COMP 382: Reasoning about Algorithms

Greedy Algorithms:
Minimum Spanning Trees

Prof. Maryam Aliakbarpour

co-instructors: Prof. Anjum Chida & Prof. Konstantinos Mamouras

October 28, 2025

Today’s Lecture

1. Minimum Spanning Trees
2. Prim’s Algorithm
3. Kruskal’s Algorithm

4. Advanced Union-Find

5. Boriivka's Algorithm

6. Application: Single-Link Clustering

2/69

Today’s Lecture

Reading:

e Chapter 15 of [Roughgarden, 2022]
® https://jeffe.cs.illinois.edu/teaching/algorithms/book /07-mst.pdf of [Erickson, 2019]

Adapted from the same chapters.

3/69

Minimum Spanning Trees

The Core Problem: Cheap Connections

Imagine you need to connect a set of locations—Ilike computer servers, cities, or
houses—as cheaply as possible.

The Goal:

® Connect all locations into a single network.
® Do so with the minimum possible total cost (e.g., cable length, pipe cost, road miles).

® Don't create any redundant loops or cycles.

This problem appears everywhere, from designing computer networks to machine learning.

5/69

Formalizing the Problem

To solve this, we model the problem using a graph.

An undirected graph G = (V/, E) has:
® A set of vertices V (the locations).

e A set of edges E (the potential connections).

® Each edge e has a cost ce.

A Spanning Tree is a subset of edges that:
1. Connects all vertices (“spanning”).

2. Contains no cycles (“tree”).

A Weighted Graph

6/69

Formalizing the Problem

To solve this, we model the problem using a graph.

An undirected graph G = (V/, E) has:
® A set of vertices V (the locations).

e A set of edges E (the potential connections).

® Each edge e has a cost ce.

A Spanning Tree is a subset of edges that:
1. Connects all vertices (“spanning”).

2. Contains no cycles (“tree”).

A Spanning Tree

6/69

Prim’s Algorithm

A Greedy Algorithm for MST

Prim’s Algorithm: The Mold Grower

Our first method, Prim’s algorithm, builds the MST by growing a single tree, one edge at
a time.

Prim's Greedy Strategy

Start at an arbitrary vertex. In each step, greedily add the cheapest edge that connects
a vertex inside our growing tree to a vertex outside the tree.

Think of it like a mold that starts at one point and expands along the cheapest paths
until it covers everything.

8/69

Prim’s Algorithm in Action

Let's run Prim's starting from vertex b. The green area shows the vertices spanned so far.
Start: At vertex b

® Candidates: (b,a) [cost 1], (b,d) [cost 2].
® Add cheapest: (b,a).

Total Cost: 0

9/69

Prim’s Algorithm in Action

Let's run Prim's starting from vertex b. The green area shows the vertices spanned so far.
Start: At vertex b

® Candidates: (b,a) [cost 1], (b,d) [cost 2].
® Add cheapest: (b,a).

Step 1: Add (b,a)
® Candidates: (a,c) [4], (a.d) [3], (b.d) [2].
® Add cheapest: (b,d).

Total Cost: 1

9/69

Prim’s Algorithm in Action

Let's run Prim's starting from vertex b. The green area shows the vertices spanned so far.
Start: At vertex b

¢ Candidates: (b,a) [cost 1], (b,d) [cost 2].
® Add cheapest: (b,a).

Step 1: Add (b,a)
® Candidates: (a,c) [4], (a.d) [3], (b.d) [2].
® Add cheapest: (b,d).

Step 2: Add (b,d)

® Ignore (a,d) — creates cycle. Total Cost: 1 4+ 2
¢ Candidates: (a,c) [4], (c,d) [5].
® Add cheapest: (a,c).

9/69

Prim’s Algorithm in Action

Let's run Prim's starting from vertex b. The green area shows the vertices spanned so far.

Start: At vertex b : 1 @
¢ Candidates: (b,a) [cost 1], (b,d) [cost 2]. S
N

® Add cheapest: (b,a).

4 < 2
Step 1: Add (b,a)
e Candidates: (a,c) [4], (a,d) [3], (b.d) [2]. -5 __{
® Add cheapest: (b,d).
Step 2: Add (b,d)
® Ignore (a,d) — creates cycle. Total Cost: 1 +2 +4 =7

¢ Candidates: (a,c) [4], (c,d) [5].
® Add cheapest: (a,c).
Step 3: Add (a,c)

9/69

Prim’s Algorithm: Pseudocode

This is the simple, high-level idea.
Prim’s Algorithm (G, s)

e Initialize X = {s} (our set of spanned vertices)

Initialize T = 0 (our set of MST edges)
while X # V:
® Let e = (u,v) be the cheapest edge with:

e ye X
° v¢ X

Add eto T
Add v to X

return T

Question: How do we know this greedy strategy actually works?
10/69

Correctness: The Cut Property

Why is this “Greedy” Choice Safe?

The answer is a beautiful idea called the Cut Property.

What is a “Cut”?

® A “cut” is just a partition of the vertices V into two non-empty sets, A and B.
e “Crossing edges” are edges with one endpoint in A and one in B.

A B

\\ —

12/69

The Cut Property

The Cut Property

Assume all edge costs are distinct.
Let e be the cheapest edge crossing any cut (A, B).
Then e must belong to the Minimum Spanning Tree.

A B

13 /69

The Cut Property

Why is this true? If an MST didn’t use e, it would have to use some other, more
expensive edge f to cross that cut. We could swap f for e and get a cheaper tree!

This is a contradiction.

14 /69

Prim’s Algorithm IS The Cut Property

Prim's algorithm cleverly uses the Cut Property in every single step!

At each step, Prim’s defines a cut:

e A= X (vertices already in our tree)
e B =V — X (vertices not yet in)

A=X B=V-X

15/69

Prim’s Algorithm IS The Cut Property

The algorithm then finds the cheapest edge crossing this specific cut...
...and adds it to the tree!

The Cut Property guarantees this is a “safe” and correct move.

A=X B=V-X

16 /69

Making Prim’s Algorithm Fast

Via Priority Queue

How Fast is Prim’s Algorithm?

Let n = |V/| (vertices) and m = |E| (edges).

A “Straightforward” Implementation:

® The main loop runs n — 1 times (once for each vertex).

® |n each loop, we have to search all m edges to find the cheapest one crossing the cut.

Total Time: O(n x m) = O(mn)

18/69

How Fast is Prim’s Algorithm?

Let n = |V/| (vertices) and m = |E| (edges).

A “Straightforward” Implementation:

® The main loop runs n — 1 times (once for each vertex).

® |n each loop, we have to search all m edges to find the cheapest one crossing the cut.

Total Time: O(n x m) = O(mn)

We can do much better!

18/69

Prim’s Algorithm: Running Time

This is the simple, high-level idea.

Prim’s Algorithm (G, s)

Initialize X = {s} (our set of spanned vertices)

Initialize T = 0 (our set of MST edges)

while X # V: O(n) times (once per vertex)
Let e = (u, v) be the cheapest edge with: O(m) search overall edges.
ue X

véX

Add eto T

Add v to X

return T

19/69

Tool for the Job: The Heap (Priority Queue)

To find the cheapest crossing edge faster, we need a special tool.
What is a Heap?

® A data structure that maintains an evolving set of objects, each with a "key” or "cost”.
® Its main job is to perform minimum computations very, very quickly.
® Think of it as a “queue” list where the task with the smallest cost is always at the

top, ready to be pulled.

A Min-Heap 20/69

Tool for the Job: The Heap (Priority Queue)

Key Operations (for n items)

Operation

What it does Time

INSERT
EXTRACT-MIN

DELETE

Adds a new object to the set. O(log n)

Removes and returns the object with the O(logn)
smallest key.

Removes a specific object from the set. O(log n)

21/69

Tool for the Job: The Heap (Priority Queue)

Key Operations (for n items)

Operation What it does Time

INSERT Adds a new object to the set. O(log n)

EXTRACT-MIN Removes and returns the object with the O(logn)
smallest key.

DELETE Removes a specific object from the set. O(log n)

This is perfect for Prim’s!

® EXTRACT-MIN gives us the next vertex to add to X.
® DELETE + INSERT lets us update the key of a vertex when a cheaper edge is found.

21/69

Speeding Up Prim’s with a Heap

The bottleneck is re-scanning all edges just to find the cheapest one.

The Key Idea: Use a heap (Priority Queue) to keep track of the “cheapest crossing
edge” for each vertex outside our tree.

Heap Invariant
® The heap stores all vertices in V — X (those not in the tree).

® The “key” for a vertex v € V — X is the cost of the cheapest edge connecting v to
any vertex inside X.

Now, each step of Prim's is just an Extract-Min from the heap!

22/69

Prim’s with a Heap

® Heap contains: {y,x,z} % V — X (in Heap)
° Keys:
® key(y) =3
® key(x)=7 B
® key(z) = oo (no edge to X) /® key(x) =17
7

@< i
3\@ key(y) =3
1

key(z) = oo

23/69

Prim’s with a Heap

Heap contains: {y,x,z}

Keys:
* key(y)=3
® key(x)=7
® key(z) = oo (no edge to X)

Step 1: 'Extract-Min()*
Returns: vertex y (cost 3).

Action: Add y to X.

X V — X (in Heap)
/@ key(x) =7
@/7 2
\3\@ key(y) =3
1
key(z) = oo

23/69

The “Catch”: Updating Keys

When we add a vertex (like y) to X, we must update the keys of its neighbors!
® yis now in X. New X vV -X

® Look at y's neighbors in V —X:

24 /69

The “Catch”: Updating Keys

When we add a vertex (like y) to X, we must update the keys of its neighbors!
® yis now in X. New X vV -X

® Look at y's neighbors in V —X:

® Neighbor x:
® Old key: 7 (from s) 7—72
® New edge (y,x): cost 2 key(x) =7 — 2
® Update key(x) to 2. \\3‘\<:::>::::iii:\

24 /69

The “Catch”: Updating Keys

When we add a vertex (like y) to X, we must update the keys of its neighbors!
® yis now in X. New X vV -X
® | ook at y's neighbors in V — X:
® Neighbor x: X

® Old key: 7 (from s) 72//
® New edge (y,x): cost 2 // key(x) =7 — 2

® Update key(x) to 2. S k_.
371y
® Neighbor z: \1\ ;
® Old key: oo
® New edge (y,z): cost 1
® Update key(z) to 1. key(z) =00 — 1

This is a Decrease-Key operation in the heap.

24/69

Heap-Based Running Time

Let's count the total work.

® |nitialization: Build the heap O(nlogn)

25 /69

Heap-Based Running Time

Let's count the total work.

® |nitialization: Build the heap O(nlogn)

® Main Loop (total over n — 1 iterations):

25 /69

Heap-Based Running Time

Let's count the total work.

® |nitialization: Build the heap O(nlogn)
® Main Loop (total over n — 1 iterations):
® Extract-Min: n — 1 times. Total: O(nlogn)

25 /69

Heap-Based Running Time

Let's count the total work.

® |nitialization: Build the heap O(nlogn)
® Main Loop (total over n — 1 iterations):

® Extract-Min: n — 1 times. Total: O(nlogn)
® Decrease-Key (Updates): Total: O(mlog n)

25/69

Heap-Based Running Time

Let's count the total work.

® |nitialization: Build the heap O(nlogn)
® Main Loop (total over n — 1 iterations):

® Extract-Min: n — 1 times. Total: O(nlogn)
® Decrease-Key (Updates): Total: O(mlog n)

- This is the tricky part. We check each edge (v, w) once, when v is first added to X.

25/69

Heap-Based Running Time

Let's count the total work.

® |nitialization: Build the heap O(nlogn)
® Main Loop (total over n — 1 iterations):

® Extract-Min: n — 1 times. Total: O(nlogn)
® Decrease-Key (Updates): Total: O(mlog n)

- This is the tricky part. We check each edge (v, w) once, when v is first added to X.
- If we have an adjacency list, we can do this in O(d,) time (where d, is the degree of v).

25/69

Heap-Based Running Time

Let's count the total work.

® |nitialization: Build the heap O(nlogn)
® Main Loop (total over n — 1 iterations):

® Extract-Min: n — 1 times. Total: O(nlogn)
® Decrease-Key (Updates): Total: O(mlog n)

- This is the tricky part. We check each edge (v, w) once, when v is first added to X.
- If we have an adjacency list, we can do this in O(d,) time (where d, is the degree of v).

- The total time is O(>_, d,) = O(m).

25/69

Heap-Based Running Time

Let's count the total work.

® |nitialization: Build the heap O(nlogn)
® Main Loop (total over n — 1 iterations):

® Extract-Min: n — 1 times. Total: O(nlogn)
® Decrease-Key (Updates): Total: O(mlog n)

- This is the tricky part. We check each edge (v, w) once, when v is first added to X.
- If we have an adjacency list, we can do this in O(d,) time (where d, is the degree of v).

- The total time is O(>_, d,) = O(m).

Grand Total: O(nlogn+ mlogn) = O(mlog n)

(Assuming m > n — 1, which is true for connected graphs)

25/69

Kruskal’s Algorithm

Another Greedy Algorithm for MST

Kruskal’s Algorithm: The Forest Loner

A completely different (but equally brilliant) greedy strategy.

Kruskal's Greedy Strategy

1. Sort all m edges in the graph from cheapest to most expensive.

2. Iterate through the sorted edges:

3. Add an edge to your tree T if and only if it does not create a cycle.

Instead of growing one “mold,” Kruskal's builds up a “forest” of small trees that
eventually merge into one.

27 /69

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c.d) [5]

1. Edge (a,b) [cost 1]: () 1 @
® No cycle. Add. aNE ‘

28 /69

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a.c) [4],

1. Edge (a,b) [cost 1]:
® No cycle. Add.
2. Edge (b,d) [cost 2]:
® No cycle. Add.

(c.d) [8]
O——®
s 3 2

28 /69

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c.d) [5]

1. Edge (a,b) [cost 1]:
® No cycle. Add.
2. Edge (b,d) [cost 2]:
® No cycle. Add.
3. Edge (a,d) [cost 3]:
¢ Creates a cycle (a-b-d-a). Skip!

28 /69

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c.d) [5]

1. Edge (a,b) [cost 1]:
® No cycle. Add.
2. Edge (b,d) [cost 2]:
® No cycle. Add.
3. Edge (a,d) [cost 3]:
¢ Creates a cycle (a-b-d-a). Skip!
4. Edge (a,c) [cost 4]:
® No cycle. Add.

28 /69

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c.d) [5]

1. Edge (a,b) [cost 1]:
® No cycle. Add.
2. Edge (b,d) [cost 2]:
® No cycle. Add.
3. Edge (a,d) [cost 3]:
¢ Creates a cycle (a-b-d-a). Skip!
4. Edge (a,c) [cost 4]:
® No cycle. Add.
5. Edge (c,d) [cost 5]:
® Creates a cycle. Skip!

28 /69

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c.d) [5]

1. Edge (a,b) [cost 1]:
® No cycle. Add.
2. Edge (b,d) [cost 2]:
® No cycle. Add.
3. Edge (a,d) [cost 3]:
¢ Creates a cycle (a-b-d-a). Skip!
4. Edge (a,c) [cost 4]: Final Cost: 1 +2+4=7
® No cycle. Add.
5. Edge (c,d) [cost 5]:
® Creates a cycle. Skip!

Done! We have n — 1 = 3 edges.

28 /69

Kruskal’s Algorithm: Pseudocode (high level)

Kruskal's Algorithm (G, s)

e T ={ (our set of MST edges)

® Sort all m edges in E by increasing cost.
e for each edge e = (u, v) in the sorted list:

e if TU{e} has no cycles:
° Add eto T

® return T

29 /69

Correctness: The Cut Property (Again!)

Why Does Kruskal’s Work?

It also relies on the Cut Property, but in a sneakier way.

Proof Overview:

Consider the moment Kruskal's adds edge e = (u, v).

At this point, u and v are in different components (or e would form a cycle).

® et A= u's component, B=V — A. This is a cut!

Since edges are sorted, e must be the cheapest edge crossing this cut. (Any cheaper
crossing edge would have been considered earlier).

Adding e is a “safe” move by the Cut Property!

31/69

Why Does Kruskal’s Work?

A = u's component Rest of the graph

more expensive

32/69

Kruskal’s Running Time

How Fast is Kruskal’'s?

The algorithm has two main parts:

1. Sorting the Edges

® \We have m edges.

® Using MergeSort: O(mlogn).

2. Checking for Cycles

® We loop m times.

® |nside the loop:
cycle)'... How?

‘if (T U e has no

34/69

How Fast is Kruskal’'s?

The algorithm has two main parts:

1. Sorting the Edges 2. Checking for Cycles
® \We have m edges. ® We loop m times.
® Using MergeSort: O(mlogn). ® Inside the loop: 'if (T U e has no

cycle)'... How?

The “Straightforward” Way:

- A simple BFS/DFS check for a path between u and v takes O(n) time.

- Total “straightforward” time: O(mlogn)+ O(m x n) = O(mn).

- This is no better than simple Prim's! We must make the cycle check faster.

34/69

Making Kruskal’s Algorithm Fast

The Union-Find Data Structure

Speeding Up Kruskal’s: The Union-Find Data Structure

This tool is designed specifically for tracking connected components.

The Core Idea Comp 1

® Maintain the connected components formed by Comp 2
the edges added to T so far.

® “Objects” = Vertices V.

® “Groups” = Connected Components.

Q Comp 4

Comp 3

36 /69

Speeding Up Kruskal’s: The Union-Find Data Structure

This tool is designed specifically for tracking connected components.

The Core Idea

Comp 1
Maintain the connected components formed by

the edges added to T so far.
® “Objects” = Vertices V.

® “Groups” = Connected Components.

Comp 2

Key Operations

® FIND(u): Get name/leader of u's component. Q

® UNION(u, v): Merge u's and v's components. Q Comp 4
Comp 3

36 /69

Kruskal’s Algorithm: Fast Pseudocode

Using Union-Find makes cycle checking incredibly efficient.

Kruskal's Algorithm (Fast Implementation)

T=0
Sort all m edges in E by increasing cost.

Initialize a Union-Find structure U (each vertex in its own set).
for each edge e = (u, v) in the sorted list:
® Cycle Check: if FIND(U, u) # FIND(U, v):

. Add eto T
° UNION(U, u,v) // Merge components
® return T

37/69

Making Kruskal’s Algorithm Fast

The Union-Find Data Structure

Union-Find: Initialization

Internally, Union-Find uses trees with parent pointers.

Initialization Step

® Each vertex begins as an isolated component and its own root/leader.
® Fach vertex points to itself to represent this.

® Setup time: O(n) for n vertices.

e EE

39/69

Union-Find: FIND Operation

FIND(v) Operation: Finds the group leader

® Start at vertex v.
® Follow parent pointers upward until root

® root = a vertex points to itself.

® Return that vertex (the component'’s leader).

40 /69

Union-Find: FIND Operation

FIND(v) Operation: Finds the group leader

® Start at vertex v.
® Follow parent pointers upward until root

® root = a vertex points to itself.

® Return that vertex (the component'’s leader).

FIND(2) follows pointers:
2 — 1 — 4. Returns 4.

40 /69

Union-Find: Simple UNION Operation

How do we merge two components (trees) A and B?

Simple UNION(A, B) Idea

® Find the root of A (let's call it root A).
® Find the root of B (let’s call it root B).

® Make one root point to the other (e.g., make root A point to root B).

41/69

Union-Find: Simple UNION Operation

3 @
§ @
D6

Perform UNION(2, 5).

42/69

Union-Find: Simple UNION Operation

Root A Root B
-~

@& &
(V) (5)
0JO

£ind (2) returns 4; £ind(5) returns 6.

42/69

Union-Find: Simple UNION Operation

Link roots 4 — 6; remove 4's self-loop (4 is no longer a leader).

42/69

The Problem with Simple UNION

Issue: Arbitrary unions can create inefficient trees.

Worst Case:
® Repeated merges form a long chain. @‘ @‘
® Tree height grows to O(n).

Finding the root could take O(n) steps. + UNTON(1,2)

@ O

| UNION(1,3)

43/69

Making Union-Find Fast: Union-by-Size

We can avoid creating tall trees with a simple rule.

The Trick: Union-by-Size (or Rank)

When doing UNION(A, B), always attach the root of the smaller tree under the root of
the larger tree. (Break ties arbitrarily).

® Requires storing the size (number of nodes) at the root of each tree.

® Update size when merging.

44/69

Union-Find: UNION-by-Size

Root A (size=4)Root B (size=2)

Perform UNION(2, 5).

45 /69

Union-Find: UNION-by-Size

Root A (size=4)Root B (size=2)

Link roots 4+6; remove 6's self-loop (6 is no longer a leader).

45 /69

Why is Union-by-Size Fast?

This simple heuristic dramatically improves performance!

Key Insight:

Consider any vertex v.

When does the depth of v (distance to root) increase?

Only when v's tree is attached under another root during a UNION.

By Union-by-Size, this happens only if the other tree was > the size of v's current
tree.

e — Every time v's depth increases, the size of its new component at least doubles.

46 /69

Union by Size: Depth vs Size

Comp 1
Comp 2

New Component

The maximum depth increases by 1

The component size doubles.

47 /69

Union by Size: Depth vs Size

® Max component size is n. Size can double < log, n times.
® Therefore, the depth of any node is always O(log n).
e FIND operations take O(log n) time! UNION takes O(log n) (due to FINDs).

Max Depth < logn

48 /69

Kruskal’s Final Running Time (Revisited)

Let's re-evaluate the total work using our faster Union-Find.

e 1. Sort edges: O(mlogn).
¢ 2. Initialize Union-Find: O(n).

¢ 3. Main Loop (m iterations):

® 2 x m FIND operations: Total O(mlogn).
® n— 1 UNION operations: Total O(nlog n).

Grand Total:
O(mlog n) 4+ O(n) + O(mlog n) + O(nlog n) = O(mlogn)

(Sorting is usually the bottleneck!)

49 /69

Advanced Union-Find

Beyond O(logn)

Advanced Union-Find: Path Compression

Recall: Our basic Union-by-Size (or Rank) ensured that each FIND operation takes
O(logn) time.

But we can do much better!

The Idea: Path Compression Before Compression

a Root

¢ After a FIND(x) operation, we now know the root.

(4)
0 FIND(1)

51/69

Advanced Union-Find: Path Compression

Recall: Our basic Union-by-Size (or Rank) ensured that each FIND operation takes

O(logn) time.

But we can do much better!

The Idea: Path Compression Before Compression
¢ After a FIND(x) operation, we now know the root.

® On the way back up, install shortcuts by setting a Root
the parent of every node on the path directly to

the root. G

FIND(1)

51/69

Advanced Union-Find: Path Compression

Recall: Our basic Union-by-Size (or Rank) ensured that each FIND operation takes

O(logn) time.

But we can do much better!

The Idea: Path Compression After Compression
¢ After a FIND(x) operation, we now know the root.

® On the way back up, install shortcuts by setting a Root
the parent of every node on the path directly to

the root. e
® This drastically speeds up subsequent FIND oper-

ations. @

FIND(1)

51/69

Running Time of Path Compression

The combination of Union-by-Rank and Path Compression yields an astonishingly fast
amortized time per operation.

Each operation takes log*(n) Log-Star Values
® O(m) total UNION + FIND operations take ® log"(2) =1
time O(mlog* n). log*(4) = 2

(

(
log"(16) =
(

(

What is log* n? (lterated Logarithm)

® The number of times you must apply log, to
n before the result is < 1.

log* 65536) Iog (216) = 4

o log*(205536) =

The function log™ n is almost a constant. For all practical purposes, O(mlog* n) is
essentially linear time, O(m).

5269

Can We Do Better? (State of the Art in MST Research)

Can we beat O(mlog® n)? Yes — in theory!

® Randomized: O(m) expected time (Karger—Klein—Tarjan, 1995).

® Deterministic: O(ma(n)) (Chazelle, 2000). «(n) = inverse Ackermann function (a
constant for all practical n).

® Pettie-Ramachandran (2002): asymptotically optimal but unknown exact runtime.

53/69

Boruvka's Algorithm

The Oldest MST Method (1926)

The Foundation: Edges to AVOID

All MST algorithms operate on an intermediate spanning forest, F (an acyclic
subgraph that is always part of the final MST).

We classify edges in the rest of the graph (G \ F) as follows:

Useless Edge

® An edge not in the intermediate forest F, but both its Component C

endpoints are already in the same component of F. u
® Adding a useless edge would create a cycle. " 10,
v

® The minimum spanning tree contains no useless edge.

55 /69

The Foundation: The Safe Edge Choice

The goal of every MST algorithm is to repeatedly find and add safe edge.

® The minimum-weight edge with exactly one endpoint in some component C.

® This edge is the cheapest available connection between two components.

® The Guiding Principle: The minimum spanning tree of G contains every safe edge.”
(This is guaranteed by the Cut Property.)

Comp. C Comp. C’

56 /69

Borivka’'s Algorithm: Add ALL the Safe Edges

The oldest MST algorithm, discovered by Otakar Borlvka in 1926.

It was motivated by a practical problem: “how to construct an electrical network
connecting several cities using the least amount of wire.” The algorithm can be
summarized in one bold line:

Boriivka's Single, Parallel Strategy

BORUVKA: Add ALL the safe edges and recurse.

57 /69

The Core Strategy: Merging Components

Boriivka's algorithm works with a forest F of trees (components) that eventually merge
into the final MST.

The Key Step:

1. Identify Components: Determine the set of current connected components (trees)
in the forest F.

2. Find Safe Edges: For each component C, find the minimum-weight edge e that
connects C to any other component C’. (This is the unique safe edge for C.)

3. Add All: Add all these unique safe edges to F simultaneously.

The Goal: To reduce the number of components quickly, ideally in one step.

58 /69

Bortivka’s Algorithm in Action: Iteration 1

We begin with V' components (one for each vertex).

Start: 4 Components e 1 °

® Find the unique safe edge for each
component.

® Note that two components might

select the same edge. ° o
5

Safe Edges: 1, 4, 2

59 /69

Bortivka’s Algorithm in Action: Iteration 1

We begin with V' components (one for each vertex).

Start: 4 Components
® Find the unique safe edge for each
component.
® Note that two components might
select the same edge.

Add Step:
® We add the edges chosen: €1, &, e3. Result: 1 Component (The MST)
® The components immediately
merge.

59 /69

Performance Analysis: Total Iterations

The key to Boriivka's efficiency is the rapid reduction in the number of components.

Each iteration, every component adds its cheapest crossing edge.

When two components C4 and Cg connect via edge e, they merge.
Worst-Case: Components coalesce in pairs, effectively halving the total count.

Starts with V' components, ends when the count is 1.

Total Number of Iterations: O(log V)

60 /69

Performance Analysis: Time Per Iteration & Complexity

Time Per lteration

Identifying components takes O(|E|) via running a BFS algorithm over F.

To find the safe edge for every current component, we must iterate through all E
edges in the original graph.

A simple array or list can store the current safest edge for each component.

Updating the safest edge for component C, and C, when checking edge (u, v) takes
O(1) time.

= Time per iteration is O(E).

61/69

Performance Analysis: Time Per Iteration & Complexity

Time Per lteration

Identifying components takes O(|E|) via running a BFS algorithm over F.

To find the safe edge for every current component, we must iterate through all E
edges in the original graph.

A simple array or list can store the current safest edge for each component.

Updating the safest edge for component C, and C, when checking edge (u, v) takes
O(1) time.

= Time per iteration is O(E).
= Overall Complexity = O(E log V)

Note: Kruskal's algorithm also runs in O(E log V), but is dominated by the initial sorting
time. Boriivka's complexity comes from the recursive steps.

61/69

Why Use Boriivka’s? (The Advantages)

Despite the same worst-case runtime as Prim's and Kruskal's, Borlivka's has distinct
practical and theoretical advantages.

¢ Implicit Parallelism: In each iteration, finding the safe edge for every component is
a totally independent task. This makes Borlivka's intrinsically parallel, allowing for
much faster performance on multi-core or distributed systems.

“In short, if you ever need to implement a minimum-spanning-tree algorithm, use

Bortvka.”
62/69

Why Use Boriivka’s? (The Advantages)

Despite the same worst-case runtime as Prim's and Kruskal's, Borlivka's has distinct
practical and theoretical advantages.

¢ Implicit Parallelism: In each iteration, finding the safe edge for every component is
a totally independent task. This makes Borlivka's intrinsically parallel, allowing for
much faster performance on multi-core or distributed systems.

e Faster in Practice: The number of components often drops by significantly more
than a factor of 2, meaning it frequently runs much faster than its O(E log V') worst-
case bound.

“In short, if you ever need to implement a minimum-spanning-tree algorithm, use

Bortvka.”
62/69

Why Use Boriivka’s? (The Advantages)

Despite the same worst-case runtime as Prim's and Kruskal's, Borlivka's has distinct
practical and theoretical advantages.

¢ Implicit Parallelism: In each iteration, finding the safe edge for every component is
a totally independent task. This makes Borlivka's intrinsically parallel, allowing for
much faster performance on multi-core or distributed systems.

e Faster in Practice: The number of components often drops by significantly more
than a factor of 2, meaning it frequently runs much faster than its O(E log V') worst-
case bound.

¢ Optimal for Nice Graphs: A slight variant runs in O(V) time for “nice” graphs, such
as planar graphs (graphs that can be drawn on a plane without edges crossing).

“In short, if you ever need to implement a minimum-spanning-tree algorithm, use

Bortvka.”
62/69

Why Use Boriivka’s? (The Advantages)

Despite the same worst-case runtime as Prim's and Kruskal's, Borlivka's has distinct
practical and theoretical advantages.

¢ Implicit Parallelism: In each iteration, finding the safe edge for every component is
a totally independent task. This makes Borlivka's intrinsically parallel, allowing for
much faster performance on multi-core or distributed systems.

e Faster in Practice: The number of components often drops by significantly more
than a factor of 2, meaning it frequently runs much faster than its O(E log V') worst-
case bound.

¢ Optimal for Nice Graphs: A slight variant runs in O(V) time for “nice” graphs, such
as planar graphs (graphs that can be drawn on a plane without edges crossing).

e Basis for Modern Algorithms: Many of the more recent, theoretically faster MST
algorithms are generalizations of Borlivka's method.

“In short, if you ever need to implement a minimum-spanning-tree algorithm, use

Bortvka.”
62 /69

Application: Single-Link Clustering

Clustering: Grouping Similar Data

® Goal: partition points into coherent groups
(clusters) using only pairwise relationships. .

® Unsupervised: no labels, just a dissimilarity /)
distance. :

® Examples: customer segments, image re- :
gions, gene expression types.

64 /69

A Graph View of the Data

Key ingredients:

® Data points — vertices

Dissimilarity d(i,) — edge weight c;;

Build a (usually dense) graph on points:

® complete graph
® k-nearest neighbor graph 4/' ==

Small ¢j; means points are similar/nearby.

MST picks n — 1 best “connections”.

The MST preserves the global structure of this graph.

65 /69

Best-Link (Single-Link) Score

Bottom-up (agglomerative) rule:

merge the two clusters Cj, C; with smallest L/ 4

Smin(Cth) = m'\r/] _HU_VHQ'
i -

® Uses the closest pair across clusters.

® Tends to “chain” through nearest links.

66 /69

Best-Link (Single-Link) Score

Bottom-up (agglomerative) rule:

merge the two clusters Cj, C; with smallest L/ 4

smin(Gi, G) = min__flu— vl

i»V i

Uses the closest pair across clusters.

Tends to “chain” through nearest links.

Exactly matches adding the smallest valid edge between two components.

Equivalence of Kruskal's and single-link: The next Kruskal edge is exactly the shortest
inter- cluster link.

66 /69

Single-Link Clustering = Kruskal’s Algorithm

Single-Link (bottom-up)
® Each point starts as its own cluster.
® Repeatedly merge the two clusters with the smallest inter-cluster edge.

® Stop when k clusters remain.

Kruskal's perspective

® Sort all edges by weight.

e Add edges in order if they don't create a cycle.

e After adding | V| — k edges, the forest has k components = clusters.

67 /69

Takeaways

e MSTs give a sparse global scaffold of the data geometry.
e Single-link clustering is exactly Kruskal's process: add edges in increasing order;

components = clusters.
® Get k clusters by removing the k — 1 largest MST edges.

68 /69

References

B

[

Erickson, J. (2019).
Algorithms.
Self-published.

Roughgarden, T. (2022).

Algorithms llluminated: Omnibus Edition.

Soundlikeyourself Publishing, LLC.

69 /69

	Minimum Spanning Trees
	Prim's Algorithm
	Correctness: The Cut Property
	Making Prim's Algorithm Fast

	Kruskal's Algorithm
	Correctness: The Cut Property (Again!)
	Kruskal's Running Time
	Making Kruskal's Algorithm Fast
	Making Kruskal's Algorithm Fast

	Advanced Union-Find
	Borůvka's Algorithm
	Application: Single-Link Clustering

