
COMP 382: Reasoning about Algorithms

Greedy Algorithms:
Minimum Spanning Trees

Prof. Maryam Aliakbarpour

co-instructors: Prof. Anjum Chida & Prof. Konstantinos Mamouras

October 23, 2025

Today’s Lecture

1. Minimum Spanning Trees

2. Prim’s Algorithm

3. Kruskal’s Algorithm

Reading:

• Chapter 15 of [Roughgarden, 2022]

Adapted from the same chapters.

2 / 49

Minimum Spanning Trees

The Core Problem: Cheap Connections

Imagine you need to connect a set of locations—like computer servers, cities, or
houses—as cheaply as possible.

The Goal:

• Connect all locations into a single network.

• Do so with the minimum possible total cost (e.g., cable length, pipe cost, road miles).

• Don’t create any redundant loops or cycles.

This problem appears everywhere, from designing computer networks to machine learning.

4 / 49

Formalizing the Problem

To solve this, we model the problem using a graph.

An undirected graph G = (V ,E) has:

• A set of vertices V (the locations).

• A set of edges E (the potential connections).

• Each edge e has a cost ce .

A Spanning Tree is a subset of edges that:

1. Connects all vertices (“spanning”).

2. Contains no cycles (“tree”).

a
b

c
d

4

1

3
2

5

A Weighted Graph

1

2

4

A Spanning Tree

5 / 49

Formalizing the Problem

To solve this, we model the problem using a graph.

An undirected graph G = (V ,E) has:

• A set of vertices V (the locations).

• A set of edges E (the potential connections).

• Each edge e has a cost ce .

A Spanning Tree is a subset of edges that:

1. Connects all vertices (“spanning”).

2. Contains no cycles (“tree”).

a
b

c
d

4

1

3
2

5

A Weighted Graph

1

2

4

A Spanning Tree

5 / 49

Prim’s Algorithm

A Greedy Algorithm for MST

Prim’s Algorithm: The Mold Grower

Our first method, Prim’s algorithm, builds the MST by growing a single tree, one edge at
a time.

Prim’s Greedy Strategy

Start at an arbitrary vertex. In each step, greedily add the cheapest edge that connects
a vertex inside our growing tree to a vertex outside the tree.

Think of it like a mold that starts at one point and expands along the cheapest paths
until it covers everything.

7 / 49

Prim’s Algorithm in Action

Let’s run Prim’s starting from vertex b. The green area shows the vertices spanned so far.

Start: At vertex b

• Candidates: (b,a) [cost 1], (b,d) [cost 2].

• Add cheapest: (b,a).

Step 1: Add (b,a)

• Candidates: (a,c) [4], (a,d) [3], (b,d) [2].

• Add cheapest: (b,d).

Step 2: Add (b,d)

• Ignore (a,d) → creates cycle.

• Candidates: (a,c) [4], (c,d) [5].

• Add cheapest: (a,c).

Step 3: Add (a,c)

• All vertices connected. Done!

a b

c d

1

4 3 2

5

Total Cost: 0

8 / 49

Prim’s Algorithm in Action

Let’s run Prim’s starting from vertex b. The green area shows the vertices spanned so far.

Start: At vertex b

• Candidates: (b,a) [cost 1], (b,d) [cost 2].

• Add cheapest: (b,a).

Step 1: Add (b,a)

• Candidates: (a,c) [4], (a,d) [3], (b,d) [2].

• Add cheapest: (b,d).

Step 2: Add (b,d)

• Ignore (a,d) → creates cycle.

• Candidates: (a,c) [4], (c,d) [5].

• Add cheapest: (a,c).

Step 3: Add (a,c)

• All vertices connected. Done!

a b

c d

1

24 3

5

Total Cost: 1

8 / 49

Prim’s Algorithm in Action

Let’s run Prim’s starting from vertex b. The green area shows the vertices spanned so far.

Start: At vertex b

• Candidates: (b,a) [cost 1], (b,d) [cost 2].

• Add cheapest: (b,a).

Step 1: Add (b,a)

• Candidates: (a,c) [4], (a,d) [3], (b,d) [2].

• Add cheapest: (b,d).

Step 2: Add (b,d)

• Ignore (a,d) → creates cycle.

• Candidates: (a,c) [4], (c,d) [5].

• Add cheapest: (a,c).

Step 3: Add (a,c)

• All vertices connected. Done!

a b

c d

1

24 3

5

Total Cost: 1 + 2

8 / 49

Prim’s Algorithm in Action

Let’s run Prim’s starting from vertex b. The green area shows the vertices spanned so far.

Start: At vertex b

• Candidates: (b,a) [cost 1], (b,d) [cost 2].

• Add cheapest: (b,a).

Step 1: Add (b,a)

• Candidates: (a,c) [4], (a,d) [3], (b,d) [2].

• Add cheapest: (b,d).

Step 2: Add (b,d)

• Ignore (a,d) → creates cycle.

• Candidates: (a,c) [4], (c,d) [5].

• Add cheapest: (a,c).

Step 3: Add (a,c)

• All vertices connected. Done!

a b

c d

1

24 3

5

Total Cost: 1 + 2 + 4 = 7

8 / 49

Prim’s Algorithm: Pseudocode

This is the simple, high-level idea.

Prim’s Algorithm (G , s)

• Initialize X = {s} (our set of spanned vertices)

• Initialize T = ∅ (our set of MST edges)
• while X ̸= V :

• Let e = (u, v) be the cheapest edge with:
• u ∈ X
• v /∈ X

• Add e to T

• Add v to X

• return T

Question: How do we know this greedy strategy actually works?
9 / 49

Correctness: The Cut Property

Why is this “Greedy” Choice Safe?

The answer is a beautiful idea called the Cut Property.

What is a “Cut”?

• A “cut” is just a partition of the vertices V into two non-empty sets, A and B.
• “Crossing edges” are edges with one endpoint in A and one in B.

A B

10

5

8

12

11 / 49

The Cut Property

The Cut Property

Assume all edge costs are distinct.
Let e be the cheapest edge crossing any cut (A,B).
Then e must belong to the Minimum Spanning Tree.

A B

10

5

8

12

12 / 49

The Cut Property

Why is this true? If an MST didn’t use e, it would have to use some other, more
expensive edge f to cross that cut. We could swap f for e and get a cheaper tree!

This is a contradiction.

A B

10

5

8

12

13 / 49

Prim’s Algorithm IS The Cut Property

Prim’s algorithm cleverly uses the Cut Property in every single step!

At each step, Prim’s defines a cut:

• A = X (vertices already in our tree)
• B = V − X (vertices not yet in)

A = X B = V − X

10

5

8

Prim’s finds the cheap-
est edge (cost 5) cross-
ing the cut and adds it.

14 / 49

Prim’s Algorithm IS The Cut Property

The algorithm then finds the cheapest edge crossing this specific cut...

...and adds it to the tree!

The Cut Property guarantees this is a “safe” and correct move.

A = X B = V − X

10

5

8

Prim’s finds the cheap-
est edge (cost 5) cross-
ing the cut and adds it.

15 / 49

Making Prim’s Algorithm Fast

Via Priority Queue

How Fast is Prim’s Algorithm?

Let n = |V | (vertices) and m = |E | (edges).

A “Straightforward” Implementation:

• The main loop runs n − 1 times (once for each vertex).

• In each loop, we have to search all m edges to find the cheapest one crossing the cut.

Total Time: O(n ×m) = O(mn)

We can do much better!

17 / 49

How Fast is Prim’s Algorithm?

Let n = |V | (vertices) and m = |E | (edges).

A “Straightforward” Implementation:

• The main loop runs n − 1 times (once for each vertex).

• In each loop, we have to search all m edges to find the cheapest one crossing the cut.

Total Time: O(n ×m) = O(mn)

We can do much better!

17 / 49

Prim’s Algorithm: Running Time

This is the simple, high-level idea.

Prim’s Algorithm (G , s)

• Initialize X = {s} (our set of spanned vertices)

• Initialize T = ∅ (our set of MST edges)
• while X ̸= V : O(n) times (once per vertex)

• Let e = (u, v) be the cheapest edge with: O(m) search overall edges.
• u ∈ X
• v /∈ X
• Add e to T
• Add v to X

• return T

18 / 49

Tool for the Job: The Heap (Priority Queue)

To find the cheapest crossing edge faster, we need a special tool.

What is a Heap?

• A data structure that maintains an evolving set of objects, each with a ”key” or ”cost”.
• Its main job is to perform minimum computations very, very quickly.
• Think of it as a “queue” list where the task with the smallest cost is always at the

top, ready to be pulled.

3

7 5

10 12 8

A Min-Heap 19 / 49

Tool for the Job: The Heap (Priority Queue)

Key Operations (for n items)

Operation What it does Time

INSERT Adds a new object to the set. O(log n)

EXTRACT-MIN Removes and returns the object with the
smallest key.

O(log n)

DELETE Removes a specific object from the set. O(log n)

This is perfect for Prim’s!

• EXTRACT-MIN gives us the next vertex to add to X .

• DELETE + INSERT lets us update the key of a vertex when a cheaper edge is found.

20 / 49

Tool for the Job: The Heap (Priority Queue)

Key Operations (for n items)

Operation What it does Time

INSERT Adds a new object to the set. O(log n)

EXTRACT-MIN Removes and returns the object with the
smallest key.

O(log n)

DELETE Removes a specific object from the set. O(log n)

This is perfect for Prim’s!

• EXTRACT-MIN gives us the next vertex to add to X .

• DELETE + INSERT lets us update the key of a vertex when a cheaper edge is found.

20 / 49

Speeding Up Prim’s with a Heap

The bottleneck is re-scanning all edges just to find the cheapest one.

The Key Idea: Use a heap (Priority Queue) to keep track of the “cheapest crossing
edge” for each vertex outside our tree.

Heap Invariant

• The heap stores all vertices in V − X (those not in the tree).

• The “key” for a vertex v ∈ V − X is the cost of the cheapest edge connecting v to
any vertex inside X .

Now, each step of Prim’s is just an Extract-Min from the heap!

21 / 49

Prim’s with a Heap

• Heap contains: {y , x , z}
• Keys:

• key(y) = 3
• key(x) = 7
• key(z) =∞ (no edge to X)

• Step 1: ‘Extract-Min()‘

• Returns: vertex y (cost 3).

• Action: Add y to X .

X

s

V − X (in Heap)

x

y

z

7

3

2

1

key(x) = 7

key(y) = 3

key(z) =∞

22 / 49

Prim’s with a Heap

• Heap contains: {y , x , z}
• Keys:

• key(y) = 3
• key(x) = 7
• key(z) =∞ (no edge to X)

• Step 1: ‘Extract-Min()‘

• Returns: vertex y (cost 3).

• Action: Add y to X .

X

s

V − X (in Heap)

x

y

z

7

3

2

1

key(x) = 7

key(y) = 3

key(z) =∞

22 / 49

The “Catch”: Updating Keys

When we add a vertex (like y) to X , we must update the keys of its neighbors!

• y is now in X .

• Look at y ’s neighbors in V −X :

• Neighbor x:
• Old key: 7 (from s)
• New edge (y , x): cost 2
• Update key(x) to 2.

• Neighbor z:
• Old key: ∞
• New edge (y , z): cost 1
• Update key(z) to 1.

New X

s
y

V − X

x

z

7

3

2

1

key(x) = 7→ 2

key(z) =∞→ 1

This is a Decrease-Key operation in the heap.

23 / 49

The “Catch”: Updating Keys

When we add a vertex (like y) to X , we must update the keys of its neighbors!

• y is now in X .

• Look at y ’s neighbors in V −X :

• Neighbor x:
• Old key: 7 (from s)
• New edge (y , x): cost 2
• Update key(x) to 2.

• Neighbor z:
• Old key: ∞
• New edge (y , z): cost 1
• Update key(z) to 1.

New X

s
y

V − X

x

z

7

3

2

1

key(x) = 7→ 2

key(z) =∞→ 1

This is a Decrease-Key operation in the heap.

23 / 49

The “Catch”: Updating Keys

When we add a vertex (like y) to X , we must update the keys of its neighbors!

• y is now in X .

• Look at y ’s neighbors in V −X :

• Neighbor x:
• Old key: 7 (from s)
• New edge (y , x): cost 2
• Update key(x) to 2.

• Neighbor z:
• Old key: ∞
• New edge (y , z): cost 1
• Update key(z) to 1.

New X

s
y

V − X

x

z

7

3

2

1

key(x) = 7→ 2

key(z) =∞→ 1

This is a Decrease-Key operation in the heap.

23 / 49

Heap-Based Running Time

Let’s count the total work.

• Initialization: Build the heap O(n log n)

• Main Loop (total over n − 1 iterations):

• Extract-Min: n − 1 times. Total: O(n log n)
• Decrease-Key (Updates): Total: O(m log n)

- This is the tricky part. We check each edge (v ,w) once, when v is first added to X .
- If we have an adjacency list, we can do this in O(dv) time (where dv is the degree of v).
- The total time is O(

∑
v dv) = O(m).

Grand Total: O(n log n +m log n) = O(m log n)

(Assuming m ≥ n − 1, which is true for connected graphs)

24 / 49

Heap-Based Running Time

Let’s count the total work.

• Initialization: Build the heap O(n log n)

• Main Loop (total over n − 1 iterations):

• Extract-Min: n − 1 times. Total: O(n log n)
• Decrease-Key (Updates): Total: O(m log n)

- This is the tricky part. We check each edge (v ,w) once, when v is first added to X .
- If we have an adjacency list, we can do this in O(dv) time (where dv is the degree of v).
- The total time is O(

∑
v dv) = O(m).

Grand Total: O(n log n +m log n) = O(m log n)

(Assuming m ≥ n − 1, which is true for connected graphs)

24 / 49

Heap-Based Running Time

Let’s count the total work.

• Initialization: Build the heap O(n log n)

• Main Loop (total over n − 1 iterations):

• Extract-Min: n − 1 times. Total: O(n log n)

• Decrease-Key (Updates): Total: O(m log n)

- This is the tricky part. We check each edge (v ,w) once, when v is first added to X .
- If we have an adjacency list, we can do this in O(dv) time (where dv is the degree of v).
- The total time is O(

∑
v dv) = O(m).

Grand Total: O(n log n +m log n) = O(m log n)

(Assuming m ≥ n − 1, which is true for connected graphs)

24 / 49

Heap-Based Running Time

Let’s count the total work.

• Initialization: Build the heap O(n log n)

• Main Loop (total over n − 1 iterations):

• Extract-Min: n − 1 times. Total: O(n log n)
• Decrease-Key (Updates): Total: O(m log n)

- This is the tricky part. We check each edge (v ,w) once, when v is first added to X .
- If we have an adjacency list, we can do this in O(dv) time (where dv is the degree of v).
- The total time is O(

∑
v dv) = O(m).

Grand Total: O(n log n +m log n) = O(m log n)

(Assuming m ≥ n − 1, which is true for connected graphs)

24 / 49

Heap-Based Running Time

Let’s count the total work.

• Initialization: Build the heap O(n log n)

• Main Loop (total over n − 1 iterations):

• Extract-Min: n − 1 times. Total: O(n log n)
• Decrease-Key (Updates): Total: O(m log n)

- This is the tricky part. We check each edge (v ,w) once, when v is first added to X .

- If we have an adjacency list, we can do this in O(dv) time (where dv is the degree of v).
- The total time is O(

∑
v dv) = O(m).

Grand Total: O(n log n +m log n) = O(m log n)

(Assuming m ≥ n − 1, which is true for connected graphs)

24 / 49

Heap-Based Running Time

Let’s count the total work.

• Initialization: Build the heap O(n log n)

• Main Loop (total over n − 1 iterations):

• Extract-Min: n − 1 times. Total: O(n log n)
• Decrease-Key (Updates): Total: O(m log n)

- This is the tricky part. We check each edge (v ,w) once, when v is first added to X .
- If we have an adjacency list, we can do this in O(dv) time (where dv is the degree of v).

- The total time is O(
∑

v dv) = O(m).

Grand Total: O(n log n +m log n) = O(m log n)

(Assuming m ≥ n − 1, which is true for connected graphs)

24 / 49

Heap-Based Running Time

Let’s count the total work.

• Initialization: Build the heap O(n log n)

• Main Loop (total over n − 1 iterations):

• Extract-Min: n − 1 times. Total: O(n log n)
• Decrease-Key (Updates): Total: O(m log n)

- This is the tricky part. We check each edge (v ,w) once, when v is first added to X .
- If we have an adjacency list, we can do this in O(dv) time (where dv is the degree of v).
- The total time is O(

∑
v dv) = O(m).

Grand Total: O(n log n +m log n) = O(m log n)

(Assuming m ≥ n − 1, which is true for connected graphs)

24 / 49

Heap-Based Running Time

Let’s count the total work.

• Initialization: Build the heap O(n log n)

• Main Loop (total over n − 1 iterations):

• Extract-Min: n − 1 times. Total: O(n log n)
• Decrease-Key (Updates): Total: O(m log n)

- This is the tricky part. We check each edge (v ,w) once, when v is first added to X .
- If we have an adjacency list, we can do this in O(dv) time (where dv is the degree of v).
- The total time is O(

∑
v dv) = O(m).

Grand Total: O(n log n +m log n) = O(m log n)

(Assuming m ≥ n − 1, which is true for connected graphs)

24 / 49

Kruskal’s Algorithm

Another Greedy Algorithm for MST

Kruskal’s Algorithm: The Forest Loner

A completely different (but equally brilliant) greedy strategy.

Kruskal’s Greedy Strategy

1. Sort all m edges in the graph from cheapest to most expensive.

2. Iterate through the sorted edges:

3. Add an edge to your tree T if and only if it does not create a cycle.

Instead of growing one “mold,” Kruskal’s builds up a “forest” of small trees that
eventually merge into one.

26 / 49

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c,d) [5]

1. Edge (a,b) [cost 1]:

• No cycle. Add.

2. Edge (b,d) [cost 2]:

• No cycle. Add.

3. Edge (a,d) [cost 3]:

• Creates a cycle (a-b-d-a). Skip!

4. Edge (a,c) [cost 4]:

• No cycle. Add.

5. Edge (c,d) [cost 5]:

• Creates a cycle. Skip!

Done! We have n − 1 = 3 edges.

a b

c d

1

4 3 2

5

Final Cost: 1 + 2 + 4 = 7

27 / 49

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c,d) [5]

1. Edge (a,b) [cost 1]:

• No cycle. Add.

2. Edge (b,d) [cost 2]:

• No cycle. Add.

3. Edge (a,d) [cost 3]:

• Creates a cycle (a-b-d-a). Skip!

4. Edge (a,c) [cost 4]:

• No cycle. Add.

5. Edge (c,d) [cost 5]:

• Creates a cycle. Skip!

Done! We have n − 1 = 3 edges.

a b

c d

1

4 3 2

5

Final Cost: 1 + 2 + 4 = 7

27 / 49

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c,d) [5]

1. Edge (a,b) [cost 1]:

• No cycle. Add.

2. Edge (b,d) [cost 2]:

• No cycle. Add.

3. Edge (a,d) [cost 3]:

• Creates a cycle (a-b-d-a). Skip!

4. Edge (a,c) [cost 4]:

• No cycle. Add.

5. Edge (c,d) [cost 5]:

• Creates a cycle. Skip!

Done! We have n − 1 = 3 edges.

a b

c d

1

4 3 2

5

Final Cost: 1 + 2 + 4 = 7

27 / 49

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c,d) [5]

1. Edge (a,b) [cost 1]:

• No cycle. Add.

2. Edge (b,d) [cost 2]:

• No cycle. Add.

3. Edge (a,d) [cost 3]:

• Creates a cycle (a-b-d-a). Skip!

4. Edge (a,c) [cost 4]:

• No cycle. Add.

5. Edge (c,d) [cost 5]:

• Creates a cycle. Skip!

Done! We have n − 1 = 3 edges.

a b

c d

1

4 3 2

5

Final Cost: 1 + 2 + 4 = 7

27 / 49

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c,d) [5]

1. Edge (a,b) [cost 1]:

• No cycle. Add.

2. Edge (b,d) [cost 2]:

• No cycle. Add.

3. Edge (a,d) [cost 3]:

• Creates a cycle (a-b-d-a). Skip!

4. Edge (a,c) [cost 4]:

• No cycle. Add.

5. Edge (c,d) [cost 5]:

• Creates a cycle. Skip!

Done! We have n − 1 = 3 edges.

a b

c d

1

4 3 2

5

Final Cost: 1 + 2 + 4 = 7

27 / 49

Kruskal’s Algorithm in Action

Sorted Edges: (a,b) [1], (b,d) [2], (a,d) [3], (a,c) [4], (c,d) [5]

1. Edge (a,b) [cost 1]:

• No cycle. Add.

2. Edge (b,d) [cost 2]:

• No cycle. Add.

3. Edge (a,d) [cost 3]:

• Creates a cycle (a-b-d-a). Skip!

4. Edge (a,c) [cost 4]:

• No cycle. Add.

5. Edge (c,d) [cost 5]:

• Creates a cycle. Skip!

Done! We have n − 1 = 3 edges.

a b

c d

1

4 3 2

5

Final Cost: 1 + 2 + 4 = 7

27 / 49

Kruskal’s Algorithm: Pseudocode (high level)

Kruskal’s Algorithm (G , s)

• T = ∅ (our set of MST edges)

• Sort all m edges in E by increasing cost.
• for each edge e = (u, v) in the sorted list:

• if T ∪ {e} has no cycles:
• Add e to T

• return T

28 / 49

Correctness: The Cut Property (Again!)

Why Does Kruskal’s Work?

It also relies on the Cut Property, but in a sneakier way.

Proof Overview:

• Consider the moment Kruskal’s adds edge e = (u, v).

• At this point, u and v are in different components (or e would form a cycle).

• Let A = u’s component, B = V − A. This is a cut!

• Since edges are sorted, e must be the cheapest edge crossing this cut. (Any cheaper
crossing edge would have been considered earlier).

• Adding e is a “safe” move by the Cut Property!

30 / 49

Why Does Kruskal’s Work?

A = u’s component Rest of the graph

u

v

e (cheapest)

more expensive

31 / 49

Kruskal’s Running Time

How Fast is Kruskal’s?

The algorithm has two main parts:

1. Sorting the Edges

• We have m edges.

• Using MergeSort: O(m log n).

2. Checking for Cycles

• We loop m times.

• Inside the loop: ‘if (T ∪ e has no
cycle)‘... How?

The “Straightforward” Way:

- A simple BFS/DFS check for a path between u and v takes O(n) time.

- Total “straightforward” time: O(m log n) + O(m × n) = O(mn).

- This is no better than simple Prim’s! We must make the cycle check faster.

33 / 49

How Fast is Kruskal’s?

The algorithm has two main parts:

1. Sorting the Edges

• We have m edges.

• Using MergeSort: O(m log n).

2. Checking for Cycles

• We loop m times.

• Inside the loop: ‘if (T ∪ e has no
cycle)‘... How?

The “Straightforward” Way:

- A simple BFS/DFS check for a path between u and v takes O(n) time.

- Total “straightforward” time: O(m log n) + O(m × n) = O(mn).

- This is no better than simple Prim’s! We must make the cycle check faster.

33 / 49

Making Kruskal’s Algorithm Fast

The Union-Find Data Structure

Speeding Up Kruskal’s: The Union-Find Data Structure

This tool is designed specifically for tracking connected components.

The Core Idea

• Maintain the connected components formed by
the edges added to T so far.

• “Objects” = Vertices V .

• “Groups” = Connected Components.

Key Operations

• FIND(u): Get name/leader of u’s component.

• UNION(u, v): Merge u’s and v ’s components.

Comp 1
Comp 2

Comp 3
Comp 4

35 / 49

Speeding Up Kruskal’s: The Union-Find Data Structure

This tool is designed specifically for tracking connected components.

The Core Idea

• Maintain the connected components formed by
the edges added to T so far.

• “Objects” = Vertices V .

• “Groups” = Connected Components.

Key Operations

• FIND(u): Get name/leader of u’s component.

• UNION(u, v): Merge u’s and v ’s components.

Comp 1
Comp 2

Comp 3
Comp 4

35 / 49

Kruskal’s Algorithm: Fast Pseudocode

Using Union-Find makes cycle checking incredibly efficient.

Kruskal’s Algorithm (Fast Implementation)

• T = ∅
• Sort all m edges in E by increasing cost.

• Initialize a Union-Find structure U (each vertex in its own set).
• for each edge e = (u, v) in the sorted list:

• Cycle Check: if FIND(U, u) ̸= FIND(U, v):
• Add e to T
• UNION(U, u, v) // Merge components

• return T

36 / 49

Making Kruskal’s Algorithm Fast

The Union-Find Data Structure

Union-Find: Initialization

Internally, Union-Find uses trees with parent pointers.

Initialization Step

• Each vertex begins as an isolated component and its own root/leader.

• Each vertex points to itself to represent this.

• Setup time: O(n) for n vertices.

1 2 3 4 5

38 / 49

Union-Find: FIND Operation

FIND(v) Operation: Finds the group leader

• Start at vertex v .

• Follow parent pointers upward until root

• root = a vertex points to itself.

• Return that vertex (the component’s leader).

FIND(2) follows pointers:
2→ 1→ 4. Returns 4.

4 Leader/Root

1 5

2 3

Step 1

Step 2

39 / 49

Union-Find: FIND Operation

FIND(v) Operation: Finds the group leader

• Start at vertex v .

• Follow parent pointers upward until root

• root = a vertex points to itself.

• Return that vertex (the component’s leader).

FIND(2) follows pointers:
2→ 1→ 4. Returns 4.

4 Leader/Root

1 5

2 3

Step 1

Step 2

39 / 49

Union-Find: Simple UNION Operation

How do we merge two components (trees) A and B?

Simple UNION(A, B) Idea

• Find the root of A (let’s call it rootA).

• Find the root of B (let’s call it rootB).

• Make one root point to the other (e.g., make rootA point to rootB).

40 / 49

Union-Find: Simple UNION Operation

4

Root A

1

2 3

6

Root B

5

Perform UNION(2, 5).

41 / 49

Union-Find: Simple UNION Operation

4

Root A

1

2 3

6

Root B

5

find(2) returns 4; find(5) returns 6.

41 / 49

Union-Find: Simple UNION Operation

4

Root A

1

2 3

6

Root B

5

Link roots 4→ 6; remove 4’s self-loop (4 is no longer a leader).

41 / 49

The Problem with Simple UNION

Issue: Arbitrary unions can create inefficient trees.

Worst Case:

• Repeated merges form a long chain.

• Tree height grows to O(n).

Finding the root could take O(n) steps.
slow!

1 2

↓ UNION(1,2)

21 3

↓ UNION(1,3)

321

...

42 / 49

Making Union-Find Fast: Union-by-Size

We can avoid creating tall trees with a simple rule.

The Trick: Union-by-Size (or Rank)

When doing UNION(A, B), always attach the root of the smaller tree under the root of
the larger tree. (Break ties arbitrarily).

• Requires storing the size (number of nodes) at the root of each tree.

• Update size when merging.

43 / 49

Union-Find: UNION-by-Size

4

Root A

1

2 3

6

Root B

5

Perform UNION(2, 5).

44 / 49

Union-Find: UNION-by-Size

4

Root A

1

2 3

6

Root B

5

Link roots 4←6; remove 4’s self-loop (4 is no longer a leader).

44 / 49

Why is Union-by-Size Fast?

This simple heuristic dramatically improves performance!

Key Insight:

• Consider any vertex v .
• When does the depth of v (distance to root) increase?
• Only when v ’s tree is attached under another root during a UNION.
• By Union-by-Size, this happens only if the other tree was ≥ the size of v ’s current
tree.
• =⇒ Every time v ’s depth increases, the size of its new component at least doubles.

• Max component size is n. Size can double ≤ log2 n times.

• Therefore, the depth of any node is always O(log n).

• FIND operations take O(log n) time! UNION takes O(log n) (due to FINDs).

• With “path compression,” it’s even faster - nearly constant time!

45 / 49

Why is Union-by-Size Fast?

This simple heuristic dramatically improves performance!

Key Insight:

• Consider any vertex v .
• When does the depth of v (distance to root) increase?
• Only when v ’s tree is attached under another root during a UNION.
• By Union-by-Size, this happens only if the other tree was ≥ the size of v ’s current
tree.
• =⇒ Every time v ’s depth increases, the size of its new component at least doubles.

• Max component size is n. Size can double ≤ log2 n times.

• Therefore, the depth of any node is always O(log n).

• FIND operations take O(log n) time! UNION takes O(log n) (due to FINDs).

• With “path compression,” it’s even faster - nearly constant time!

45 / 49

Kruskal’s Final Running Time (Revisited)

Let’s re-evaluate the total work using our faster Union-Find.

• 1. Sort edges: O(m log n).

• 2. Initialize Union-Find: O(n).

• 3. Main Loop (m iterations):
• 2×m FIND operations: Total O(m log n).
• n − 1 UNION operations: Total O(n log n).

Grand Total:
O(m log n) + O(n) + O(m log n) + O(n log n) = O(m log n)

(Sorting is usually the bottleneck!)

46 / 49

Can We Do Better? (State of the Art in MST Research)

Can we beat O(m log n)? Yes — in theory!

• Randomized: O(m) expected time (Karger–Klein–Tarjan, 1995).

• Deterministic: O(mα(n)) (Chazelle, 2000). α(n) = inverse Ackermann function (< 5
for all practical n).

• Pettie–Ramachandran (2002): asymptotically optimal but unknown exact runtime.

Open Questions

• Still no simple, deterministic O(m) MST algorithm.

47 / 49

Summary: Two Algorithms, One Goal

We learned two “incredibility fast” greedy algorithms for the MST problem.

Prim’s Algorithm

• “Grows a single tree”

• Greedy Choice: Add cheapest edge from
X to V − X .

• Data Structure: Heap

• Runtime: O(m log n)

Kruskal’s Algorithm

• “Merges a forest”

• Greedy Choice: Add cheapest edge that
doesn’t form a cycle.

• Data Structure: Union-Find

• Runtime: O(m log n)

Both are correct because they cleverly exploit The Cut Property.

48 / 49

References

Roughgarden, T. (2022).

Algorithms Illuminated: Omnibus Edition.

Soundlikeyourself Publishing, LLC.

49 / 49

	Minimum Spanning Trees
	Prim's Algorithm
	Correctness: The Cut Property
	Making Prim's Algorithm Fast

	Kruskal's Algorithm
	Correctness: The Cut Property (Again!)
	Kruskal's Running Time
	Making Kruskal's Algorithm Fast
	Making Kruskal's Algorithm Fast

