COMP 382: Reasoning about Algorithms

Greedy Algorithms:
Minimum Spanning Trees

Prof. Maryam Aliakbarpour

co-instructors: Prof. Anjum Chida & Prof. Konstantinos Mamouras

October 23, 2025

Today’s Lecture

1. Minimum Spanning Trees
2. Prim’s Algorithm

3. Kruskal’s Algorithm
Reading:

e Chapter 15 of [Roughgarden, 2022]

Adapted from the same chapters.

2/49

Minimum Spanning Trees

The Core Problem: Cheap Connections

Imagine you need to connect a set of locations—Ilike computer servers, cities, or
houses—as cheaply as possible.

The Goal:

® Connect all locations into a single network.
® Do so with the minimum possible total cost (e.g., cable length, pipe cost, road miles).

® Don't create any redundant loops or cycles.

This problem appears everywhere, from designing computer networks to machine learning.

4/49

Formalizing the Problem

To solve this, we model the problem using a graph.

An undirected graph G = (V/, E) has:
® A set of vertices V (the locations).

e A set of edges E (the potential connections).

® Each edge e has a cost ce.

A Spanning Tree is a subset of edges that:
1. Connects all vertices (“spanning”).

2. Contains no cycles (“tree”).

A Weighted Graph

5/49

Formalizing the Problem

To solve this, we model the problem using a graph.

An undirected graph G = (V/, E) has:
® A set of vertices V (the locations).

e A set of edges E (the potential connections).

® Each edge e has a cost ce.

A Spanning Tree is a subset of edges that:
1. Connects all vertices (“spanning”).

2. Contains no cycles (“tree”).

A Spanning Tree

5/49

Prim’s Algorithm

A Greedy Algorithm for MST

Prim’s Algorithm: The Mold Grower

Our first method, Prim’s algorithm, builds the MST by growing a single tree, one edge at
a time.

Prim's Greedy Strategy

Start at an arbitrary vertex. In each step, greedily add the cheapest edge that connects
a vertex inside our growing tree to a vertex outside the tree.

Think of it like a mold that starts at one point and expands along the cheapest paths
until it covers everything.

7/49

Prim’s Algorithm in Action

Let's run Prim's starting from vertex b. The green area shows the vertices spanned so far.
Start: At vertex b

® Candidates: (b,a) [cost 1], (b,d) [cost 2].
® Add cheapest: (b,a).

Total Cost: 0

8/49

Prim’s Algorithm in Action

Let's run Prim's starting from vertex b. The green area shows the vertices spanned so far.
Start: At vertex b

® Candidates: (b,a) [cost 1], (b,d) [cost 2].
® Add cheapest: (b,a).

Step 1: Add (b,a)
® Candidates: (a,c) [4], (a.d) [3], (b.d) [2].
® Add cheapest: (b,d).

Total Cost: 1

8/49

Prim’s Algorithm in Action

Let's run Prim's starting from vertex b. The green area shows the vertices spanned so far.
Start: At vertex b

¢ Candidates: (b,a) [cost 1], (b,d) [cost 2].
® Add cheapest: (b,a).

Step 1: Add (b,a)
® Candidates: (a,c) [4], (a.d) [3], (b.d) [2].
® Add cheapest: (b,d).

Step 2: Add (b,d)

® Ignore (a,d) — creates cycle. Total Cost: 1 4+ 2
¢ Candidates: (a,c) [4], (c,d) [5].
® Add cheapest: (a,c).

8/49

Prim’s Algorithm in Action

Let's run Prim's starting from vertex b. The green area shows the vertices spanned so far.

Start: At vertex b : 1 @
¢ Candidates: (b,a) [cost 1], (b,d) [cost 2]. S
N

® Add cheapest: (b,a).

4 < 2
Step 1: Add (b,a)
e Candidates: (a,c) [4], (a,d) [3], (b.d) [2]. -5 __{
® Add cheapest: (b,d).
Step 2: Add (b,d)
® Ignore (a,d) — creates cycle. Total Cost: 1 +2 +4 =7

¢ Candidates: (a,c) [4], (c,d) [5].
® Add cheapest: (a,c).
Step 3: Add (a,c)

8/49

Prim’s Algorithm: Pseudocode

This is the simple, high-level idea.
Prim’s Algorithm (G, s)

e Initialize X = {s} (our set of spanned vertices)

Initialize T = 0 (our set of MST edges)
while X # V:
® Let e = (u,v) be the cheapest edge with:

e ye X
° v¢ X

Add eto T
Add v to X

return T

Question: How do we know this greedy strategy actually works?
9/49

Correctness: The Cut Property

Why is this “Greedy” Choice Safe?

The answer is a beautiful idea called the Cut Property.

What is a “Cut”?

® A “cut” is just a partition of the vertices V into two non-empty sets, A and B.
e “Crossing edges” are edges with one endpoint in A and one in B.

A B

\\ —

11/49

The Cut Property

The Cut Property

Assume all edge costs are distinct.
Let e be the cheapest edge crossing any cut (A, B).
Then e must belong to the Minimum Spanning Tree.

A B

12/49

The Cut Property

Why is this true? If an MST didn’t use e, it would have to use some other, more
expensive edge f to cross that cut. We could swap f for e and get a cheaper tree!

This is a contradiction.

13/49

Prim’s Algorithm IS The Cut Property

Prim's algorithm cleverly uses the Cut Property in every single step!

At each step, Prim’s defines a cut:

e A= X (vertices already in our tree)
e B =V — X (vertices not yet in)

A=X B=V-X

14 /49

Prim’s Algorithm IS The Cut Property

The algorithm then finds the cheapest edge crossing this specific cut...
...and adds it to the tree!

The Cut Property guarantees this is a “safe” and correct move.

A=X B=V-X

15/49

Making Prim’s Algorithm Fast

Via Priority Queue

How Fast is Prim’s Algorithm?

Let n = |V/| (vertices) and m = |E| (edges).

A “Straightforward” Implementation:

® The main loop runs n — 1 times (once for each vertex).

® |n each loop, we have to search all m edges to find the cheapest one crossing the cut.

Total Time: O(n x m) = O(mn)

17/49

How Fast is Prim’s Algorithm?

Let n = |V/| (vertices) and m = |E| (edges).

A “Straightforward” Implementation:

® The main loop runs n — 1 times (once for each vertex).

® |n each loop, we have to search all m edges to find the cheapest one crossing the cut.

Total Time: O(n x m) = O(mn)

We can do much better!

17/49

Prim’s Algorithm: Running Time

This is the simple, high-level idea.

Prim’s Algorithm (G, s)

Initialize X = {s} (our set of spanned vertices)

Initialize T = 0 (our set of MST edges)

while X # V: O(n) times (once per vertex)
Let e = (u, v) be the cheapest edge with: O(m) search overall edges.
ue X

véX

Add eto T

Add v to X

return T

18/49

Tool for the Job: The Heap (Priority Queue)

To find the cheapest crossing edge faster, we need a special tool.
What is a Heap?

® A data structure that maintains an evolving set of objects, each with a "key” or "cost”.
® Its main job is to perform minimum computations very, very quickly.
® Think of it as a “queue” list where the task with the smallest cost is always at the

top, ready to be pulled.

A Min-Heap 19/49

Tool for the Job: The Heap (Priority Queue)

Key Operations (for n items)

Operation

What it does Time

INSERT
EXTRACT-MIN

DELETE

Adds a new object to the set. O(log n)

Removes and returns the object with the O(logn)
smallest key.

Removes a specific object from the set. O(log n)

20/49

Tool for the Job: The Heap (Priority Queue)

Key Operations (for n items)

Operation What it does Time

INSERT Adds a new object to the set. O(log n)

EXTRACT-MIN Removes and returns the object with the O(logn)
smallest key.

DELETE Removes a specific object from the set. O(log n)

This is perfect for Prim’s!

® EXTRACT-MIN gives us the next vertex to add to X.
® DELETE + INSERT lets us update the key of a vertex when a cheaper edge is found.

20/49

Speeding Up Prim’s with a Heap

The bottleneck is re-scanning all edges just to find the cheapest one.

The Key Idea: Use a heap (Priority Queue) to keep track of the “cheapest crossing
edge” for each vertex outside our tree.

Heap Invariant
® The heap stores all vertices in V — X (those not in the tree).

® The “key” for a vertex v € V — X is the cost of the cheapest edge connecting v to
any vertex inside X.

Now, each step of Prim's is just an Extract-Min from the heap!

21/49

Prim’s with a Heap

® Heap contains: {y,x,z} % V — X (in Heap)
° Keys:
® key(y) =3
® key(x)=7 -
® key(z) = oo (no edge to X) /® key(x) =17
7

@< i
3\@ key(y) =3
1

key(z) = oo

22/49

Prim’s with a Heap

Heap contains: {y,x,z}

Keys:
* key(y)=3
® key(x)=7
® key(z) = oo (no edge to X)

Step 1: 'Extract-Min()*
Returns: vertex y (cost 3).

Action: Add y to X.

X V — X (in Heap)
/@ key(x) =7
@/7 2
\3\@ key(y) =3
1
key(z) = oo

22/49

The “Catch”: Updating Keys

When we add a vertex (like y) to X, we must update the keys of its neighbors!
® yis now in X. New X vV -X

® Look at y's neighbors in V —X:

23 /49

The “Catch”: Updating Keys

When we add a vertex (like y) to X, we must update the keys of its neighbors!
® yis now in X. New X vV -X

® Look at y's neighbors in V —X:

® Neighbor x:
® Old key: 7 (from s) 7—72
® New edge (y,x): cost 2 key(x) =7 — 2
® Update key(x) to 2. \\3‘\<:::>::::iii:\

23 /49

The “Catch”: Updating Keys

When we add a vertex (like y) to X, we must update the keys of its neighbors!
® yis now in X. New X vV -X
® | ook at y's neighbors in V — X:
® Neighbor x: X

® Old key: 7 (from s) 72//
® New edge (y,x): cost 2 // key(x) =7 — 2

® Update key(x) to 2. S k_.
371y
® Neighbor z: \1\ ;
® Old key: oo
® New edge (y,z): cost 1
® Update key(z) to 1. key(z) =00 — 1

This is a Decrease-Key operation in the heap.

23/49

Heap-Based Running Time

Let's count the total work.

® |nitialization: Build the heap O(nlogn)

24 /49

Heap-Based Running Time

Let's count the total work.

® |nitialization: Build the heap O(nlogn)

® Main Loop (total over n — 1 iterations):

24 /49

Heap-Based Running Time

Let's count the total work.

® |nitialization: Build the heap O(nlogn)
® Main Loop (total over n — 1 iterations):
® Extract-Min: n — 1 times. Total: O(nlogn)

24 /49

Heap-Based Running Time

Let's count the total work.

® |nitialization: Build the heap O(nlogn)
® Main Loop (total over n — 1 iterations):

® Extract-Min: n — 1 times. Total: O(nlogn)
® Decrease-Key (Updates): Total: O(mlog n)

24/49

Heap-Based Running Time

Let's count the total work.

® |nitialization: Build the heap O(nlogn)
® Main Loop (total over n — 1 iterations):

® Extract-Min: n — 1 times. Total: O(nlogn)
® Decrease-Key (Updates): Total: O(mlog n)

- This is the tricky part. We check each edge (v, w) once, when v is first added to X.

24/49

Heap-Based Running Time

Let's count the total work.

® |nitialization: Build the heap O(nlogn)
® Main Loop (total over n — 1 iterations):

® Extract-Min: n — 1 times. Total: O(nlogn)
® Decrease-Key (Updates): Total: O(mlog n)

- This is the tricky part. We check each edge (v, w) once, when v is first added to X.
- If we have an adjacency list, we can do this in O(d,) time (where d, is the degree of v).

24/49

Heap-Based Running Time

Let's count the total work.

® |nitialization: Build the heap O(nlogn)
® Main Loop (total over n — 1 iterations):

® Extract-Min: n — 1 times. Total: O(nlogn)
® Decrease-Key (Updates): Total: O(mlog n)

- This is the tricky part. We check each edge (v, w) once, when v is first added to X.
- If we have an adjacency list, we can do this in O(d,) time (where d, is the degree of v).

- The total time is O(>_, d,) = O(m).

24/49

Heap-Based Running Time

Let's count the total work.

® |nitialization: Build the heap O(nlogn)
® Main Loop (total over n — 1 iterations):

® Extract-Min: n — 1 times. Total: O(nlogn)
® Decrease-Key (Updates): Total: O(mlog n)

- This is the tricky part. We check each edge (v, w) once, when v is first added to X.
- If we have an adjacency list, we can do this in O(d,) time (where d, is the degree of v).

- The total time is O(>_, d,) = O(m).

Grand Total: O(nlogn+ mlogn) = O(mlog n)

(Assuming m > n — 1, which is true for connected graphs)

24/49

Kruskal’s Algorithm

Another Greedy Algorithm for MST

Kruskal’s Algorithm: The Forest Loner

A completely different (but equally brilliant) greedy strategy.

Kruskal's Greedy Strategy

1. Sort all m edges in the graph from cheapest to most expensive.

2. Iterate through the sorted edges:

3. Add an edge to your tree T if and only if it does not create a cycle.

Instead of growing one “mold,” Kruskal's builds up a “forest” of small trees that
eventually merge into one.

26 /49

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c.d) [5]

1. Edge (a,b) [cost 1]: () 1 @
® No cycle. Add. aNE ‘

27 /49

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a.c) [4],

1. Edge (a,b) [cost 1]:
® No cycle. Add.
2. Edge (b,d) [cost 2]:
® No cycle. Add.

(c.d) [8]
O——®
s 3 2

27 /49

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c.d) [5]

1. Edge (a,b) [cost 1]:
® No cycle. Add.
2. Edge (b,d) [cost 2]:
® No cycle. Add.
3. Edge (a,d) [cost 3]:
¢ Creates a cycle (a-b-d-a). Skip!

27 /49

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c.d) [5]

1. Edge (a,b) [cost 1]:
® No cycle. Add.
2. Edge (b,d) [cost 2]:
® No cycle. Add.
3. Edge (a,d) [cost 3]:
¢ Creates a cycle (a-b-d-a). Skip!
4. Edge (a,c) [cost 4]:
® No cycle. Add.

27 /49

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c.d) [5]

1. Edge (a,b) [cost 1]:
® No cycle. Add.
2. Edge (b,d) [cost 2]:
® No cycle. Add.
3. Edge (a,d) [cost 3]:
¢ Creates a cycle (a-b-d-a). Skip!
4. Edge (a,c) [cost 4]:
® No cycle. Add.
5. Edge (c,d) [cost 5]:
® Creates a cycle. Skip!

27 /49

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c.d) [5]

1. Edge (a,b) [cost 1]:
® No cycle. Add.
2. Edge (b,d) [cost 2]:
® No cycle. Add.
3. Edge (a,d) [cost 3]:
¢ Creates a cycle (a-b-d-a). Skip!
4. Edge (a,c) [cost 4]: Final Cost: 1 +2+4=7
® No cycle. Add.
5. Edge (c,d) [cost 5]:
® Creates a cycle. Skip!

Done! We have n — 1 = 3 edges.

27 /49

Kruskal’s Algorithm: Pseudocode (high level)

Kruskal's Algorithm (G, s)

e T ={ (our set of MST edges)

® Sort all m edges in E by increasing cost.
e for each edge e = (u, v) in the sorted list:

e if TU{e} has no cycles:
° Add eto T

® return T

28 /49

Correctness: The Cut Property (Again!)

Why Does Kruskal’s Work?

It also relies on the Cut Property, but in a sneakier way.

Proof Overview:

Consider the moment Kruskal's adds edge e = (u, v).

At this point, u and v are in different components (or e would form a cycle).

® et A= u's component, B=V — A. This is a cut!

Since edges are sorted, e must be the cheapest edge crossing this cut. (Any cheaper
crossing edge would have been considered earlier).

Adding e is a “safe” move by the Cut Property!

30/49

Why Does Kruskal’s Work?

A = u's component Rest of the graph

more expensive

31/49

Kruskal’s Running Time

How Fast is Kruskal’'s?

The algorithm has two main parts:

1. Sorting the Edges

® \We have m edges.

® Using MergeSort: O(mlogn).

2. Checking for Cycles

® We loop m times.

® |nside the loop:
cycle)'... How?

‘if (T U e has no

33/49

How Fast is Kruskal’'s?

The algorithm has two main parts:

1. Sorting the Edges 2. Checking for Cycles
® \We have m edges. ® We loop m times.
® Using MergeSort: O(mlogn). ® Inside the loop: 'if (T U e has no

cycle)'... How?

The “Straightforward” Way:

- A simple BFS/DFS check for a path between u and v takes O(n) time.

- Total “straightforward” time: O(mlogn)+ O(m x n) = O(mn).

- This is no better than simple Prim's! We must make the cycle check faster.

33/49

Making Kruskal’s Algorithm Fast

The Union-Find Data Structure

Speeding Up Kruskal’s: The Union-Find Data Structure

This tool is designed specifically for tracking connected components.

The Core Idea Comp 1

® Maintain the connected components formed by Comp 2
the edges added to T so far.

® “Objects” = Vertices V.

® “Groups” = Connected Components.

Q Comp 4

Comp 3

35/49

Speeding Up Kruskal’s: The Union-Find Data Structure

This tool is designed specifically for tracking connected components.

The Core Idea

Comp 1
Maintain the connected components formed by

the edges added to T so far.
® “Objects” = Vertices V.

® “Groups” = Connected Components.

Comp 2

Key Operations

® FIND(u): Get name/leader of u's component. Q

® UNION(u, v): Merge u's and v's components. Q Comp 4
Comp 3

35/49

Kruskal’s Algorithm: Fast Pseudocode

Using Union-Find makes cycle checking incredibly efficient.

Kruskal's Algorithm (Fast Implementation)

T=0
Sort all m edges in E by increasing cost.

Initialize a Union-Find structure U (each vertex in its own set).
for each edge e = (u, v) in the sorted list:
® Cycle Check: if FIND(U, u) # FIND(U, v):

. Add eto T
° UNION(U, u,v) // Merge components
® return T

36 /49

Making Kruskal’s Algorithm Fast

The Union-Find Data Structure

Union-Find: Initialization

Internally, Union-Find uses trees with parent pointers.

Initialization Step

® Each vertex begins as an isolated component and its own root/leader.
® Fach vertex points to itself to represent this.

® Setup time: O(n) for n vertices.

e EE

38/49

Union-Find: FIND Operation

FIND(v) Operation: Finds the group leader

® Start at vertex v.
® Follow parent pointers upward until root

® root = a vertex points to itself.

® Return that vertex (the component'’s leader).

39/49

Union-Find: FIND Operation

FIND(v) Operation: Finds the group leader

® Start at vertex v.
® Follow parent pointers upward until root

® root = a vertex points to itself.

® Return that vertex (the component'’s leader).

FIND(2) follows pointers:
2 — 1 — 4. Returns 4.

39/49

Union-Find: Simple UNION Operation

How do we merge two components (trees) A and B?

Simple UNION(A, B) Idea

® Find the root of A (let's call it rootA).
® Find the root of B (let’s call it rootB).

® Make one root point to the other (e.g., make rootA point to rootB).

40/ 49

Union-Find: Simple UNION Operation

3 @
§ @
D6

Perform UNION(2, 5).

41/49

Union-Find: Simple UNION Operation

Root A Root B
-~

@& &
(V) (5)
0JO

£ind (2) returns 4; £ind(5) returns 6.

41/49

Union-Find: Simple UNION Operation

Link roots 4 — 6; remove 4's self-loop (4 is no longer a leader).

41/49

The Problem with Simple UNION

Issue: Arbitrary unions can create inefficient trees.

Worst Case:
® Repeated merges form a long chain. @‘ @‘
® Tree height grows to O(n).

Finding the root could take O(n) steps. + UNTON(1,2)

@ O

| UNION(1,3)

42/ 49

Making Union-Find Fast: Union-by-Size

We can avoid creating tall trees with a simple rule.

The Trick: Union-by-Size (or Rank)

When doing UNION(A, B), always attach the root of the smaller tree under the root of
the larger tree. (Break ties arbitrarily).

® Requires storing the size (number of nodes) at the root of each tree.

® Update size when merging.

43/49

Union-Find: UNION-by-Size

3 @
§ @
D6

Perform UNION(2, 5).

44 /49

Union-Find: UNION-by-Size

Root A Root B

Link roots 4+6; remove 4's self-loop (4 is no longer a leader).

44 /49

Why is Union-by-Size Fast?

This simple heuristic dramatically improves performance!
Key Insight:

Consider any vertex v.

When does the depth of v (distance to root) increase?

Only when v's tree is attached under another root during a UNION.

By Union-by-Size, this happens only if the other tree was > the size of v's current
tree.

—> Every time v's depth increases, the size of its new component at least doubles.

45 /49

Why is Union-by-Size Fast?

This simple heuristic dramatically improves performance!
Key Insight:

Consider any vertex v.

When does the depth of v (distance to root) increase?

Only when v's tree is attached under another root during a UNION.

By Union-by-Size, this happens only if the other tree was > the size of v's current
tree.

e — Every time v's depth increases, the size of its new component at least doubles.

® Max component size is n. Size can double < log, n times.

® Therefore, the depth of any node is always O(log n).

® FIND operations take O(log n) time! UNION takes O(log n) (due to FINDs).
e With “path compression,” it's even faster - nearly constant time!

45 /49

Kruskal’s Final Running Time (Revisited)

Let's re-evaluate the total work using our faster Union-Find.

e 1. Sort edges: O(mlogn).
¢ 2. Initialize Union-Find: O(n).

¢ 3. Main Loop (m iterations):

® 2 x m FIND operations: Total O(mlogn).
® n— 1 UNION operations: Total O(nlog n).

Grand Total:
O(mlog n) 4+ O(n) + O(mlog n) + O(nlog n) = O(mlogn)

(Sorting is usually the bottleneck!)

46 /49

Can We Do Better? (State of the Art in MST Research)

Can we beat O(mlogn)? Yes — in theory!

® Randomized: O(m) expected time (Karger—Klein—Tarjan, 1995).

® Deterministic: O(ma(n)) (Chazelle, 2000). «(n) = inverse Ackermann function (< 5
for all practical n).

® Pettie—-Ramachandran (2002): asymptotically optimal but unknown exact runtime.

Open Questions

e Still no simple, deterministic O(m) MST algorithm.

47 /49

Summary: Two Algorithms, One Goal

We learned two “incredibility fast” greedy algorithms for the MST problem.

Prim’s Algorithm Kruskal’s Algorithm
® “Grows a single tree” ® “Merges a forest”
® Greedy Choice: Add cheapest edge from ® Greedy Choice: Add cheapest edge that
XtoV —X. doesn’t form a cycle.
® Data Structure: Heap ® Data Structure: Union-Find
¢ Runtime: O(mlogn) ¢ Runtime: O(mlogn)

Both are correct because they cleverly exploit The Cut Property.

48 /49

References

B Roughgarden, T. (2022).
Algorithms Illluminated: Omnibus Edition.
Soundlikeyourself Publishing, LLC.

49 /49

	Minimum Spanning Trees
	Prim's Algorithm
	Correctness: The Cut Property
	Making Prim's Algorithm Fast

	Kruskal's Algorithm
	Correctness: The Cut Property (Again!)
	Kruskal's Running Time
	Making Kruskal's Algorithm Fast
	Making Kruskal's Algorithm Fast

