
COMP 382: Reasoning about Algorithms

Greedy Algorithms:
Minimum Spanning Trees

Prof. Maryam Aliakbarpour

co-instructors: Prof. Anjum Chida & Prof. Konstantinos Mamouras

October 28, 2025

Today’s Lecture

1. Minimum Spanning Trees

2. Prim’s Algorithm

3. Kruskal’s Algorithm

4. Advanced Union-Find

5. Bor̊uvka’s Algorithm

6. Application: Single-Link Clustering

2 / 69

Today’s Lecture

Reading:

• Chapter 15 of [Roughgarden, 2022]

• https://jeffe.cs.illinois.edu/teaching/algorithms/book/07-mst.pdf of [Erickson, 2019]

Adapted from the same chapters.

3 / 69

Minimum Spanning Trees

The Core Problem: Cheap Connections

Imagine you need to connect a set of locations—like computer servers, cities, or
houses—as cheaply as possible.

The Goal:

• Connect all locations into a single network.

• Do so with the minimum possible total cost (e.g., cable length, pipe cost, road miles).

• Don’t create any redundant loops or cycles.

This problem appears everywhere, from designing computer networks to machine learning.

5 / 69

Formalizing the Problem

To solve this, we model the problem using a graph.

An undirected graph G = (V ,E) has:

• A set of vertices V (the locations).

• A set of edges E (the potential connections).

• Each edge e has a cost ce .

A Spanning Tree is a subset of edges that:

1. Connects all vertices (“spanning”).

2. Contains no cycles (“tree”).

a
b

c
d

4

1

3
2

5

A Weighted Graph

1

2

4

A Spanning Tree

6 / 69

Formalizing the Problem

To solve this, we model the problem using a graph.

An undirected graph G = (V ,E) has:

• A set of vertices V (the locations).

• A set of edges E (the potential connections).

• Each edge e has a cost ce .

A Spanning Tree is a subset of edges that:

1. Connects all vertices (“spanning”).

2. Contains no cycles (“tree”).

a
b

c
d

4

1

3
2

5

A Weighted Graph

1

2

4

A Spanning Tree

6 / 69

Prim’s Algorithm

A Greedy Algorithm for MST

Prim’s Algorithm: The Mold Grower

Our first method, Prim’s algorithm, builds the MST by growing a single tree, one edge at
a time.

Prim’s Greedy Strategy

Start at an arbitrary vertex. In each step, greedily add the cheapest edge that connects
a vertex inside our growing tree to a vertex outside the tree.

Think of it like a mold that starts at one point and expands along the cheapest paths
until it covers everything.

8 / 69

Prim’s Algorithm in Action

Let’s run Prim’s starting from vertex b. The green area shows the vertices spanned so far.

Start: At vertex b

• Candidates: (b,a) [cost 1], (b,d) [cost 2].

• Add cheapest: (b,a).

Step 1: Add (b,a)

• Candidates: (a,c) [4], (a,d) [3], (b,d) [2].

• Add cheapest: (b,d).

Step 2: Add (b,d)

• Ignore (a,d) → creates cycle.

• Candidates: (a,c) [4], (c,d) [5].

• Add cheapest: (a,c).

Step 3: Add (a,c)

• All vertices connected. Done!

a b

c d

1

4 3 2

5

Total Cost: 0

9 / 69

Prim’s Algorithm in Action

Let’s run Prim’s starting from vertex b. The green area shows the vertices spanned so far.

Start: At vertex b

• Candidates: (b,a) [cost 1], (b,d) [cost 2].

• Add cheapest: (b,a).

Step 1: Add (b,a)

• Candidates: (a,c) [4], (a,d) [3], (b,d) [2].

• Add cheapest: (b,d).

Step 2: Add (b,d)

• Ignore (a,d) → creates cycle.

• Candidates: (a,c) [4], (c,d) [5].

• Add cheapest: (a,c).

Step 3: Add (a,c)

• All vertices connected. Done!

a b

c d

1

24 3

5

Total Cost: 1

9 / 69

Prim’s Algorithm in Action

Let’s run Prim’s starting from vertex b. The green area shows the vertices spanned so far.

Start: At vertex b

• Candidates: (b,a) [cost 1], (b,d) [cost 2].

• Add cheapest: (b,a).

Step 1: Add (b,a)

• Candidates: (a,c) [4], (a,d) [3], (b,d) [2].

• Add cheapest: (b,d).

Step 2: Add (b,d)

• Ignore (a,d) → creates cycle.

• Candidates: (a,c) [4], (c,d) [5].

• Add cheapest: (a,c).

Step 3: Add (a,c)

• All vertices connected. Done!

a b

c d

1

24 3

5

Total Cost: 1 + 2

9 / 69

Prim’s Algorithm in Action

Let’s run Prim’s starting from vertex b. The green area shows the vertices spanned so far.

Start: At vertex b

• Candidates: (b,a) [cost 1], (b,d) [cost 2].

• Add cheapest: (b,a).

Step 1: Add (b,a)

• Candidates: (a,c) [4], (a,d) [3], (b,d) [2].

• Add cheapest: (b,d).

Step 2: Add (b,d)

• Ignore (a,d) → creates cycle.

• Candidates: (a,c) [4], (c,d) [5].

• Add cheapest: (a,c).

Step 3: Add (a,c)

• All vertices connected. Done!

a b

c d

1

24 3

5

Total Cost: 1 + 2 + 4 = 7

9 / 69

Prim’s Algorithm: Pseudocode

This is the simple, high-level idea.

Prim’s Algorithm (G , s)

• Initialize X = {s} (our set of spanned vertices)

• Initialize T = ∅ (our set of MST edges)
• while X ̸= V :

• Let e = (u, v) be the cheapest edge with:
• u ∈ X
• v /∈ X

• Add e to T

• Add v to X

• return T

Question: How do we know this greedy strategy actually works?
10 / 69

Correctness: The Cut Property

Why is this “Greedy” Choice Safe?

The answer is a beautiful idea called the Cut Property.

What is a “Cut”?

• A “cut” is just a partition of the vertices V into two non-empty sets, A and B.
• “Crossing edges” are edges with one endpoint in A and one in B.

A B

10

5

8

12

12 / 69

The Cut Property

The Cut Property

Assume all edge costs are distinct.
Let e be the cheapest edge crossing any cut (A,B).
Then e must belong to the Minimum Spanning Tree.

A B

10

5

8

12

13 / 69

The Cut Property

Why is this true? If an MST didn’t use e, it would have to use some other, more
expensive edge f to cross that cut. We could swap f for e and get a cheaper tree!

This is a contradiction.

A B

10

5

8

12

14 / 69

Prim’s Algorithm IS The Cut Property

Prim’s algorithm cleverly uses the Cut Property in every single step!

At each step, Prim’s defines a cut:

• A = X (vertices already in our tree)
• B = V − X (vertices not yet in)

A = X B = V − X

10

5

8

Prim’s finds the cheap-
est edge (cost 5) cross-
ing the cut and adds it.

15 / 69

Prim’s Algorithm IS The Cut Property

The algorithm then finds the cheapest edge crossing this specific cut...

...and adds it to the tree!

The Cut Property guarantees this is a “safe” and correct move.

A = X B = V − X

10

5

8

Prim’s finds the cheap-
est edge (cost 5) cross-
ing the cut and adds it.

16 / 69

Making Prim’s Algorithm Fast

Via Priority Queue

How Fast is Prim’s Algorithm?

Let n = |V | (vertices) and m = |E | (edges).

A “Straightforward” Implementation:

• The main loop runs n − 1 times (once for each vertex).

• In each loop, we have to search all m edges to find the cheapest one crossing the cut.

Total Time: O(n ×m) = O(mn)

We can do much better!

18 / 69

How Fast is Prim’s Algorithm?

Let n = |V | (vertices) and m = |E | (edges).

A “Straightforward” Implementation:

• The main loop runs n − 1 times (once for each vertex).

• In each loop, we have to search all m edges to find the cheapest one crossing the cut.

Total Time: O(n ×m) = O(mn)

We can do much better!

18 / 69

Prim’s Algorithm: Running Time

This is the simple, high-level idea.

Prim’s Algorithm (G , s)

• Initialize X = {s} (our set of spanned vertices)

• Initialize T = ∅ (our set of MST edges)
• while X ̸= V : O(n) times (once per vertex)

• Let e = (u, v) be the cheapest edge with: O(m) search overall edges.
• u ∈ X
• v /∈ X
• Add e to T
• Add v to X

• return T

19 / 69

Tool for the Job: The Heap (Priority Queue)

To find the cheapest crossing edge faster, we need a special tool.

What is a Heap?

• A data structure that maintains an evolving set of objects, each with a ”key” or ”cost”.
• Its main job is to perform minimum computations very, very quickly.
• Think of it as a “queue” list where the task with the smallest cost is always at the

top, ready to be pulled.

3

7 5

10 12 8

A Min-Heap 20 / 69

Tool for the Job: The Heap (Priority Queue)

Key Operations (for n items)

Operation What it does Time

INSERT Adds a new object to the set. O(log n)

EXTRACT-MIN Removes and returns the object with the
smallest key.

O(log n)

DELETE Removes a specific object from the set. O(log n)

This is perfect for Prim’s!

• EXTRACT-MIN gives us the next vertex to add to X .

• DELETE + INSERT lets us update the key of a vertex when a cheaper edge is found.

21 / 69

Tool for the Job: The Heap (Priority Queue)

Key Operations (for n items)

Operation What it does Time

INSERT Adds a new object to the set. O(log n)

EXTRACT-MIN Removes and returns the object with the
smallest key.

O(log n)

DELETE Removes a specific object from the set. O(log n)

This is perfect for Prim’s!

• EXTRACT-MIN gives us the next vertex to add to X .

• DELETE + INSERT lets us update the key of a vertex when a cheaper edge is found.

21 / 69

Speeding Up Prim’s with a Heap

The bottleneck is re-scanning all edges just to find the cheapest one.

The Key Idea: Use a heap (Priority Queue) to keep track of the “cheapest crossing
edge” for each vertex outside our tree.

Heap Invariant

• The heap stores all vertices in V − X (those not in the tree).

• The “key” for a vertex v ∈ V − X is the cost of the cheapest edge connecting v to
any vertex inside X .

Now, each step of Prim’s is just an Extract-Min from the heap!

22 / 69

Prim’s with a Heap

• Heap contains: {y , x , z}
• Keys:

• key(y) = 3
• key(x) = 7
• key(z) =∞ (no edge to X)

• Step 1: ‘Extract-Min()‘

• Returns: vertex y (cost 3).

• Action: Add y to X .

X

s

V − X (in Heap)

x

y

z

7

3

2

1

key(x) = 7

key(y) = 3

key(z) =∞

23 / 69

Prim’s with a Heap

• Heap contains: {y , x , z}
• Keys:

• key(y) = 3
• key(x) = 7
• key(z) =∞ (no edge to X)

• Step 1: ‘Extract-Min()‘

• Returns: vertex y (cost 3).

• Action: Add y to X .

X

s

V − X (in Heap)

x

y

z

7

3

2

1

key(x) = 7

key(y) = 3

key(z) =∞

23 / 69

The “Catch”: Updating Keys

When we add a vertex (like y) to X , we must update the keys of its neighbors!

• y is now in X .

• Look at y ’s neighbors in V −X :

• Neighbor x:
• Old key: 7 (from s)
• New edge (y , x): cost 2
• Update key(x) to 2.

• Neighbor z:
• Old key: ∞
• New edge (y , z): cost 1
• Update key(z) to 1.

New X

s
y

V − X

x

z

7

3

2

1

key(x) = 7→ 2

key(z) =∞→ 1

This is a Decrease-Key operation in the heap.

24 / 69

The “Catch”: Updating Keys

When we add a vertex (like y) to X , we must update the keys of its neighbors!

• y is now in X .

• Look at y ’s neighbors in V −X :

• Neighbor x:
• Old key: 7 (from s)
• New edge (y , x): cost 2
• Update key(x) to 2.

• Neighbor z:
• Old key: ∞
• New edge (y , z): cost 1
• Update key(z) to 1.

New X

s
y

V − X

x

z

7

3

2

1

key(x) = 7→ 2

key(z) =∞→ 1

This is a Decrease-Key operation in the heap.

24 / 69

The “Catch”: Updating Keys

When we add a vertex (like y) to X , we must update the keys of its neighbors!

• y is now in X .

• Look at y ’s neighbors in V −X :

• Neighbor x:
• Old key: 7 (from s)
• New edge (y , x): cost 2
• Update key(x) to 2.

• Neighbor z:
• Old key: ∞
• New edge (y , z): cost 1
• Update key(z) to 1.

New X

s
y

V − X

x

z

7

3

2

1

key(x) = 7→ 2

key(z) =∞→ 1

This is a Decrease-Key operation in the heap.

24 / 69

Heap-Based Running Time

Let’s count the total work.

• Initialization: Build the heap O(n log n)

• Main Loop (total over n − 1 iterations):

• Extract-Min: n − 1 times. Total: O(n log n)
• Decrease-Key (Updates): Total: O(m log n)

- This is the tricky part. We check each edge (v ,w) once, when v is first added to X .
- If we have an adjacency list, we can do this in O(dv) time (where dv is the degree of v).
- The total time is O(

∑
v dv) = O(m).

Grand Total: O(n log n +m log n) = O(m log n)

(Assuming m ≥ n − 1, which is true for connected graphs)

25 / 69

Heap-Based Running Time

Let’s count the total work.

• Initialization: Build the heap O(n log n)

• Main Loop (total over n − 1 iterations):

• Extract-Min: n − 1 times. Total: O(n log n)
• Decrease-Key (Updates): Total: O(m log n)

- This is the tricky part. We check each edge (v ,w) once, when v is first added to X .
- If we have an adjacency list, we can do this in O(dv) time (where dv is the degree of v).
- The total time is O(

∑
v dv) = O(m).

Grand Total: O(n log n +m log n) = O(m log n)

(Assuming m ≥ n − 1, which is true for connected graphs)

25 / 69

Heap-Based Running Time

Let’s count the total work.

• Initialization: Build the heap O(n log n)

• Main Loop (total over n − 1 iterations):

• Extract-Min: n − 1 times. Total: O(n log n)

• Decrease-Key (Updates): Total: O(m log n)

- This is the tricky part. We check each edge (v ,w) once, when v is first added to X .
- If we have an adjacency list, we can do this in O(dv) time (where dv is the degree of v).
- The total time is O(

∑
v dv) = O(m).

Grand Total: O(n log n +m log n) = O(m log n)

(Assuming m ≥ n − 1, which is true for connected graphs)

25 / 69

Heap-Based Running Time

Let’s count the total work.

• Initialization: Build the heap O(n log n)

• Main Loop (total over n − 1 iterations):

• Extract-Min: n − 1 times. Total: O(n log n)
• Decrease-Key (Updates): Total: O(m log n)

- This is the tricky part. We check each edge (v ,w) once, when v is first added to X .
- If we have an adjacency list, we can do this in O(dv) time (where dv is the degree of v).
- The total time is O(

∑
v dv) = O(m).

Grand Total: O(n log n +m log n) = O(m log n)

(Assuming m ≥ n − 1, which is true for connected graphs)

25 / 69

Heap-Based Running Time

Let’s count the total work.

• Initialization: Build the heap O(n log n)

• Main Loop (total over n − 1 iterations):

• Extract-Min: n − 1 times. Total: O(n log n)
• Decrease-Key (Updates): Total: O(m log n)

- This is the tricky part. We check each edge (v ,w) once, when v is first added to X .

- If we have an adjacency list, we can do this in O(dv) time (where dv is the degree of v).
- The total time is O(

∑
v dv) = O(m).

Grand Total: O(n log n +m log n) = O(m log n)

(Assuming m ≥ n − 1, which is true for connected graphs)

25 / 69

Heap-Based Running Time

Let’s count the total work.

• Initialization: Build the heap O(n log n)

• Main Loop (total over n − 1 iterations):

• Extract-Min: n − 1 times. Total: O(n log n)
• Decrease-Key (Updates): Total: O(m log n)

- This is the tricky part. We check each edge (v ,w) once, when v is first added to X .
- If we have an adjacency list, we can do this in O(dv) time (where dv is the degree of v).

- The total time is O(
∑

v dv) = O(m).

Grand Total: O(n log n +m log n) = O(m log n)

(Assuming m ≥ n − 1, which is true for connected graphs)

25 / 69

Heap-Based Running Time

Let’s count the total work.

• Initialization: Build the heap O(n log n)

• Main Loop (total over n − 1 iterations):

• Extract-Min: n − 1 times. Total: O(n log n)
• Decrease-Key (Updates): Total: O(m log n)

- This is the tricky part. We check each edge (v ,w) once, when v is first added to X .
- If we have an adjacency list, we can do this in O(dv) time (where dv is the degree of v).
- The total time is O(

∑
v dv) = O(m).

Grand Total: O(n log n +m log n) = O(m log n)

(Assuming m ≥ n − 1, which is true for connected graphs)

25 / 69

Heap-Based Running Time

Let’s count the total work.

• Initialization: Build the heap O(n log n)

• Main Loop (total over n − 1 iterations):

• Extract-Min: n − 1 times. Total: O(n log n)
• Decrease-Key (Updates): Total: O(m log n)

- This is the tricky part. We check each edge (v ,w) once, when v is first added to X .
- If we have an adjacency list, we can do this in O(dv) time (where dv is the degree of v).
- The total time is O(

∑
v dv) = O(m).

Grand Total: O(n log n +m log n) = O(m log n)

(Assuming m ≥ n − 1, which is true for connected graphs)

25 / 69

Kruskal’s Algorithm

Another Greedy Algorithm for MST

Kruskal’s Algorithm: The Forest Loner

A completely different (but equally brilliant) greedy strategy.

Kruskal’s Greedy Strategy

1. Sort all m edges in the graph from cheapest to most expensive.

2. Iterate through the sorted edges:

3. Add an edge to your tree T if and only if it does not create a cycle.

Instead of growing one “mold,” Kruskal’s builds up a “forest” of small trees that
eventually merge into one.

27 / 69

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c,d) [5]

1. Edge (a,b) [cost 1]:

• No cycle. Add.

2. Edge (b,d) [cost 2]:

• No cycle. Add.

3. Edge (a,d) [cost 3]:

• Creates a cycle (a-b-d-a). Skip!

4. Edge (a,c) [cost 4]:

• No cycle. Add.

5. Edge (c,d) [cost 5]:

• Creates a cycle. Skip!

Done! We have n − 1 = 3 edges.

a b

c d

1

4 3 2

5

Final Cost: 1 + 2 + 4 = 7

28 / 69

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c,d) [5]

1. Edge (a,b) [cost 1]:

• No cycle. Add.

2. Edge (b,d) [cost 2]:

• No cycle. Add.

3. Edge (a,d) [cost 3]:

• Creates a cycle (a-b-d-a). Skip!

4. Edge (a,c) [cost 4]:

• No cycle. Add.

5. Edge (c,d) [cost 5]:

• Creates a cycle. Skip!

Done! We have n − 1 = 3 edges.

a b

c d

1

4 3 2

5

Final Cost: 1 + 2 + 4 = 7

28 / 69

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c,d) [5]

1. Edge (a,b) [cost 1]:

• No cycle. Add.

2. Edge (b,d) [cost 2]:

• No cycle. Add.

3. Edge (a,d) [cost 3]:

• Creates a cycle (a-b-d-a). Skip!

4. Edge (a,c) [cost 4]:

• No cycle. Add.

5. Edge (c,d) [cost 5]:

• Creates a cycle. Skip!

Done! We have n − 1 = 3 edges.

a b

c d

1

4 3 2

5

Final Cost: 1 + 2 + 4 = 7

28 / 69

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c,d) [5]

1. Edge (a,b) [cost 1]:

• No cycle. Add.

2. Edge (b,d) [cost 2]:

• No cycle. Add.

3. Edge (a,d) [cost 3]:

• Creates a cycle (a-b-d-a). Skip!

4. Edge (a,c) [cost 4]:

• No cycle. Add.

5. Edge (c,d) [cost 5]:

• Creates a cycle. Skip!

Done! We have n − 1 = 3 edges.

a b

c d

1

4 3 2

5

Final Cost: 1 + 2 + 4 = 7

28 / 69

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c,d) [5]

1. Edge (a,b) [cost 1]:

• No cycle. Add.

2. Edge (b,d) [cost 2]:

• No cycle. Add.

3. Edge (a,d) [cost 3]:

• Creates a cycle (a-b-d-a). Skip!

4. Edge (a,c) [cost 4]:

• No cycle. Add.

5. Edge (c,d) [cost 5]:

• Creates a cycle. Skip!

Done! We have n − 1 = 3 edges.

a b

c d

1

4 3 2

5

Final Cost: 1 + 2 + 4 = 7

28 / 69

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c,d) [5]

1. Edge (a,b) [cost 1]:

• No cycle. Add.

2. Edge (b,d) [cost 2]:

• No cycle. Add.

3. Edge (a,d) [cost 3]:

• Creates a cycle (a-b-d-a). Skip!

4. Edge (a,c) [cost 4]:

• No cycle. Add.

5. Edge (c,d) [cost 5]:

• Creates a cycle. Skip!

Done! We have n − 1 = 3 edges.

a b

c d

1

4 3 2

5

Final Cost: 1 + 2 + 4 = 7

28 / 69

Kruskal’s Algorithm: Pseudocode (high level)

Kruskal’s Algorithm (G , s)

• T = ∅ (our set of MST edges)

• Sort all m edges in E by increasing cost.
• for each edge e = (u, v) in the sorted list:

• if T ∪ {e} has no cycles:
• Add e to T

• return T

29 / 69

Correctness: The Cut Property (Again!)

Why Does Kruskal’s Work?

It also relies on the Cut Property, but in a sneakier way.

Proof Overview:

• Consider the moment Kruskal’s adds edge e = (u, v).

• At this point, u and v are in different components (or e would form a cycle).

• Let A = u’s component, B = V − A. This is a cut!

• Since edges are sorted, e must be the cheapest edge crossing this cut. (Any cheaper
crossing edge would have been considered earlier).

• Adding e is a “safe” move by the Cut Property!

31 / 69

Why Does Kruskal’s Work?

A = u’s component Rest of the graph

u

v

e (cheapest)

more expensive

32 / 69

Kruskal’s Running Time

How Fast is Kruskal’s?

The algorithm has two main parts:

1. Sorting the Edges

• We have m edges.

• Using MergeSort: O(m log n).

2. Checking for Cycles

• We loop m times.

• Inside the loop: ‘if (T ∪ e has no
cycle)‘... How?

The “Straightforward” Way:

- A simple BFS/DFS check for a path between u and v takes O(n) time.

- Total “straightforward” time: O(m log n) + O(m × n) = O(mn).

- This is no better than simple Prim’s! We must make the cycle check faster.

34 / 69

How Fast is Kruskal’s?

The algorithm has two main parts:

1. Sorting the Edges

• We have m edges.

• Using MergeSort: O(m log n).

2. Checking for Cycles

• We loop m times.

• Inside the loop: ‘if (T ∪ e has no
cycle)‘... How?

The “Straightforward” Way:

- A simple BFS/DFS check for a path between u and v takes O(n) time.

- Total “straightforward” time: O(m log n) + O(m × n) = O(mn).

- This is no better than simple Prim’s! We must make the cycle check faster.

34 / 69

Making Kruskal’s Algorithm Fast

The Union-Find Data Structure

Speeding Up Kruskal’s: The Union-Find Data Structure

This tool is designed specifically for tracking connected components.

The Core Idea

• Maintain the connected components formed by
the edges added to T so far.

• “Objects” = Vertices V .

• “Groups” = Connected Components.

Key Operations

• FIND(u): Get name/leader of u’s component.

• UNION(u, v): Merge u’s and v ’s components.

Comp 1
Comp 2

Comp 3
Comp 4

36 / 69

Speeding Up Kruskal’s: The Union-Find Data Structure

This tool is designed specifically for tracking connected components.

The Core Idea

• Maintain the connected components formed by
the edges added to T so far.

• “Objects” = Vertices V .

• “Groups” = Connected Components.

Key Operations

• FIND(u): Get name/leader of u’s component.

• UNION(u, v): Merge u’s and v ’s components.

Comp 1
Comp 2

Comp 3
Comp 4

36 / 69

Kruskal’s Algorithm: Fast Pseudocode

Using Union-Find makes cycle checking incredibly efficient.

Kruskal’s Algorithm (Fast Implementation)

• T = ∅
• Sort all m edges in E by increasing cost.

• Initialize a Union-Find structure U (each vertex in its own set).
• for each edge e = (u, v) in the sorted list:

• Cycle Check: if FIND(U, u) ̸= FIND(U, v):
• Add e to T
• UNION(U, u, v) // Merge components

• return T

37 / 69

Making Kruskal’s Algorithm Fast

The Union-Find Data Structure

Union-Find: Initialization

Internally, Union-Find uses trees with parent pointers.

Initialization Step

• Each vertex begins as an isolated component and its own root/leader.

• Each vertex points to itself to represent this.

• Setup time: O(n) for n vertices.

1 2 3 4 5

39 / 69

Union-Find: FIND Operation

FIND(v) Operation: Finds the group leader

• Start at vertex v .

• Follow parent pointers upward until root

• root = a vertex points to itself.

• Return that vertex (the component’s leader).

FIND(2) follows pointers:
2→ 1→ 4. Returns 4.

4 Leader/Root

1 5

2 3

Step 1

Step 2

40 / 69

Union-Find: FIND Operation

FIND(v) Operation: Finds the group leader

• Start at vertex v .

• Follow parent pointers upward until root

• root = a vertex points to itself.

• Return that vertex (the component’s leader).

FIND(2) follows pointers:
2→ 1→ 4. Returns 4.

4 Leader/Root

1 5

2 3

Step 1

Step 2

40 / 69

Union-Find: Simple UNION Operation

How do we merge two components (trees) A and B?

Simple UNION(A, B) Idea

• Find the root of A (let’s call it root A).

• Find the root of B (let’s call it root B).

• Make one root point to the other (e.g., make root A point to root B).

41 / 69

Union-Find: Simple UNION Operation

4

Root A

1

2 3

6

Root B

5

Perform UNION(2, 5).

42 / 69

Union-Find: Simple UNION Operation

4

Root A

1

2 3

6

Root B

5

find(2) returns 4; find(5) returns 6.

42 / 69

Union-Find: Simple UNION Operation

4

Root A

1

2 3

6

Root B

5

Link roots 4→ 6; remove 4’s self-loop (4 is no longer a leader).

42 / 69

The Problem with Simple UNION

Issue: Arbitrary unions can create inefficient trees.

Worst Case:

• Repeated merges form a long chain.

• Tree height grows to O(n).

Finding the root could take O(n) steps.
slow!

1 2

↓ UNION(1,2)

21 3

↓ UNION(1,3)

321

...

43 / 69

Making Union-Find Fast: Union-by-Size

We can avoid creating tall trees with a simple rule.

The Trick: Union-by-Size (or Rank)

When doing UNION(A, B), always attach the root of the smaller tree under the root of
the larger tree. (Break ties arbitrarily).

• Requires storing the size (number of nodes) at the root of each tree.

• Update size when merging.

44 / 69

Union-Find: UNION-by-Size

4

Root A (size=4)

1

2 3

6

Root B (size=2)

5

Perform UNION(2, 5).

45 / 69

Union-Find: UNION-by-Size

4

Root A (size=4)

1

2 3

6

Root B (size=2)

5

Link roots 4←6; remove 6’s self-loop (6 is no longer a leader).

45 / 69

Why is Union-by-Size Fast?

This simple heuristic dramatically improves performance!

Key Insight:

• Consider any vertex v .

• When does the depth of v (distance to root) increase?

• Only when v ’s tree is attached under another root during a UNION.

• By Union-by-Size, this happens only if the other tree was ≥ the size of v ’s current
tree.

• =⇒ Every time v ’s depth increases, the size of its new component at least doubles.

46 / 69

Union by Size: Depth vs Size

New Component

Comp 1
Comp 2

v

The maximum depth increases by 1

The component size doubles.

47 / 69

Union by Size: Depth vs Size

• Max component size is n. Size can double ≤ log2 n times.

• Therefore, the depth of any node is always O(log n).

• FIND operations take O(log n) time! UNION takes O(log n) (due to FINDs).

S=1 S≥2 S≥4 S≥8

. . .

Max Depth ≤ log n

S≤n

48 / 69

Kruskal’s Final Running Time (Revisited)

Let’s re-evaluate the total work using our faster Union-Find.

• 1. Sort edges: O(m log n).

• 2. Initialize Union-Find: O(n).

• 3. Main Loop (m iterations):
• 2×m FIND operations: Total O(m log n).
• n − 1 UNION operations: Total O(n log n).

Grand Total:
O(m log n) + O(n) + O(m log n) + O(n log n) = O(m log n)

(Sorting is usually the bottleneck!)

49 / 69

Advanced Union-Find

Beyond O(log n)

Advanced Union-Find: Path Compression

Recall: Our basic Union-by-Size (or Rank) ensured that each FIND operation takes
O(log n) time.

But we can do much better!

The Idea: Path Compression

• After a FIND(x) operation, we now know the root.

• On the way back up, install shortcuts by setting
the parent of every node on the path directly to
the root.

• This drastically speeds up subsequent FIND oper-
ations.

Before Compression

7 Root

6

4

1 FIND(1)

FIND(1)

51 / 69

Advanced Union-Find: Path Compression

Recall: Our basic Union-by-Size (or Rank) ensured that each FIND operation takes
O(log n) time.

But we can do much better!

The Idea: Path Compression

• After a FIND(x) operation, we now know the root.

• On the way back up, install shortcuts by setting
the parent of every node on the path directly to
the root.

• This drastically speeds up subsequent FIND oper-
ations.

Before Compression

7 Root

6

4

1 FIND(1)

FIND(1)

51 / 69

Advanced Union-Find: Path Compression

Recall: Our basic Union-by-Size (or Rank) ensured that each FIND operation takes
O(log n) time.

But we can do much better!

The Idea: Path Compression

• After a FIND(x) operation, we now know the root.

• On the way back up, install shortcuts by setting
the parent of every node on the path directly to
the root.

• This drastically speeds up subsequent FIND oper-
ations.

After Compression

7 Root

6

4

1

FIND(1)

FIND(1)

51 / 69

Running Time of Path Compression

The combination of Union-by-Rank and Path Compression yields an astonishingly fast
amortized time per operation.

Each operation takes log∗(n)log∗(n)log∗(n)

• O(m) total UNION + FIND operations take
time O(m log∗ n).

What is log∗ n? (Iterated Logarithm)

• The number of times you must apply log2 to
n before the result is ≤ 1.

Log-Star Values

• log∗(2) = 1

• log∗(4) = 2

• log∗(16) = 3

• log∗(65536) = log∗(216) = 4

• log∗(265536) = 5

The function log∗ n is almost a constant. For all practical purposes, O(m log∗ n) is
essentially linear time, O(m).

52 / 69

Can We Do Better? (State of the Art in MST Research)

Can we beat O(m log∗ n)? Yes — in theory!

• Randomized: O(m) expected time (Karger–Klein–Tarjan, 1995).

• Deterministic: O(mα(n)) (Chazelle, 2000). α(n) = inverse Ackermann function (a
constant for all practical n).

• Pettie–Ramachandran (2002): asymptotically optimal but unknown exact runtime.

53 / 69

Bor̊uvka’s Algorithm

The Oldest MST Method (1926)

The Foundation: Edges to AVOID

All MST algorithms operate on an intermediate spanning forest, F (an acyclic
subgraph that is always part of the final MST).

We classify edges in the rest of the graph (G \ F) as follows:

Useless Edge

• An edge not in the intermediate forest F , but both its
endpoints are already in the same component of F .

• Adding a useless edge would create a cycle.

• The minimum spanning tree contains no useless edge.

u

v
10

Component C

55 / 69

The Foundation: The Safe Edge Choice

The goal of every MST algorithm is to repeatedly find and add safe edge.

• The minimum-weight edge with exactly one endpoint in some component C .
• This edge is the cheapest available connection between two components.
• The Guiding Principle: The minimum spanning tree of G contains every safe edge.”

(This is guaranteed by the Cut Property.)

Comp. C Comp. C ′

12

8

5
C
u
t

56 / 69

Bor̊uvka’s Algorithm: Add ALL the Safe Edges

The oldest MST algorithm, discovered by Otakar Bor̊uvka in 1926.

It was motivated by a practical problem: “how to construct an electrical network
connecting several cities using the least amount of wire.” The algorithm can be
summarized in one bold line:

Bor̊uvka’s Single, Parallel Strategy

BORŮVKA: Add ALL the safe edges and recurse.

57 / 69

The Core Strategy: Merging Components

Bor̊uvka’s algorithm works with a forest F of trees (components) that eventually merge
into the final MST.

The Key Step:

1. Identify Components: Determine the set of current connected components (trees)
in the forest F .

2. Find Safe Edges: For each component C , find the minimum-weight edge e that
connects C to any other component C ′. (This is the unique safe edge for C .)

3. Add All: Add all these unique safe edges to F simultaneously.

The Goal: To reduce the number of components quickly, ideally in one step.

58 / 69

Bor̊uvka’s Algorithm in Action: Iteration 1

We begin with V components (one for each vertex).

Start: 4 Components

• Find the unique safe edge for each
component.

• Note that two components might
select the same edge.

Add Step:

• We add the edges chosen: e1, e2, e3.

• The components immediately
merge.

a b

c d

1

4
3

2

5

Safe Edges: 1, 4, 2

Result: 1 Component (The MST)

59 / 69

Bor̊uvka’s Algorithm in Action: Iteration 1

We begin with V components (one for each vertex).

Start: 4 Components

• Find the unique safe edge for each
component.

• Note that two components might
select the same edge.

Add Step:

• We add the edges chosen: e1, e2, e3.

• The components immediately
merge.

a b

c d

1

4
3

2

5

Safe Edges: 1, 4, 2

Result: 1 Component (The MST)

59 / 69

Performance Analysis: Total Iterations

The key to Bor̊uvka’s efficiency is the rapid reduction in the number of components.

• Each iteration, every component adds its cheapest crossing edge.

• When two components CA and CB connect via edge e, they merge.

• Worst-Case: Components coalesce in pairs, effectively halving the total count.

• Starts with V components, ends when the count is 1.

Total Number of Iterations: O(logV)

60 / 69

Performance Analysis: Time Per Iteration & Complexity

Time Per Iteration

• Identifying components takes O(|E |) via running a BFS algorithm over F .

• To find the safe edge for every current component, we must iterate through all E
edges in the original graph.

• A simple array or list can store the current safest edge for each component.

• Updating the safest edge for component Cu and Cv when checking edge (u, v) takes
O(1) time.

=⇒ Time per iteration is O(E).

=⇒ Overall Complexity = O(E logV)

Note: Kruskal’s algorithm also runs in O(E logV), but is dominated by the initial sorting
time. Bor̊uvka’s complexity comes from the recursive steps.

61 / 69

Performance Analysis: Time Per Iteration & Complexity

Time Per Iteration

• Identifying components takes O(|E |) via running a BFS algorithm over F .

• To find the safe edge for every current component, we must iterate through all E
edges in the original graph.

• A simple array or list can store the current safest edge for each component.

• Updating the safest edge for component Cu and Cv when checking edge (u, v) takes
O(1) time.

=⇒ Time per iteration is O(E).

=⇒ Overall Complexity = O(E logV)

Note: Kruskal’s algorithm also runs in O(E logV), but is dominated by the initial sorting
time. Bor̊uvka’s complexity comes from the recursive steps.

61 / 69

Why Use Bor̊uvka’s? (The Advantages)

Despite the same worst-case runtime as Prim’s and Kruskal’s, Bor̊uvka’s has distinct
practical and theoretical advantages.

• Implicit Parallelism: In each iteration, finding the safe edge for every component is
a totally independent task. This makes Bor̊uvka’s intrinsically parallel, allowing for
much faster performance on multi-core or distributed systems.

• Faster in Practice: The number of components often drops by significantly more
than a factor of 2, meaning it frequently runs much faster than its O(E logV) worst-
case bound.
• Optimal for Nice Graphs: A slight variant runs in O(V) time for “nice” graphs, such
as planar graphs (graphs that can be drawn on a plane without edges crossing).
• Basis for Modern Algorithms: Many of the more recent, theoretically faster MST
algorithms are generalizations of Bor̊uvka’s method.

“In short, if you ever need to implement a minimum-spanning-tree algorithm, use
Bor̊uvka.”

62 / 69

Why Use Bor̊uvka’s? (The Advantages)

Despite the same worst-case runtime as Prim’s and Kruskal’s, Bor̊uvka’s has distinct
practical and theoretical advantages.

• Implicit Parallelism: In each iteration, finding the safe edge for every component is
a totally independent task. This makes Bor̊uvka’s intrinsically parallel, allowing for
much faster performance on multi-core or distributed systems.
• Faster in Practice: The number of components often drops by significantly more
than a factor of 2, meaning it frequently runs much faster than its O(E logV) worst-
case bound.

• Optimal for Nice Graphs: A slight variant runs in O(V) time for “nice” graphs, such
as planar graphs (graphs that can be drawn on a plane without edges crossing).
• Basis for Modern Algorithms: Many of the more recent, theoretically faster MST
algorithms are generalizations of Bor̊uvka’s method.

“In short, if you ever need to implement a minimum-spanning-tree algorithm, use
Bor̊uvka.”

62 / 69

Why Use Bor̊uvka’s? (The Advantages)

Despite the same worst-case runtime as Prim’s and Kruskal’s, Bor̊uvka’s has distinct
practical and theoretical advantages.

• Implicit Parallelism: In each iteration, finding the safe edge for every component is
a totally independent task. This makes Bor̊uvka’s intrinsically parallel, allowing for
much faster performance on multi-core or distributed systems.
• Faster in Practice: The number of components often drops by significantly more
than a factor of 2, meaning it frequently runs much faster than its O(E logV) worst-
case bound.
• Optimal for Nice Graphs: A slight variant runs in O(V) time for “nice” graphs, such
as planar graphs (graphs that can be drawn on a plane without edges crossing).

• Basis for Modern Algorithms: Many of the more recent, theoretically faster MST
algorithms are generalizations of Bor̊uvka’s method.

“In short, if you ever need to implement a minimum-spanning-tree algorithm, use
Bor̊uvka.”

62 / 69

Why Use Bor̊uvka’s? (The Advantages)

Despite the same worst-case runtime as Prim’s and Kruskal’s, Bor̊uvka’s has distinct
practical and theoretical advantages.

• Implicit Parallelism: In each iteration, finding the safe edge for every component is
a totally independent task. This makes Bor̊uvka’s intrinsically parallel, allowing for
much faster performance on multi-core or distributed systems.
• Faster in Practice: The number of components often drops by significantly more
than a factor of 2, meaning it frequently runs much faster than its O(E logV) worst-
case bound.
• Optimal for Nice Graphs: A slight variant runs in O(V) time for “nice” graphs, such
as planar graphs (graphs that can be drawn on a plane without edges crossing).
• Basis for Modern Algorithms: Many of the more recent, theoretically faster MST
algorithms are generalizations of Bor̊uvka’s method.

“In short, if you ever need to implement a minimum-spanning-tree algorithm, use
Bor̊uvka.”

62 / 69

Application: Single-Link Clustering

Clustering: Grouping Similar Data

• Goal: partition points into coherent groups
(clusters) using only pairwise relationships.

• Unsupervised: no labels, just a dissimilarity /
distance.

• Examples: customer segments, image re-
gions, gene expression types.

64 / 69

A Graph View of the Data

Key ingredients:

• Data points → vertices

• Dissimilarity d(i , j) → edge weight cij

• Build a (usually dense) graph on points:
• complete graph
• k-nearest neighbor graph

• Small cij means points are similar/nearby.

MST picks n − 1 best “connections”.

The MST preserves the global structure of this graph.

65 / 69

Best-Link (Single-Link) Score

Bottom-up (agglomerative) rule:

merge the two clusters Ci ,Cj with smallest

smin(Ci ,Cj) = min
u∈Ci , v∈Cj

∥u − v∥2.

• Uses the closest pair across clusters.

• Tends to “chain” through nearest links.

• Exactly matches adding the smallest valid edge between two components.

• Equivalence of Kruskal’s and single-link: The next Kruskal edge is exactly the shortest
inter- cluster link.

66 / 69

Best-Link (Single-Link) Score

Bottom-up (agglomerative) rule:

merge the two clusters Ci ,Cj with smallest

smin(Ci ,Cj) = min
u∈Ci , v∈Cj

∥u − v∥2.

• Uses the closest pair across clusters.

• Tends to “chain” through nearest links.

• Exactly matches adding the smallest valid edge between two components.

• Equivalence of Kruskal’s and single-link: The next Kruskal edge is exactly the shortest
inter- cluster link.

66 / 69

Single-Link Clustering ≡ Kruskal’s Algorithm

Single-Link (bottom-up)

• Each point starts as its own cluster.

• Repeatedly merge the two clusters with the smallest inter-cluster edge.

• Stop when k clusters remain.

Kruskal’s perspective

• Sort all edges by weight.

• Add edges in order if they don’t create a cycle.

• After adding |V | − k edges, the forest has k components = clusters.

67 / 69

Takeaways

• MSTs give a sparse global scaffold of the data geometry.

• Single-link clustering is exactly Kruskal’s process: add edges in increasing order;
components = clusters.

• Get k clusters by removing the k − 1 largest MST edges.

68 / 69

References

Erickson, J. (2019).

Algorithms.

Self-published.

Roughgarden, T. (2022).

Algorithms Illuminated: Omnibus Edition.

Soundlikeyourself Publishing, LLC.

69 / 69

	Minimum Spanning Trees
	Prim's Algorithm
	Correctness: The Cut Property
	Making Prim's Algorithm Fast

	Kruskal's Algorithm
	Correctness: The Cut Property (Again!)
	Kruskal's Running Time
	Making Kruskal's Algorithm Fast
	Making Kruskal's Algorithm Fast

	Advanced Union-Find
	Borůvka's Algorithm
	Application: Single-Link Clustering

