) becomes 2, allowing two distinct paths to share the same edge.



Solution: If the flow saturates both (u, v) and (v, u) , this forms a cycle. We can remove this cycle from the flow without changing the total value. Thus, we can find an acyclic max flow, and the resulting paths in G' correspond to edge-disjoint paths in G .

Vertex-Disjoint Paths

The Vertex-Disjoint Path Problem

Given a directed graph $G = (V, E)$ and two vertices s and t .

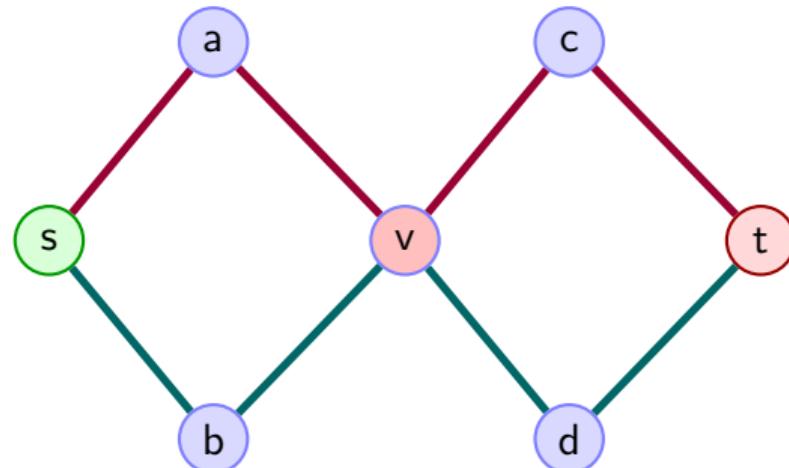
Problem: Find the *maximum* number of paths from s to t that are *vertex-disjoint*.

- A set of paths is vertex-disjoint if no two paths share an intermediate vertex (i.e., any vertex other than s or t).

The Vertex-Disjoint Path Problem

Not Vertex-Disjoint (Shares vertex v)

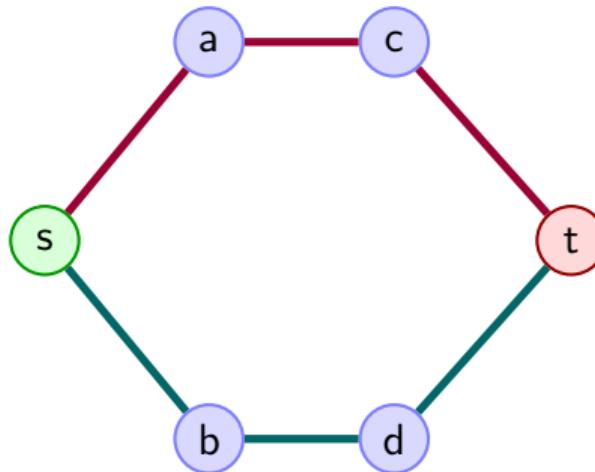
$s \rightarrow a \rightarrow v \rightarrow c \rightarrow t$ and $s \rightarrow b \rightarrow v \rightarrow d \rightarrow t$



The Vertex-Disjoint Path Problem

Vertex-Disjoint

$s \rightarrow a \rightarrow v \rightarrow c \rightarrow t$ and $s \rightarrow b \rightarrow v \rightarrow d \rightarrow t$



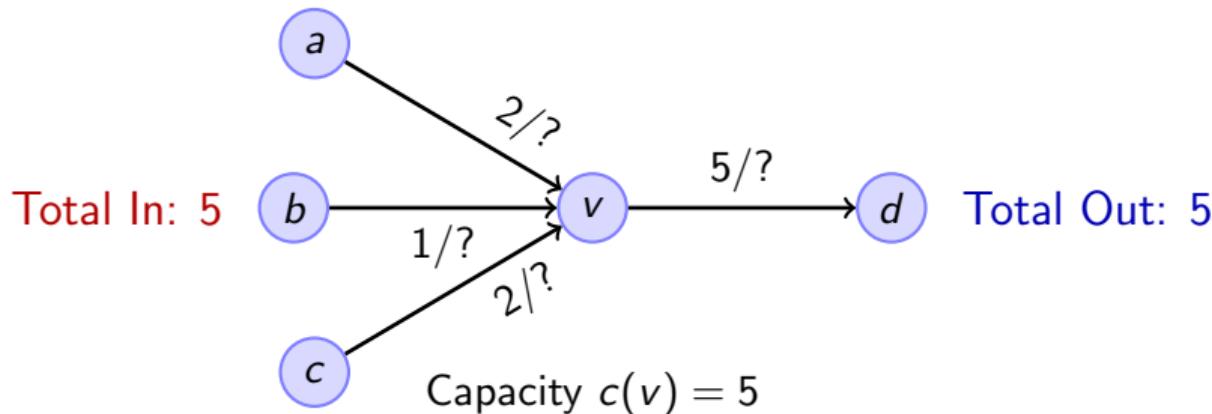
A New Tool: Vertex Capacities

To solve this, we first introduce a more general problem: what if *vertices* have capacities?

We can add a constraint for each vertex $v \notin \{s, t\}$:

$$\sum_{u \in V} f(u, v) \leq c(v)$$

The total flow *into* vertex v is at most its capacity $c(v)$.



The Reduction: Vertex Splitting

We can reduce a vertex-capacity problem to a standard max-flow problem using *vertex splitting*.

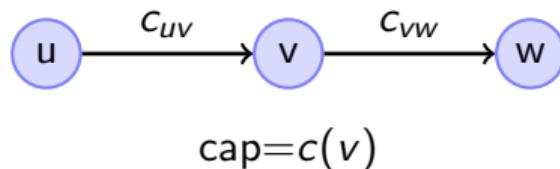
For each vertex v with a capacity $c(v)$ (and $v \notin \{s, t\}$):

1. Replace v with two new vertices: v_i and v_o .
2. Add a new directed edge (v_i, v_o) with capacity $c(v)$.
3. For every original edge (u, v) , create a new edge (u_o, v_i) .
4. For every original edge (v, w) , create a new edge (v_o, w_i) .

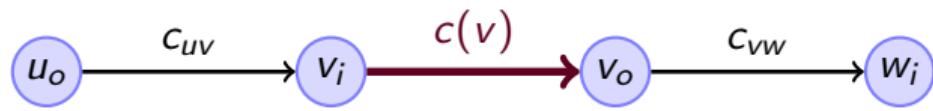
(For s and t , we just use $s = s_o$ and $t = t_i$).

The Reduction: Vertex Splitting

Original Graph G



Split-Vertex Network G'



Any flow passing *through* v in G must now pass *through the edge* (v_i, v_o) in G' , which enforces the capacity constraint.

Putting It All Together

Now we can solve the vertex-disjoint path problem:

1. We want to find paths where each intermediate vertex is used at most **once**.
2. This is a max-flow problem where all intermediate vertices $v \notin \{s, t\}$ have a capacity of $c(v) = 1$.
3. We also want paths to be edge-disjoint, so we can set all *edge* capacities to 1 as well.

The Algorithm:

1. For every vertex $v \notin \{s, t\}$, apply the vertex-splitting reduction:
 - Create v_i and v_o .
 - Add edge (v_i, v_o) with capacity 1.
2. For every original edge (u, v) :
 - If $u = s$, add edge (s, v_i) with capacity 1.
 - If $v = t$, add edge (u_o, t) with capacity 1.
 - Otherwise, add edge (u_o, v_i) with capacity 1.
3. Compute the max (s, t) -flow in this new network G' .

Why The Reduction Works

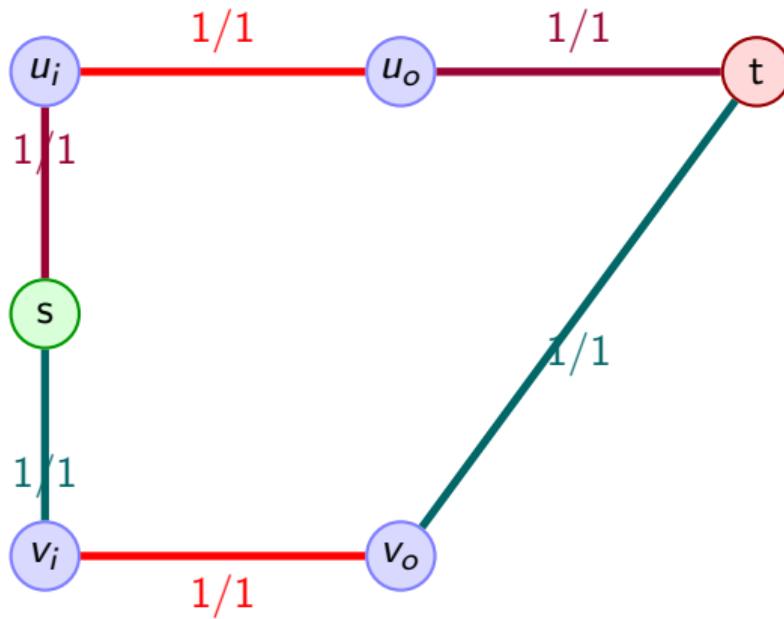
The first direction will trivially hold. If we have k -vertex disjoint path, we can push k units of flow.

Why The Reduction Works

The first direction will trivially hold. If we have k -vertex disjoint path, we can push k units of flow.

For the other direction, we compute the max flow in the new network G' , where all edges have capacity 1.

- The max flow will be integer-valued, k .
- By flow decomposition, this corresponds to k paths from s to t .
- Because the “original” edges (like (u_o, v_i)) have capacity 1, no two paths can share an original edge.
- Because the “vertex” edges (like (v_i, v_o)) have capacity 1, no two paths can share an intermediate vertex.



A flow of value 2 corresponds to 2 vertex-disjoint paths. □

References

Erickson, J. (2019).
Algorithms.
Self-published.