

COMP 382: Reasoning about Algorithms

# Greedy Algorithms: Minimum Spanning Trees

Prof. Maryam Aliakbarpour

**co-instructors:** Prof. Anjum Chida & Prof. Konstantinos Mamouras

October 23, 2025

# Today's Lecture

---

## 1. Minimum Spanning Trees

## 2. Prim's Algorithm

## 3. Kruskal's Algorithm

Reading:

- Chapter 15 of [Roughgarden, 2022]

Adapted from the same chapters.

# Minimum Spanning Trees

# The Core Problem: Cheap Connections

---

Imagine you need to connect a set of locations—like computer servers, cities, or houses—as cheaply as possible.

## The Goal:

- Connect all locations into a single network.
- Do so with the minimum possible total cost (e.g., cable length, pipe cost, road miles).
- Don't create any redundant loops or cycles.

This problem appears everywhere, from designing computer networks to machine learning.

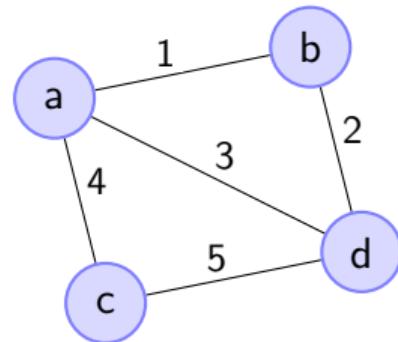
# Formalizing the Problem

---

To solve this, we model the problem using a graph.

An **undirected graph**  $G = (V, E)$  has:

- A set of **vertices**  $V$  (the locations).
- A set of **edges**  $E$  (the potential connections).
- Each edge  $e$  has a **cost**  $c_e$ .



A **Spanning Tree** is a subset of edges that:

1. Connects all vertices ("spanning").
2. Contains no cycles ("tree").

**A Weighted Graph**

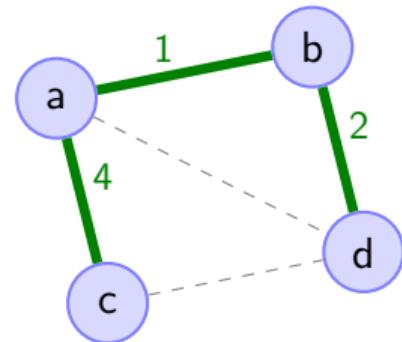
# Formalizing the Problem

---

To solve this, we model the problem using a graph.

An **undirected graph**  $G = (V, E)$  has:

- A set of **vertices**  $V$  (the locations).
- A set of **edges**  $E$  (the potential connections).
- Each edge  $e$  has a **cost**  $c_e$ .



A **Spanning Tree** is a subset of edges that:

1. Connects all vertices ("spanning").
2. Contains no cycles ("tree").

**A Spanning Tree**

# Prim's Algorithm

A Greedy Algorithm for MST

## Prim's Algorithm: The Mold Grower

---

Our first method, Prim's algorithm, builds the MST by growing a single tree, one edge at a time.

### Prim's Greedy Strategy

Start at an arbitrary vertex. In each step, greedily add the **cheapest edge** that connects a vertex *inside* our growing tree to a vertex *outside* the tree.

Think of it like a mold that starts at one point and expands along the cheapest paths until it covers everything.

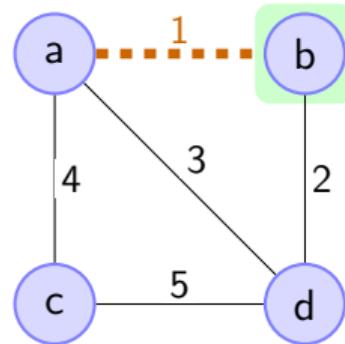
# Prim's Algorithm in Action

---

Let's run Prim's starting from vertex **b**. The green area shows the vertices spanned so far.

**Start: At vertex b**

- Candidates: (b,a) [cost 1], (b,d) [cost 2].
- Add cheapest: **(b,a)**.



Total Cost: 0

# Prim's Algorithm in Action

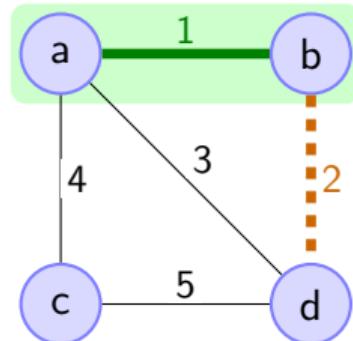
Let's run Prim's starting from vertex **b**. The green area shows the vertices spanned so far.

**Start: At vertex b**

- Candidates: (b,a) [cost 1], (b,d) [cost 2].
- Add cheapest: **(b,a)**.

**Step 1: Add (b,a)**

- Candidates: (a,c) [4], (a,d) [3], (b,d) [2].
- Add cheapest: **(b,d)**.



Total Cost: 1

# Prim's Algorithm in Action

Let's run Prim's starting from vertex **b**. The green area shows the vertices spanned so far.

**Start: At vertex b**

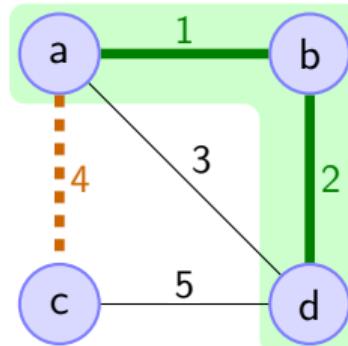
- Candidates: (b,a) [cost 1], (b,d) [cost 2].
- Add cheapest: **(b,a)**.

**Step 1: Add (b,a)**

- Candidates: (a,c) [4], (a,d) [3], (b,d) [2].
- Add cheapest: **(b,d)**.

**Step 2: Add (b,d)**

- Ignore (a,d) → creates cycle.
- Candidates: (a,c) [4], (c,d) [5].
- Add cheapest: **(a,c)**.



Total Cost: 1 + 2

# Prim's Algorithm in Action

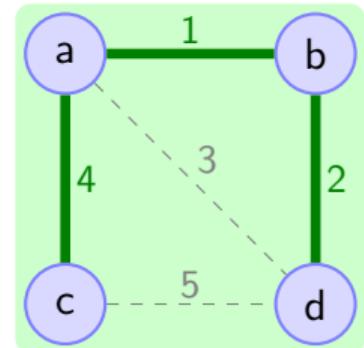
Let's run Prim's starting from vertex **b**. The green area shows the vertices spanned so far.

**Start: At vertex b**

- Candidates: (b,a) [cost 1], (b,d) [cost 2].
- Add cheapest: **(b,a)**.

**Step 1: Add (b,a)**

- Candidates: (a,c) [4], (a,d) [3], (b,d) [2].
- Add cheapest: **(b,d)**.



**Step 2: Add (b,d)**

- Ignore (a,d)  $\rightarrow$  creates cycle.
- Candidates: (a,c) [4], (c,d) [5].
- Add cheapest: **(a,c)**.

Total Cost:  $1 + 2 + 4 = 7$

**Step 3: Add (a,c)**

## Prim's Algorithm: Pseudocode

---

This is the simple, high-level idea.

### Prim's Algorithm ( $G, s$ )

- Initialize  $X = \{s\}$  (our set of spanned vertices)
- Initialize  $T = \emptyset$  (our set of MST edges)
- **while**  $X \neq V$ :
  - Let  $e = (u, v)$  be the **cheapest** edge with:
    - $u \in X$
    - $v \notin X$
  - Add  $e$  to  $T$
  - Add  $v$  to  $X$
- **return**  $T$

**Question:** How do we know this greedy strategy actually works?

# Correctness: The Cut Property

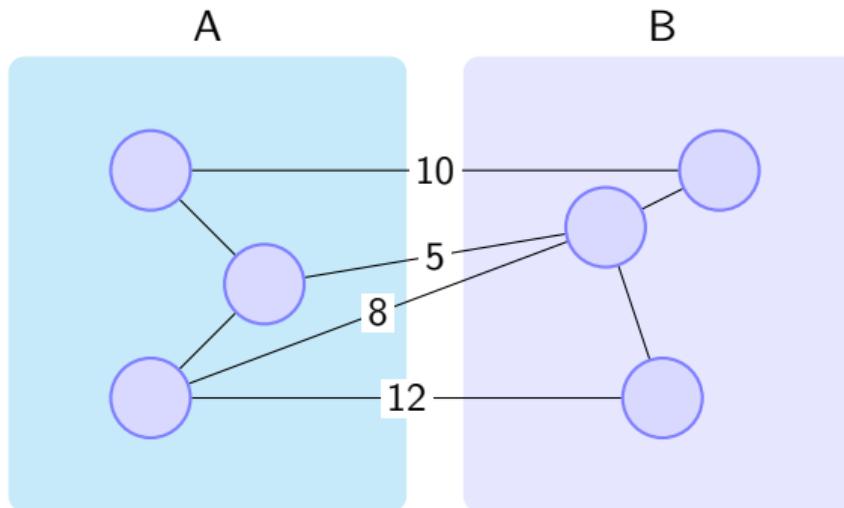
# Why is this “Greedy” Choice Safe?

---

The answer is a beautiful idea called the **Cut Property**.

## What is a “Cut”?

- A “cut” is just a partition of the vertices  $V$  into two non-empty sets,  $A$  and  $B$ .
- “Crossing edges” are edges with one endpoint in  $A$  and one in  $B$ .



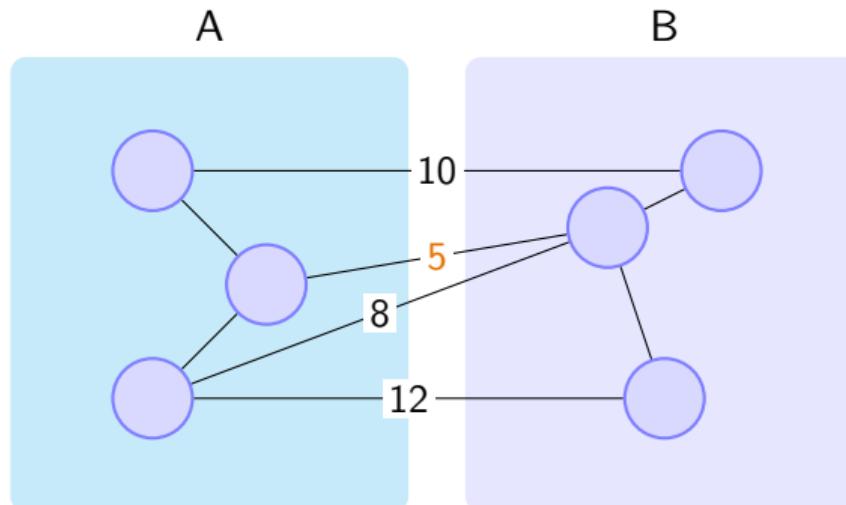
# The Cut Property

## The Cut Property

Assume all edge costs are distinct.

Let  $e$  be the **cheapest edge** crossing *any* cut  $(A, B)$ .

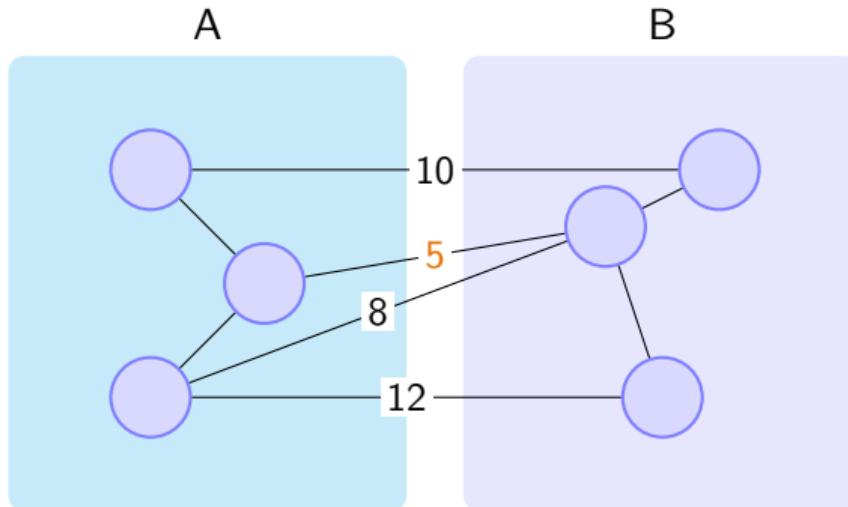
Then  $e$  **must** belong to the Minimum Spanning Tree.



# The Cut Property

**Why is this true?** If an MST **didn't** use  $e$ , it would have to use some other, more expensive edge  $f$  to cross that cut. We could swap  $f$  for  $e$  and get a **cheaper** tree!

This is a contradiction.

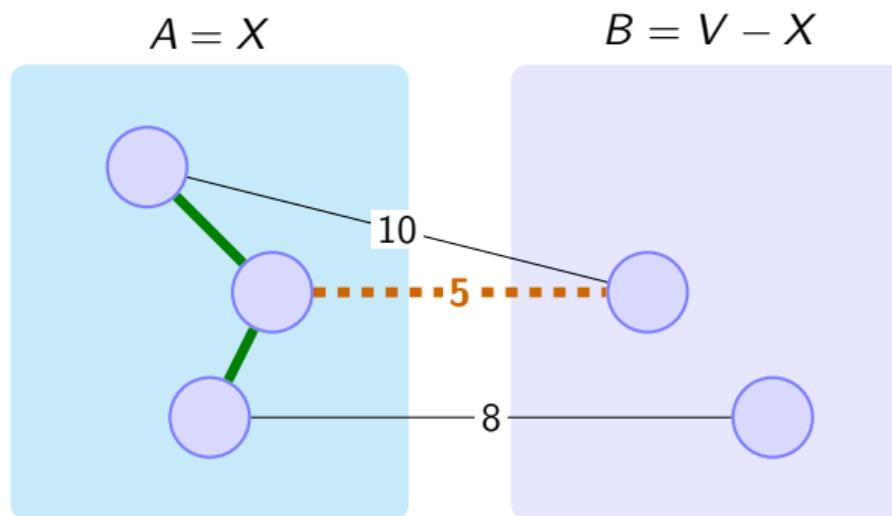


# Prim's Algorithm IS The Cut Property

Prim's algorithm cleverly uses the Cut Property in every single step!

At each step, Prim's defines a cut:

- $A = X$  (vertices already in our tree)
- $B = V - X$  (vertices not yet in)

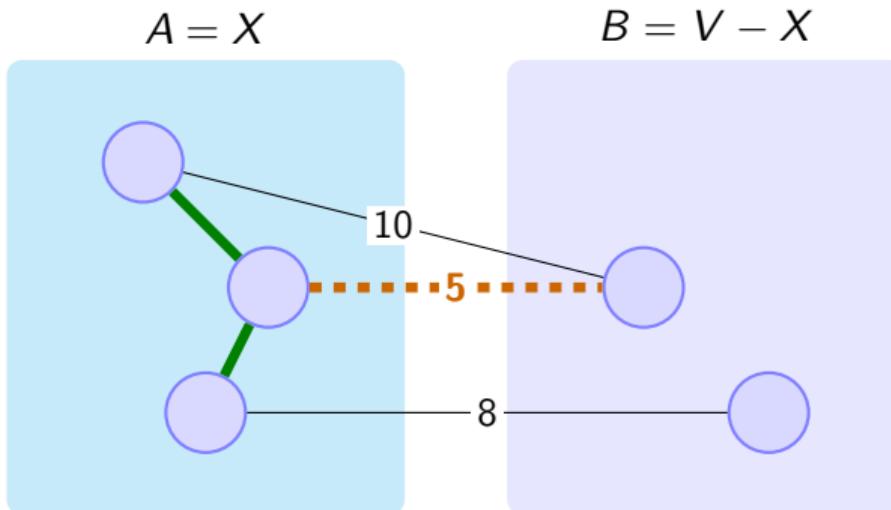


# Prim's Algorithm IS The Cut Property

The algorithm then finds the **cheapest edge** crossing this *specific cut*...

...and adds it to the tree!

The Cut Property guarantees this is a “safe” and correct move.



# Making Prim's Algorithm Fast

Via Priority Queue

# How Fast is Prim's Algorithm?

---

Let  $n = |V|$  (vertices) and  $m = |E|$  (edges).

## A “Straightforward” Implementation:

- The main loop runs  $n - 1$  times (once for each vertex).
- In each loop, we have to search *all*  $m$  edges to find the cheapest one crossing the cut.

Total Time:  $O(n \times m) = O(mn)$

# How Fast is Prim's Algorithm?

---

Let  $n = |V|$  (vertices) and  $m = |E|$  (edges).

## A “Straightforward” Implementation:

- The main loop runs  $n - 1$  times (once for each vertex).
- In each loop, we have to search *all*  $m$  edges to find the cheapest one crossing the cut.

Total Time:  $O(n \times m) = O(mn)$

We can do much better!

# Prim's Algorithm: Running Time

This is the simple, high-level idea.

## Prim's Algorithm ( $G, s$ )

- Initialize  $X = \{s\}$  (our set of spanned vertices)
- Initialize  $T = \emptyset$  (our set of MST edges)
- **while**  $X \neq V$ :
  - Let  $e = (u, v)$  be the **cheapest** edge with:
    - $u \in X$
    - $v \notin X$
    - Add  $e$  to  $T$
    - Add  $v$  to  $X$
- **return**  $T$

$O(n)$  times (once per vertex)  
 $O(m)$  search overall edges.

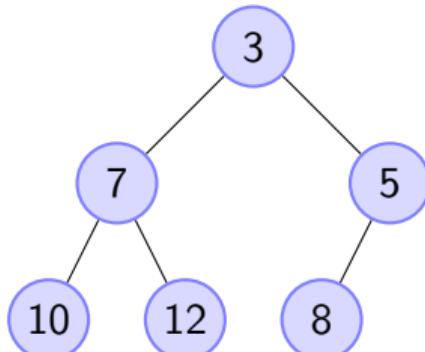
# Tool for the Job: The Heap (Priority Queue)

---

To find the cheapest crossing edge faster, we need a special tool.

## What is a Heap?

- A data structure that maintains an evolving set of objects, each with a "key" or "cost".
- Its main job is to perform **minimum** computations very, very quickly.
- Think of it as a "queue" list where the task with the **smallest cost** is always at the top, ready to be pulled.



A Min-Heap

# Tool for the Job: The Heap (Priority Queue)

---

## Key Operations (for $n$ items)

| Operation   | What it does                                                 | Time        |
|-------------|--------------------------------------------------------------|-------------|
| INSERT      | Adds a new object to the set.                                | $O(\log n)$ |
| EXTRACT-MIN | Removes and returns the object with the <i>smallest</i> key. | $O(\log n)$ |
| DELETE      | Removes a specific object from the set.                      | $O(\log n)$ |

# Tool for the Job: The Heap (Priority Queue)

---

## Key Operations (for $n$ items)

| Operation   | What it does                                                 | Time        |
|-------------|--------------------------------------------------------------|-------------|
| INSERT      | Adds a new object to the set.                                | $O(\log n)$ |
| EXTRACT-MIN | Removes and returns the object with the <i>smallest</i> key. | $O(\log n)$ |
| DELETE      | Removes a specific object from the set.                      | $O(\log n)$ |

This is perfect for Prim's!

- EXTRACT-MIN gives us the next vertex to add to  $X$ .
- DELETE + INSERT lets us update the key of a vertex when a cheaper edge is found.

# Speeding Up Prim's with a Heap

---

The bottleneck is re-scanning all edges just to find the cheapest one.

**The Key Idea:** Use a **heap** (Priority Queue) to keep track of the “cheapest crossing edge” for each vertex *outside* our tree.

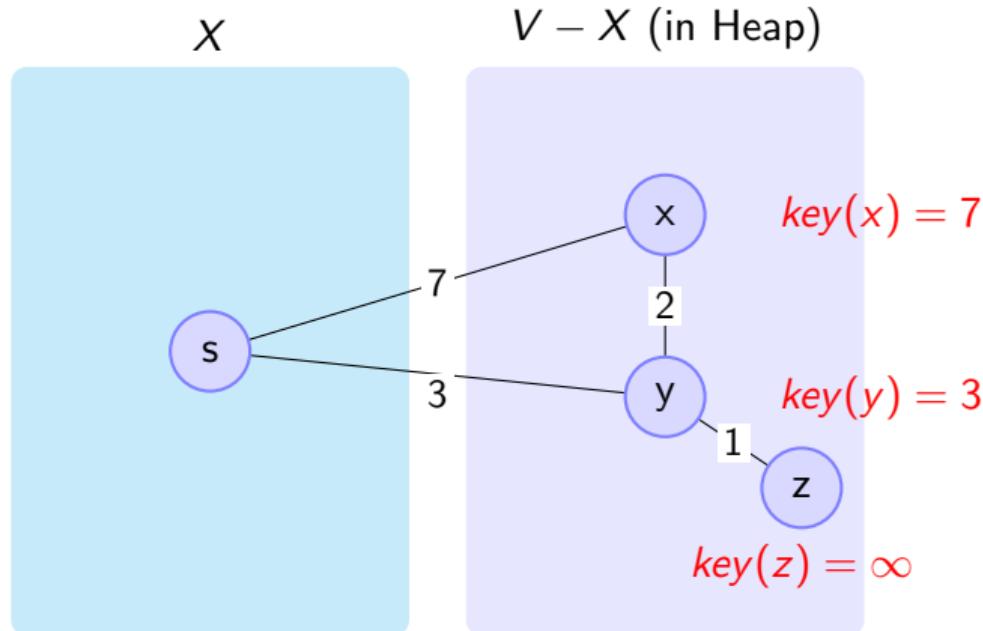
## Heap Invariant

- The heap stores all vertices in  $V - X$  (those not in the tree).
- The “key” for a vertex  $v \in V - X$  is the cost of the **cheapest edge** connecting  $v$  to any vertex *inside*  $X$ .

Now, each step of Prim's is just an **Extract-Min** from the heap!

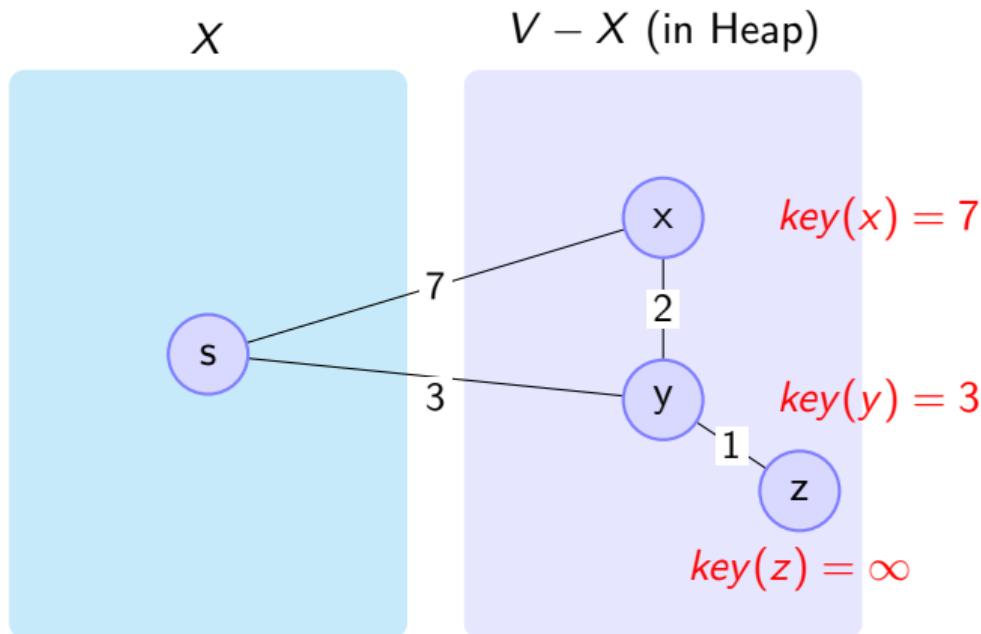
# Prim's with a Heap

- **Heap contains:**  $\{y, x, z\}$
- **Keys:**
  - $\text{key}(y) = 3$
  - $\text{key}(x) = 7$
  - $\text{key}(z) = \infty$  (no edge to  $X$ )



# Prim's with a Heap

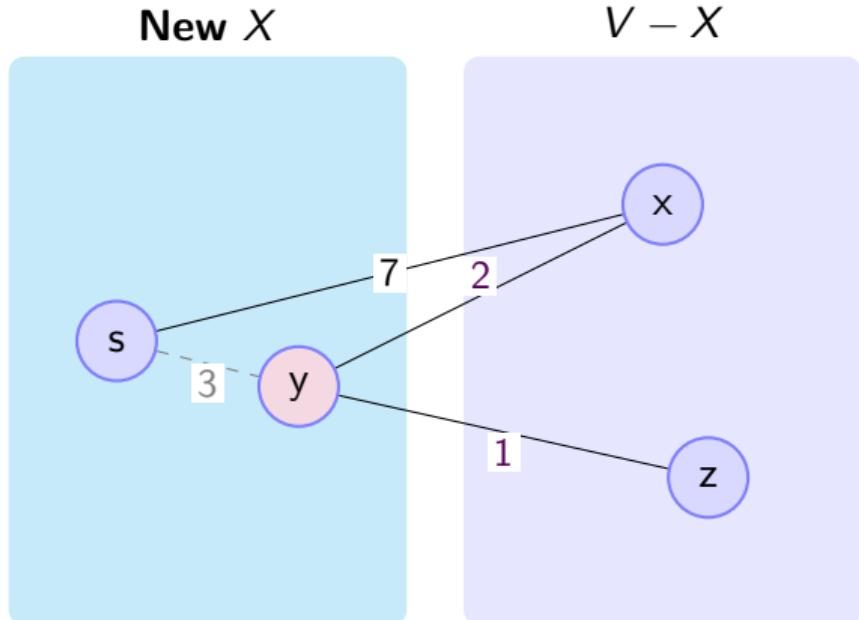
- **Heap contains:**  $\{y, x, z\}$
- **Keys:**
  - $\text{key}(y) = 3$
  - $\text{key}(x) = 7$
  - $\text{key}(z) = \infty$  (no edge to  $X$ )
- **Step 1:** 'Extract-Min()'
- **Returns:** vertex  $y$  (cost 3).
- **Action:** Add  $y$  to  $X$ .



## The “Catch”: Updating Keys

When we add a vertex (like  $y$ ) to  $X$ , we must update the keys of its neighbors!

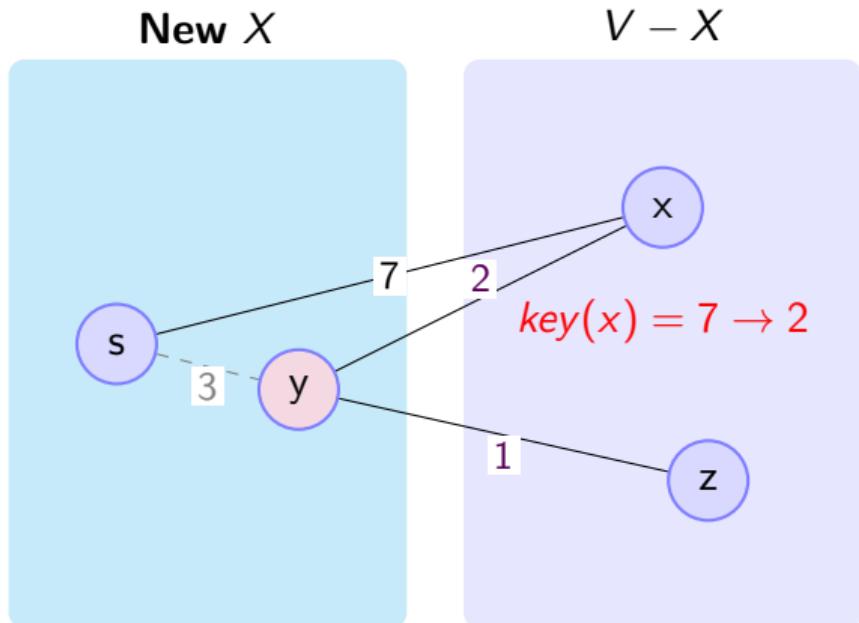
- $y$  is now in  $X$ .
- Look at  $y$ 's neighbors in  $V - X$ :



# The “Catch”: Updating Keys

When we add a vertex (like  $y$ ) to  $X$ , we must update the keys of its neighbors!

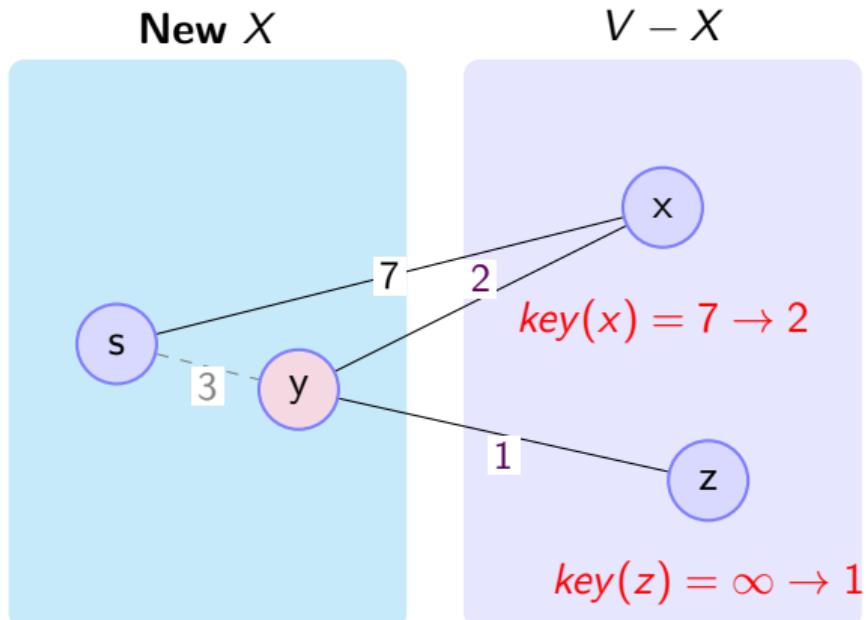
- $y$  is now in  $X$ .
- Look at  $y$ 's neighbors in  $V - X$ :
- **Neighbor  $x$ :**
  - Old key: 7 (from  $s$ )
  - New edge  $(y, x)$ : cost 2
  - Update  $\text{key}(x)$  to 2.



# The “Catch”: Updating Keys

When we add a vertex (like  $y$ ) to  $X$ , we must update the keys of its neighbors!

- $y$  is now in  $X$ .
- Look at  $y$ 's neighbors in  $V - X$ :
- **Neighbor  $x$ :**
  - Old key: 7 (from  $s$ )
  - New edge  $(y, x)$ : cost 2
  - Update  $\text{key}(x)$  to 2.
- **Neighbor  $z$ :**
  - Old key:  $\infty$
  - New edge  $(y, z)$ : cost 1
  - Update  $\text{key}(z)$  to 1.



This is a **Decrease-Key** operation in the heap.

# Heap-Based Running Time

---

Let's count the total work.

- Initialization: Build the heap

$$O(n \log n)$$

# Heap-Based Running Time

---

Let's count the total work.

- Initialization: Build the heap  $O(n \log n)$
- Main Loop (total over  $n - 1$  iterations):

# Heap-Based Running Time

---

Let's count the total work.

- Initialization: Build the heap  $O(n \log n)$
- Main Loop (total over  $n - 1$  iterations):
- Extract-Min:  $n - 1$  times. Total:  $O(n \log n)$

# Heap-Based Running Time

---

Let's count the total work.

- Initialization: Build the heap  $O(n \log n)$
- Main Loop (total over  $n - 1$  iterations):
  - Extract-Min:  $n - 1$  times. Total:  $O(n \log n)$
  - Decrease-Key (Updates): Total:  $O(m \log n)$

# Heap-Based Running Time

---

Let's count the total work.

- Initialization: Build the heap  $O(n \log n)$
- Main Loop (total over  $n - 1$  iterations):
- Extract-Min:  $n - 1$  times. Total:  $O(n \log n)$
- Decrease-Key (Updates): Total:  $O(m \log n)$ 
  - This is the tricky part. We check each edge  $(v, w)$  once, when  $v$  is first added to  $X$ .

# Heap-Based Running Time

---

Let's count the total work.

- Initialization: Build the heap  $O(n \log n)$
- Main Loop (total over  $n - 1$  iterations):
- Extract-Min:  $n - 1$  times.  $\text{Total: } O(n \log n)$
- Decrease-Key (Updates):  $\text{Total: } O(m \log n)$ 
  - This is the tricky part. We check each edge  $(v, w)$  once, when  $v$  is first added to  $X$ .
  - If we have an adjacency list, we can do this in  $O(d_v)$  time (where  $d_v$  is the degree of  $v$ ).

# Heap-Based Running Time

---

Let's count the total work.

- Initialization: Build the heap  $O(n \log n)$
- Main Loop (total over  $n - 1$  iterations):
- Extract-Min:  $n - 1$  times.  $\text{Total: } O(n \log n)$
- Decrease-Key (Updates):  $\text{Total: } O(m \log n)$ 
  - This is the tricky part. We check each edge  $(v, w)$  once, when  $v$  is first added to  $X$ .
  - If we have an adjacency list, we can do this in  $O(d_v)$  time (where  $d_v$  is the degree of  $v$ ).
  - The total time is  $O(\sum_v d_v) = O(m)$ .

# Heap-Based Running Time

---

Let's count the total work.

- Initialization: Build the heap  $O(n \log n)$
- Main Loop (total over  $n - 1$  iterations):
- Extract-Min:  $n - 1$  times.  $\text{Total: } O(n \log n)$
- Decrease-Key (Updates):  $\text{Total: } O(m \log n)$ 
  - This is the tricky part. We check each edge  $(v, w)$  once, when  $v$  is first added to  $X$ .
  - If we have an adjacency list, we can do this in  $O(d_v)$  time (where  $d_v$  is the degree of  $v$ ).
  - The total time is  $O(\sum_v d_v) = O(m)$ .

$$\text{Grand Total: } O(n \log n + m \log n) = O(m \log n)$$

(Assuming  $m \geq n - 1$ , which is true for connected graphs)

# Kruskal's Algorithm

Another Greedy Algorithm for MST

# Kruskal's Algorithm: The Forest Loner

---

A completely different (but equally brilliant) greedy strategy.

## Kruskal's Greedy Strategy

1. **Sort** all  $m$  edges in the graph from cheapest to most expensive.
2. **Iterate** through the sorted edges:
3. Add an edge to your tree  $T$  **if and only if** it does **not** create a cycle.

Instead of growing one “mold,” Kruskal’s builds up a “forest” of small trees that eventually merge into one.

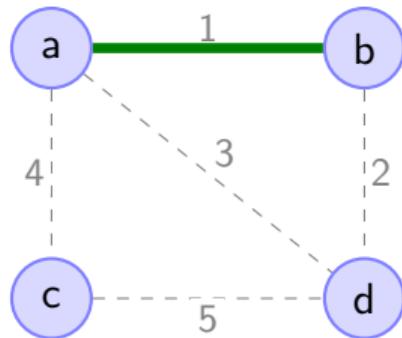
# Kruskal's Algorithm in Action

---

**Sorted Edges:** (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c,d) [5]

1. Edge (a,b) [cost 1]:

- No cycle. Add.



# Kruskal's Algorithm in Action

---

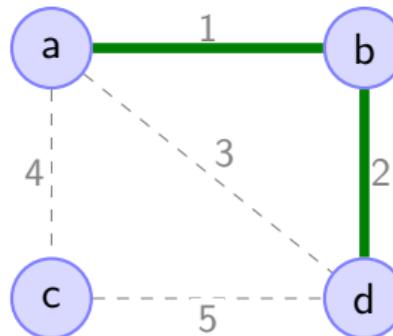
**Sorted Edges:** (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c,d) [5]

1. Edge (a,b) [cost 1]:

- No cycle. Add.

2. Edge (b,d) [cost 2]:

- No cycle. Add.



# Kruskal's Algorithm in Action

---

**Sorted Edges:** (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c,d) [5]

1. Edge (a,b) [cost 1]:

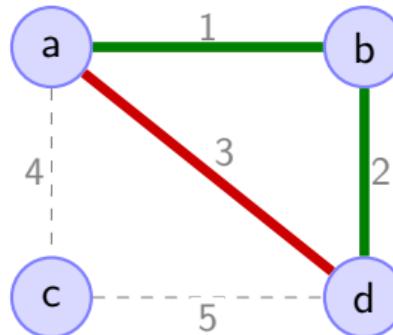
- No cycle. Add.

2. Edge (b,d) [cost 2]:

- No cycle. Add.

3. Edge (a,d) [cost 3]:

- Creates a cycle (a-b-d-a). Skip!



# Kruskal's Algorithm in Action

---

**Sorted Edges:** (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c,d) [5]

1. Edge (a,b) [cost 1]:

- No cycle. Add.

2. Edge (b,d) [cost 2]:

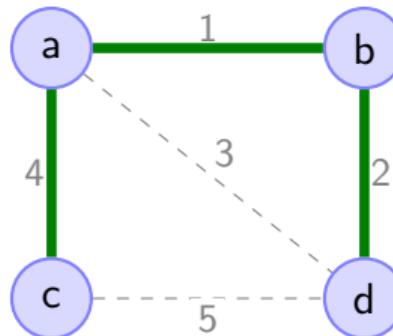
- No cycle. Add.

3. Edge (a,d) [cost 3]:

- Creates a cycle (a-b-d-a). Skip!

4. Edge (a,c) [cost 4]:

- No cycle. Add.



# Kruskal's Algorithm in Action

---

**Sorted Edges:** (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c,d) [5]

1. Edge (a,b) [cost 1]:

- No cycle. Add.

2. Edge (b,d) [cost 2]:

- No cycle. Add.

3. Edge (a,d) [cost 3]:

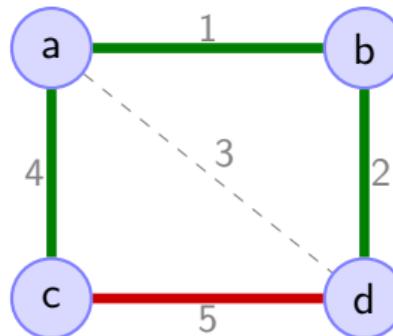
- Creates a cycle (a-b-d-a). Skip!

4. Edge (a,c) [cost 4]:

- No cycle. Add.

5. Edge (c,d) [cost 5]:

- Creates a cycle. Skip!



# Kruskal's Algorithm in Action

---

**Sorted Edges:** (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c,d) [5]

1. Edge (a,b) [cost 1]:

- No cycle. Add.

2. Edge (b,d) [cost 2]:

- No cycle. Add.

3. Edge (a,d) [cost 3]:

- Creates a cycle (a-b-d-a). Skip!

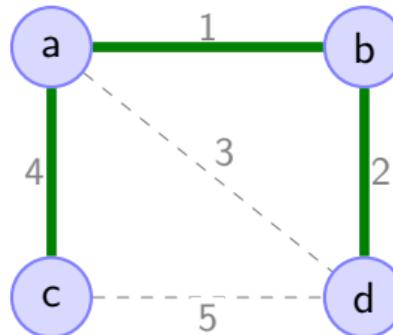
4. Edge (a,c) [cost 4]:

- No cycle. Add.

5. Edge (c,d) [cost 5]:

- Creates a cycle. Skip!

Done! We have  $n - 1 = 3$  edges.



**Final Cost:**  $1 + 2 + 4 = 7$

# Kruskal's Algorithm: Pseudocode (high level)

---

## Kruskal's Algorithm ( $G, s$ )

- $T = \emptyset$  (our set of MST edges)
- Sort all  $m$  edges in  $E$  by increasing cost.
- **for** each edge  $e = (u, v)$  in the sorted list:
  - **if**  $T \cup \{e\}$  has no cycles:
    - Add  $e$  to  $T$
- **return**  $T$

# Correctness: The Cut Property (Again!)

# Why Does Kruskal's Work?

---

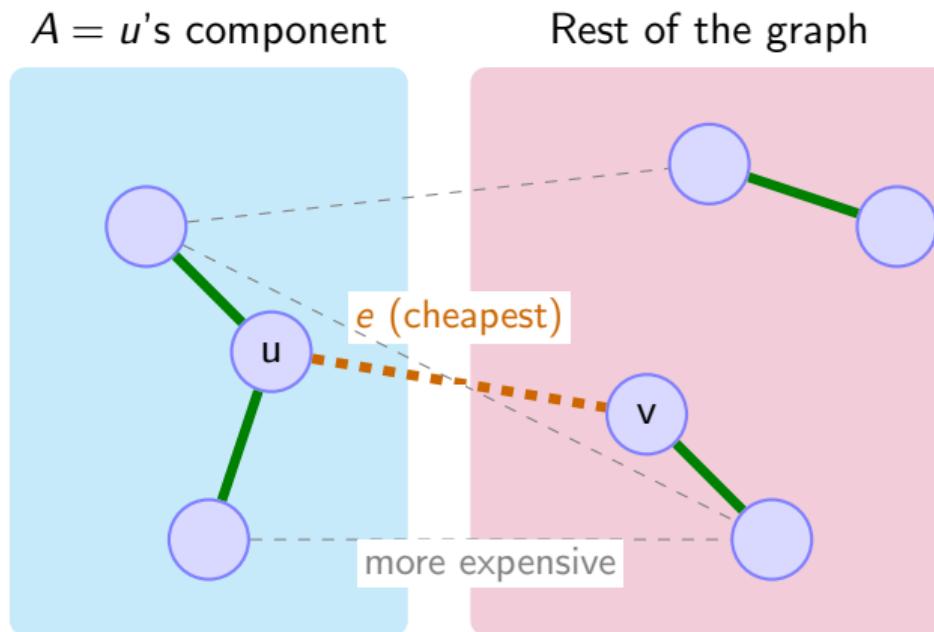
It also relies on the Cut Property, but in a sneakier way.

## Proof Overview:

- Consider the moment Kruskal's adds edge  $e = (u, v)$ .
- At this point,  $u$  and  $v$  are in *different* components (or  $e$  would form a cycle).
- Let  $A = u$ 's component,  $B = V - A$ . This is a cut!
- Since edges are sorted,  $e$  *must* be the cheapest edge crossing this cut. (Any cheaper crossing edge would have been considered earlier).
- Adding  $e$  is a “safe” move by the Cut Property!

# Why Does Kruskal's Work?

---



# Kruskal's Running Time

# How Fast is Kruskal's?

---

The algorithm has two main parts:

## 1. Sorting the Edges

- We have  $m$  edges.
- Using MergeSort:  $\mathbf{O}(m \log n)$ .

## 2. Checking for Cycles

- We loop  $m$  times.
- Inside the loop: 'if ( $T \cup e$  has no cycle)'... How?

# How Fast is Kruskal's?

---

The algorithm has two main parts:

## 1. Sorting the Edges

- We have  $m$  edges.
- Using MergeSort:  $\mathbf{O}(m \log n)$ .

## 2. Checking for Cycles

- We loop  $m$  times.
- Inside the loop: 'if  $(T \cup e$  has no cycle)'... How?

### The “Straightforward” Way:

- A simple BFS/DFS check for a path between  $u$  and  $v$  takes  $O(n)$  time.
- Total “straightforward” time:  $O(m \log n) + O(m \times n) = \mathbf{O}(mn)$ .
- This is no better than simple Prim's! We **must** make the cycle check faster.

# Making Kruskal's Algorithm Fast

The Union-Find Data Structure

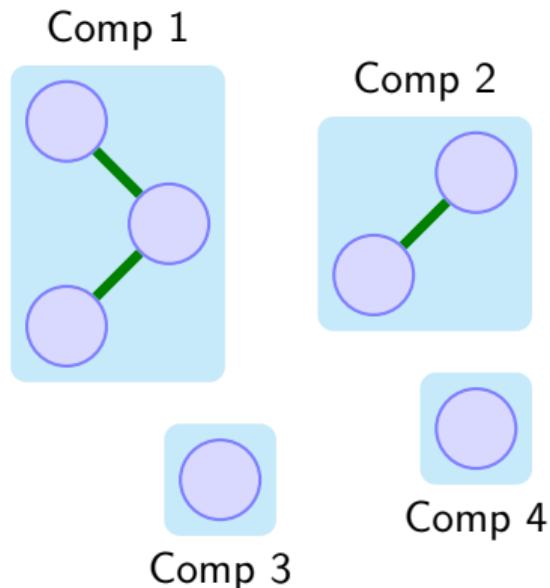
# Speeding Up Kruskal's: The Union-Find Data Structure

---

This tool is designed specifically for tracking connected components.

## The Core Idea

- Maintain the connected components formed by the edges added to  $T$  so far.
- “Objects” = Vertices  $V$ .
- “Groups” = Connected Components.



# Speeding Up Kruskal's: The Union-Find Data Structure

---

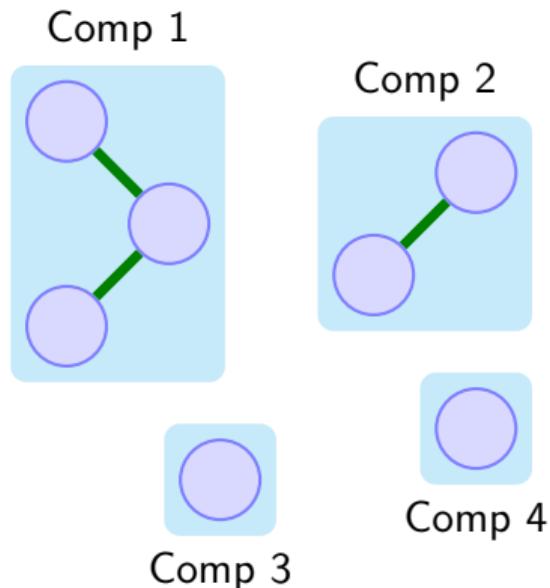
This tool is designed specifically for tracking connected components.

## The Core Idea

- Maintain the connected components formed by the edges added to  $T$  so far.
- “Objects” = Vertices  $V$ .
- “Groups” = Connected Components.

## Key Operations

- $\text{FIND}(u)$ : Get name/leader of  $u$ 's component.
- $\text{UNION}(u, v)$ : Merge  $u$ 's and  $v$ 's components.



# Kruskal's Algorithm: Fast Pseudocode

Using Union-Find makes cycle checking incredibly efficient.

## Kruskal's Algorithm (Fast Implementation)

- $T = \emptyset$
- Sort all  $m$  edges in  $E$  by increasing cost.
- Initialize a Union-Find structure  $U$  (each vertex in its own set).
- **for** each edge  $e = (u, v)$  in the sorted list:
  - *Cycle Check:* **if**  $\text{FIND}(U, u) \neq \text{FIND}(U, v)$ :
  - Add  $e$  to  $T$
  - $\text{UNION}(U, u, v)$  // Merge components
- **return**  $T$

# Making Kruskal's Algorithm Fast

The Union-Find Data Structure

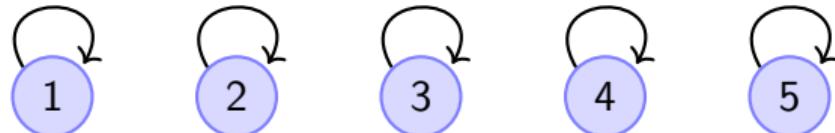
# Union-Find: Initialization

---

Internally, Union-Find uses trees with parent pointers.

## Initialization Step

- Each vertex begins as an isolated component and its own root/leader.
- Each vertex points to itself to represent this.
- Setup time:  $O(n)$  for  $n$  vertices.

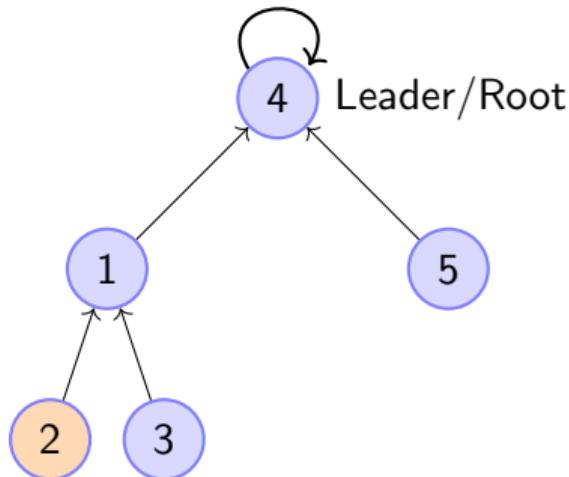


# Union-Find: FIND Operation

---

**FIND( $v$ ) Operation:** Finds the group leader

- Start at vertex  $v$ .
- Follow parent pointers upward until root
  - root = a vertex points to itself.
- Return that vertex (the component's leader).



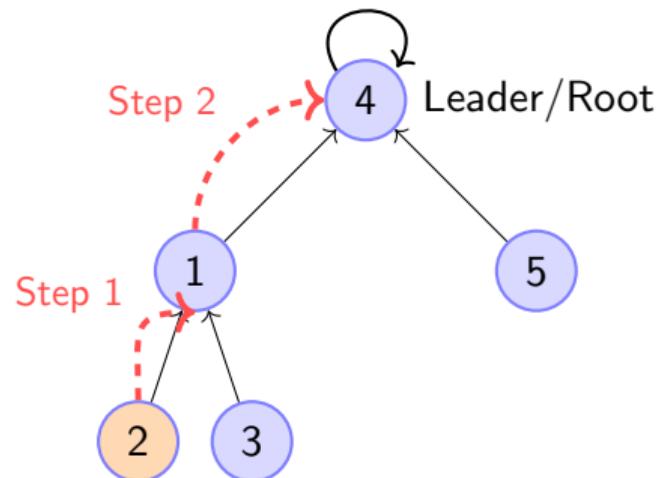
# Union-Find: FIND Operation

**FIND( $v$ ) Operation:** Finds the group leader

- Start at vertex  $v$ .
- Follow parent pointers upward until root
  - root = a vertex points to itself.
- Return that vertex (the component's leader).

FIND(2) follows pointers:

$2 \rightarrow 1 \rightarrow 4$ . Returns 4.



# Union-Find: Simple UNION Operation

---

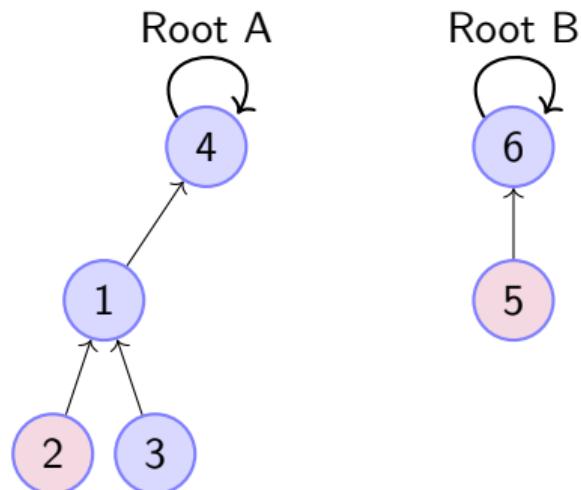
How do we merge two components (trees) A and B?

## Simple UNION(A, B) Idea

- Find the root of A (let's call it rootA).
- Find the root of B (let's call it rootB).
- Make one root point to the other (e.g., make rootA point to rootB).

# Union-Find: Simple UNION Operation

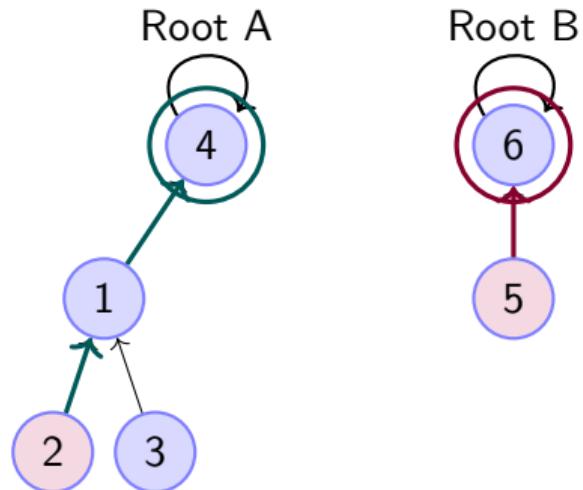
---



Perform UNION(2, 5).

# Union-Find: Simple UNION Operation

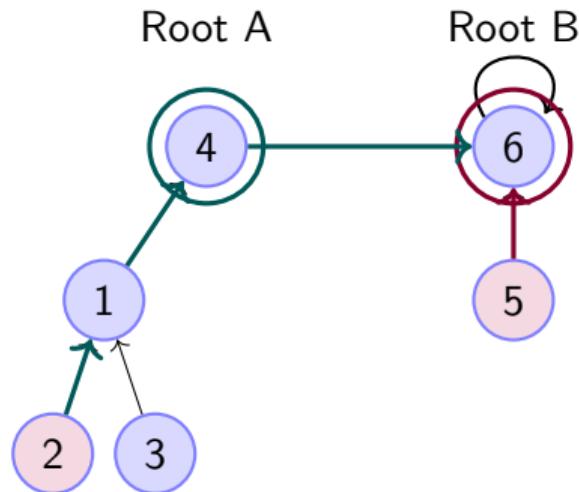
---



`find(2) returns 4; find(5) returns 6.`

## Union-Find: Simple UNION Operation

---



Link roots  $4 \rightarrow 6$ ; remove 4's self-loop (4 is no longer a leader).

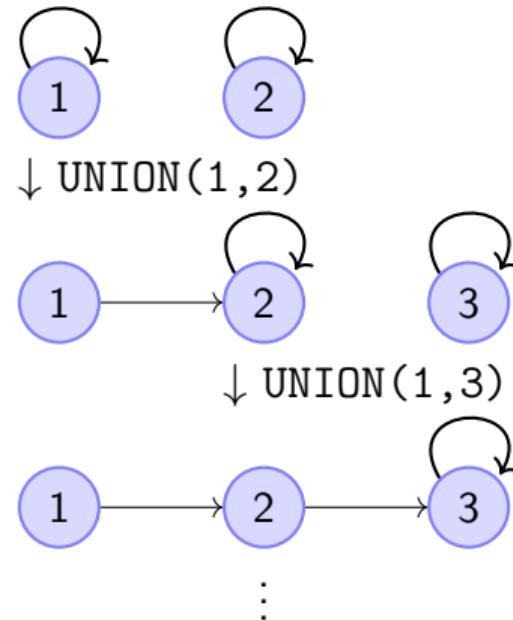
# The Problem with Simple UNION

**Issue:** Arbitrary unions can create inefficient trees.

**Worst Case:**

- Repeated merges form a long chain.
- Tree height grows to  $O(n)$ .

Finding the root could take  $O(n)$  steps.  
slow!



# Making Union-Find Fast: Union-by-Size

---

We can avoid creating tall trees with a simple rule.

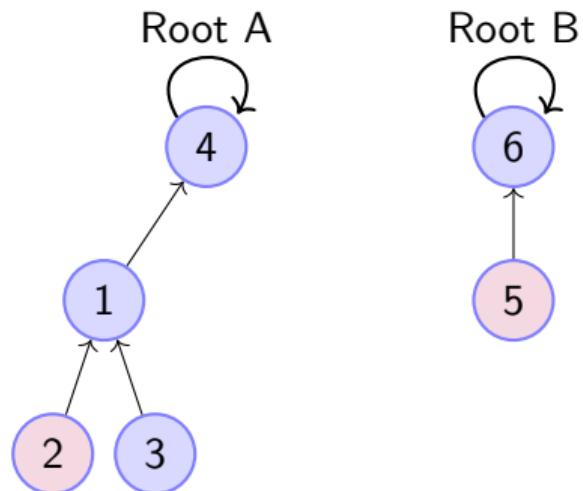
## The Trick: Union-by-Size (or Rank)

When doing `UNION(A, B)`, always attach the root of the **smaller** tree under the root of the **larger** tree. (Break ties arbitrarily).

- Requires storing the size (number of nodes) at the root of each tree.
- Update size when merging.

# Union-Find: UNION-by-Size

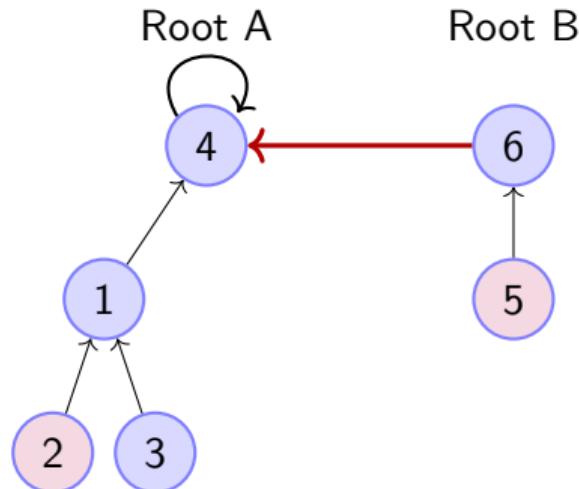
---



Perform UNION(2, 5).

## Union-Find: UNION-by-Size

---



Link roots  $4 \leftarrow 6$ ; remove 4's self-loop (4 is no longer a leader).

# Why is Union-by-Size Fast?

---

This simple heuristic dramatically improves performance!

## Key Insight:

- Consider any vertex  $v$ .
- When does the depth of  $v$  (distance to root) increase?
- Only when  $v$ 's tree is attached under *another* root during a UNION.
- By Union-by-Size, this happens only if the *other* tree was  $\geq$  the size of  $v$ 's current tree.
- $\implies$  Every time  $v$ 's depth increases, the size of its *new* component **at least doubles**.

# Why is Union-by-Size Fast?

---

This simple heuristic dramatically improves performance!

## Key Insight:

- Consider any vertex  $v$ .
- When does the depth of  $v$  (distance to root) increase?
- Only when  $v$ 's tree is attached under *another* root during a UNION.
- By Union-by-Size, this happens only if the *other* tree was  $\geq$  the size of  $v$ 's current tree.
- $\Rightarrow$  Every time  $v$ 's depth increases, the size of its *new* component **at least doubles**.

- Max component size is  $n$ . Size can double  $\leq \log_2 n$  times.
- Therefore, the depth of any node is always  $O(\log n)$ .
- FIND operations take  $O(\log n)$  time! UNION takes  $O(\log n)$  (due to FINDs).
- With “path compression,” it’s even faster - nearly constant time!

## Kruskal's Final Running Time (Revisited)

---

Let's re-evaluate the total work using our faster Union-Find.

- 1. **Sort edges:**  $O(m \log n)$ .
- 2. **Initialize Union-Find:**  $O(n)$ .
- 3. **Main Loop ( $m$  iterations):**
  - $2 \times m$  FIND operations: Total  $O(m \log n)$ .
  - $n - 1$  UNION operations: Total  $O(n \log n)$ .

Grand Total:

$$O(m \log n) + O(n) + O(m \log n) + O(n \log n) = \mathbf{O(m \log n)}$$

(Sorting is usually the bottleneck!)

# Can We Do Better? (State of the Art in MST Research)

---

Can we beat  $O(m \log n)$ ? **Yes — in theory!**

- *Randomized*:  $O(m)$  expected time (Karger–Klein–Tarjan, 1995).
- *Deterministic*:  $O(m \alpha(n))$  (Chazelle, 2000).  $\alpha(n)$  = inverse Ackermann function ( $< 5$  for all practical  $n$ ).
- Pettie–Ramachandran (2002): asymptotically optimal but unknown exact runtime.

## Open Questions

- Still no **simple, deterministic**  $O(m)$  MST algorithm.

# Summary: Two Algorithms, One Goal

---

We learned two “incredibly fast” greedy algorithms for the MST problem.

## Prim's Algorithm

- “Grows a single tree”
- Greedy Choice: Add cheapest edge from  $X$  to  $V - X$ .
- Data Structure: Heap
- Runtime:  $O(m \log n)$

## Kruskal's Algorithm

- “Merges a forest”
- Greedy Choice: Add cheapest edge that *doesn't* form a cycle.
- Data Structure: Union-Find
- Runtime:  $O(m \log n)$

Both are correct because they cleverly exploit *The Cut Property*.

# References

---



Roughgarden, T. (2022).  
*Algorithms Illuminated: Omnibus Edition*.  
Soundlikeyourself Publishing, LLC.