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Today’s Lecture

1. Huffman Encoding

2. The Caching Problem

Reading:

® Chapter 5 of the Algorithms book [Dasgupta et al., 2006]
e Chapter 14 of [Roughgarden, 2022]
e Chapter 4.3 of [Tardos and Kleinberg, 2005]
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https://people.eecs.berkeley.edu/~vazirani/algorithms/chap5.pdf

1. Huffman Encoding

A greedy algorithm form string compression
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The World in Zeros and Ones

El

Storing a File

Characters in a file
are saved on a disk
as their binary code

equivalents (e.g., ASCII).

L1

Sending Text
to a Printer

Text is sent to a printer
as a sequence of bi-
nary data, which the

printer interprets.

Digital Audio (MP3)
Sound is digitized into
numbers, then encoded

into a compressed
format like MP3.
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Encoding for Digitalization

An encoding is a scheme that maps a message (a sequence of characters) from an
alphabet into a message in another alphabet, most commonly binary digits (bits).

Example: ASCIl (American Standard Code for Information Interchange) It assigns a
unique number (and thus a unique binary code) to every letter, digit, and punctuation
mark.

Character — 8-Bit Binary Code
a — 01100001
b — 01100010
: — 00111010
1 — 00110001
%
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An encoding is a scheme that maps a message (a sequence of characters) from an
alphabet into a message in another alphabet, most commonly binary digits (bits).

Example: ASCIl (American Standard Code for Information Interchange) It assigns a
unique number (and thus a unique binary code) to every letter, digit, and punctuation
mark.

Character — 8-Bit Binary Code
a — 01100001 «+—— Codeword
b — 01100010
Code : - 00111010
1 — 00110001
%
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Encoding and Decoding

Example: Consider a string with four symbols: A, B, C, and D, and a 2-bit code for each
symbol

A—00 B—01 C—10 D—11
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Encoding and Decoding

Example: Consider a string with four symbols: A, B, C, and D, and a 2-bit code for each
symbol

A—00 B—01 C—10 D—11
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Encoding Decoding
ADB — 001101 001101 — ADB
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Fixed Length Code

A fixed length code uses the same number of bits for each symbol.

Example: If we use this 2-bit code to encode a string of length 130 million bits, this fixed
length code requires:

130 million symbols x 2 bits/symbol = 260 million bits.

But what if the symbols appear with different frequencies?

Symbol ‘ Frequency

A 70 million
B 3 million
C 20 million
D 37 million
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Variable Length Code

Idea: Can we use shorter codewords for frequent symbols (like A) and longer ones for
infrequent symbols (like B)?

We can have a variable-length code: A=0, B=001, C=11, D=01.
This variable length code requires:

A (1 bit): 70 mil. x 1 = 70 million bits

B (3 bits): 3 mil. x 3 =9 million bits
e C (2 bits): 20 mil x 2 = 40 million bits

D (2 bits): 37 mil x 2 = 74 million bits

193 million bits
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Variable Length Code

Idea: Can we use shorter codewords for frequent symbols (like A) and longer ones for
infrequent symbols (like B)?

We can have a variable-length code: A=0, B=001, C=11, D=01.
This variable length code requires:

A (1 bit): 70 mil. x 1 = 70 million bits

B (3 bits): 3 mil. x 3 =9 million bits
e C (2 bits): 20 mil x 2 = 40 million bits

D (2 bits): 37 mil x 2 = 74 million bits

193 million bits 1 %25 reduction in the size
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The Fundamental Question

What is the most efficient way to encode a string?
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The Fundamental Question

What is the most efficient way to encode a string?

® What properties must a code have to be instantly and unambiguously decodable?

® Given the frequency of each symbol, find the valid code that produces the shortest
possible encoded message.
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The Prefix-Free Property

The Challenge: Variable-length codes can be ambiguous. In our example, the bit-string
001 is undecipherable. It could be AD or B.
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prefix of the code for B:

001
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A D
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The Prefix-Free Property

The Challenge: Variable-length codes can be ambiguous. In our example, the bit-string
001 is undecipherable. It could be AD or B. This happens because the code for A is a

prefix of the code for B:

B
—

001

———

A D
The Solution: Prefix-Free Codes!

We ensure that our encoding follows this rule: No codeword is a prefix of any other
codeword. This property ensures that any encoded string is uniquely decipherable.
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Binary Tree Representation

Any prefix-free code can be represented by a full binary tree (where every internal node
has two children).

[unwasteful] Full Binary Tree

Prefix-Free Code
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Binary Tree Representation

How it works:

® The symbols (A, B, C, D) are the leaves of
the tree.
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Binary Tree Representation

How it works:

® The symbols (A, B, C, D) are the leaves of
the tree.

® The path from the root to a leaf generates its
codeword, using 0 for a left branch and 1 for
a right branch.

Decoding: Start at the root and follow the path
based on the input bits. When you reach a leaf,
output the symbol and return to the root.
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Binary Tree Representation

e Why is this code prefix-free?

If a symbol was at an internal node, it would
be a prefix for all of its successors. Having the
symbols in the leaves implies that no code-
word is the prefix of another one.

® Why do we consider only full binary trees?

If a node has only a single child, we can im-
prove the code by removing that node. This
change shortens the codeword’s length with-
out causing any issues.
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The Fundamental Question

What is the most efficient way to encode a string?

What is the optimal prefix-free code/binary tree that minimizes the
message length based on symbol frequencies?
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The Fundamental Question

What is the most efficient way to encode a string?

What is the optimal prefix-free code/binary tree that minimizes the
message length based on symbol frequencies?

We will now explore Huffman's algorithm, a classic and elegant case where a simple
greedy strategy is provably optimal for solving the prefix-free data compression problem.
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Defining Cost of a Tree

Suppose we have n symbols in alphabet X, and the 7, denotes the frequency of element a.
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Defining Cost of a Tree

Suppose we have n symbols in alphabet X, and the 7, denotes the frequency of element a.

The cost of a tree, denoted by T, is the total length of the encoded message, which can
be expressed in terms of the weighted sum of the path lengths.

Cost: L(T) = Z fx X (length of codeword for symbol x)
XEXL

= Z fx % (depth of symbol x)
XEXL
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Huffman’s Greedy Algorithm

The core insight: The two symbols with the smallest frequencies must be siblings at the
lowest level of the optimal tree.

The Greedy Strategy

1. Identify the two symbols with the lowest frequencies.

2. Join them as children of a new parent node. This parent’s frequency is the sum of its
children’s frequencies (f; + f;).

3. Remove the original two symbols from the list and add this new parent node.

4. Repeat this process until only one node remains—the root of the tree.
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Huffman Algorithm: An Example

y ° ° ¢ Symbol | Frequency
B:3 C:20 D:37 A:70 A 20 million
B 3 million
C 20 million
D 37 million
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Huffman Algorithm: An Example

BC:23 Symbol ‘ Frequency
A 70 million

B 3 million
B:3 C20 o o C 20 million
D

D:37 A:70 37 million
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Huffman Algorithm: An Example

Symbol ‘ Frequency

A 70 million
B 3 million
D:37 . C 20 million
D 37 million

A:70
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Huffman Algorithm: An Example

ABCD:130 Symbol | Frequency
A 70 million

B 3 million

A:70 C 20 million

D 37 million
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Huffman Algorithm: An Example

ABCD:130

A:70

The Huffman algorithm gives us the following code:

A—1 B—000 C—001

Symbol ‘ Frequency

A

B
C
D

D—01

70 million
3 million
20 million
37 million
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Huffman Algorithm: An Example

ABCD:130 Symbol ‘ Frequency
A 70 million

B 3 million

A:70 C 20 million

D 37 million

The Huffman algorithm gives us the following code:
A—1 B—000 C—001 D—01

Total length: 213 million bits 1 %18 reduction in the size
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The Algorithm in Pseudocode

Input: An array ‘f' of frequencies for ‘n‘ symbols.
Data Structure: Use a priority queue ‘H' to find minimums.

procedure Huffman(f)

1. Initialize: Insert all ‘n‘ symbols into the priority queue ‘H".

2. lterate n — 1 times (from k = n+1 to 2n —1):

® Extract the two nodes with the minimum frequencies:
i = deletemin(H), j = deletemin(H).

® Create a new parent node ‘k’ with children ‘i and ‘j".
® Set the new node's frequency: f[k] = f[i] + f[j].

® |nsert the new node ‘k' back into ‘H".

The algorithm’s runtime is O(nlog n).
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Proof of Optimality

Theorem

For every alphabet ¥ and non-negative symbol frequencies {f, }xcx, the Huffman algorithm
outputs a prefix-free code with the minimum-possible encoding length.
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Proof of Optimality

Theorem
For every alphabet ¥ and non-negative symbol frequencies {f, }xcx, the Huffman algorithm

outputs a prefix-free code with the minimum-possible encoding length.

In other words, the algorithm finds a full binary tree (a X-tree) with the minimum
possible weighted leaf depth, where the average is weighted by symbol frequencies.

L(T) = £ - (depth of leaf x in T)
XEX

19/52



Proof by Induction

e Statement:

P(n) < “The Huffman algorithm is correct for any alphabet of size at most n."
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is, assume Huffman'’s algorithm is correct for all alphabets with size
less than n.
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Proof by Induction

e Statement:
P(n) < “The Huffman algorithm is correct for any alphabet of size at most n."

¢ Base Case: P(2) For an alphabet with two symbols, Huffman'’s algorithm assigns one
symbol the code ‘0’ and the other ‘1'. This is trivially optimal.

¢ Inductive Hypothesis: Assume P(n — 1) is true for n > 2. That
is, assume Huffman'’s algorithm is correct for all alphabets with size
less than n.

¢ Inductive Step: We must prove P(n) is true, using the inductive Enme—
hypothesis.
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Proof Strategy: High-Level Plan

Let a and b be the symbols with the two smallest frequencies. The proof hinges on two
main ideas.

e Claim #1 guarantees that Huffman's algorithm finds the best possible tree among
the set of trees where a and b are siblings.

¢ Claim #2 (Exchange Argument) guarantees that there is an optimal tree where
the two lowest-frequency symbols, a and b, are siblings.

® Combining these two ideas, the tree produced by Huffman's algorithm must be an
optimal tree.
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Proof Strategy: High-Level Plan

® Goal: Prove Huffman’s algorithm finds
the optimal tree in the set of all trees T

_ All trees
(the outer circle). T

T < all possible trees
Tap < trees where a and b as siblings.
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Proof Strategy: High-Level Plan

® Goal: Prove Huffman’s algorithm finds
the optimal tree in the set of all trees T

_ All trees T
(the outer circle).

e Claim #1: The algorithm finds the op-
timal tree within the restricted set 7.
(the inner circle).

e Claim #2: An optimal tree from 7T is
guaranteed to also be in T,p.

® Conclusion: Therefore, finding the op-
timum in the inner circle is sufficient to

X ) T <+ all possible trees
find the global optimum.

Tap < trees where a and b as siblings.
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Claim #1: Optimality in a Restricted Set

Lemma (Optimality in 7,5)

Suppose we have an alphabet ¥ of size n. If Huffman's algorithm outputs an optimal tree
for any alphabet of size n — 1, then the output of the Huffman algorithm minimizes the
weighted leaf depth over all ¥ -trees in which a and b are siblings.
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Proving Claim #1: Correspondence

Consider a new alphabet X" where we “fuse” a and b into a new pseudo-symbol 'ab’.

® The frequency of 'ab’ is f;p, = f3 + fp.
o 5= (%\ {a,b}) U {ab}
e Y|=n-1
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® The frequency of 'ab’ is fop, = f5 + 1.
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Proving Claim #1: Preserving Cost

Let T’ be a ¥'-tree and T be the corresponding tree in T,,. The weighted leaf depths of
T and T’ are related by:
L(T)=LT)+f+1
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Proving Claim #1: Preserving Cost

Let T’ be a ¥'-tree and T be the corresponding tree in T,,. The weighted leaf depths of

T and T’ are related by:
L(T)=LT)+f+1

Proof: For any symbol x # a, b, ab, its depth is the same in T and T’. The leaves for a
and b in T are one level deeper than the leaf for 'ab’ in T".

L( T) — L(T/) = fa . dT(a) + fb : dT(b) — Igp d-,-/(ab)
= fa-(dr(ab) + 1) + fp - (dr(ab) + 1) — (fa + f») - d7(ab)
= fa + fb
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Proving Claim #1: The Correspondence

There is a one-to-one correspondence between:

Y'-trees (for Tap = X-trees where

the smaller alphabet) a and b are siblings
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Proving Claim #1: The Correspondence

There is a one-to-one correspondence between:

Y'-trees (for

Tap = X-trees where
the smaller alphabet)

a and b are siblings

T T

min L(T") minL(T) = min L(T') + 5+ f

Since f, + fp is a constant, a tree T is optimal in T, if and only if the corresponding T’
is an optimal X'-tree. 26 /52



Proving Claim #1: Putting It All Together

We can now connect the pieces to prove Main ldea #1:

1. Huffman’'s algorithm on X begins by merging a and b. The rest is equivalent to running
it on the residual problem (X'), so Twuss lies in T,p and corresponds to a residual tree
Ty on 2.
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Proving Claim #1: Putting It All Together

We can now connect the pieces to prove Main ldea #1:

1. Huffman’'s algorithm on X begins by merging a and b. The rest is equivalent to running
it on the residual problem (X'), so Twusr lies in T,p and corresponds to a residual tree
Ty on 2.

2. By the inductive hypothesis (since |X'| = k — 1), T}, ¢ is an optimal X'-tree.

3. Because the cost mapping preserves optimality, Ty must be the optimal tree among
all trees in 7,p.

Thus, Huffman’s algorithm is optimal over the set 7.5, which implies Claim #1.
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Claim #2: An Optimal solution exists in restricted set

Lemma

There is an optimal tree where the two lowest-frequency symbols, a and b, are siblings.

All trees T
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Proving Claim #2: The Exchange Argument

We now prove that an optimal tree must exist in 7T,p.

Let T* be an arbitrary optimal X-tree. Let x and y be two symbols that are siblings at
the deepest level of T*.

If {a,b} = {x,y}, we are done.
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Let T* be an arbitrary optimal X-tree. Let x and y be two symbols that are siblings at
the deepest level of T*.

If {a,b} = {x,y}, we are done.

If not, we create a new tree T by swapping
the positions of a and x.
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Proving Claim #2: The Exchange Argument

We now prove that an optimal tree must exist in 7T,p.

Let T* be an arbitrary optimal X-tree. Let x and y be two symbols that are siblings at
the deepest level of T*.

If {a,b} = {x,y}, we are done.

If not, we create a new tree T by swapping
the positions of a and x.

Let's compare the cost:

) V

T* : An optimal tree
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Proving Claim #2: The Math

As long as f; < £, by swapping leaf a with a leaf x at the deepest level, the cost of the
tree does not increase.

Due to this fact we can swap a (the lowest frequency element) with x (the leaf at the
deepest level), without increasing the cost of the tree.
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Proving Claim #2: The Math

As long as f; < £, by swapping leaf a with a leaf x at the deepest level, the cost of the
tree does not increase.

Due to this fact we can swap a (the lowest frequency element) with x (the leaf at the
deepest level), without increasing the cost of the tree.

Therefore, L(T) < L(T*), which means the new tree T is also optimal.

We can similarly swap b with y and not increase the cost, to obtain another optimal tree
for which the symbols a and b are siblings.

Hence, a tree with the minimum cost exists that resides in Tp.

This proves Claim #2.
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Conclusion of the Proof

e Claim #2 (Exchange Argument) guarantees that there is an optimal tree where
the two lowest-frequency symbols, a and b, are siblings.

e Claim #1 (Inductive Argument) guarantees that Huffman’s algorithm finds the
best possible tree among the set of trees where a and b are siblings.

® Combining these two ideas, the tree produced by Huffman's algorithm must be an
optimal tree.

This completes the inductive step, and thus the proof of correctness for Huffman's
algorithm.

Q.E.D.
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The Caching Problem

A Greedy Algorithm, Minimizing Misses



The Caching Problem

The Setup: We have a set U of n data points stored in main memory. We have a
two-level memory system where we keep an extra copy of few of these data points.

e A small, fast cache of size k.
® A large, slow main memory.

Slow

Fast

Data Transfer

Cache (size k)

Main Memory

33/52



The Caching Problem

The Process:

® \We process a sequence of m memory requests: di,ds, ..., dn.

e If request d; is in the cache — Cache Hit (fast).
e If request d; is NOT in the cache — Cache Miss (slow).

® We must fetch d; from main memory.
® |f the cache is full, we must evict an item to make space.

The Goal: Design an eviction policy (a schedule) that minimizes the total number of
cache misses.
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The Caching Problem

The Process:

® \We process a sequence of m memory requests: di,ds, ..., dn.

e If request d; is in the cache — Cache Hit (fast).
e If request d; is NOT in the cache — Cache Miss (slow).

® We must fetch d; from main memory.
® |f the cache is full, we must evict an item to make space.

The Goal: Design an eviction policy (a schedule) that minimizes the total number of
cache misses.

Setting: We consider the “offline” setting where we have the knowledge of all future
requests.
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Caching: An Example (k = 3)

Let cache size k = 3. Initial cache (t=0): [ a [ b c ]
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Initial cache (t=0): [ a
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requests



Caching: An Example (k = 3)

Let cache size k = 3.

Initial cache (t=0): [ a
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Caching: An Example (k = 3)

Let cache size k = 3. Initial cache (t=0):

U][cr
n][n

a
—
——

d

cache (t = 1):

Request sequence:

®@@®@®@®@@

req uests

MISS!
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Caching: An Example (k = 3)

Let cache size k = 3. Initial cache (t=0):

cache (t =1 & 2):

)=
BEEC
J- ]

cache (t = 3):

Request sequence:
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req uests
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Caching: An Example (k = 3)

Let cache size k = 3. Initial cache (t=0):

cache (t =1 & 2):

)=
BEEC
J- ]

cache (t = 3):

Request sequence:

®@@®@®@®@@

req uests

Mlss! H|t! Mlss!

Takeaway: Evicting a causes a refill at t = 2. Evicting c would have been better.
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A Greedy Strategy: Evict Farthest-in-Future

Belady's Algorithm (Farthest-in-Future)

When a cache miss occurs on request d;:
® Find the item currently in the cache that will be requested farthest in the future.
® Evict that item.

Intuition: Keep items that will be needed soon. Evicting an item we won't need for a
long time (or ever again) seems like a safe bet.
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Belady’s Algorithm: Evict Farthest-in-Future

Initial cache (t=0):[ a | [ b c ]

Request sequence:
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Belady’s Algorithm: Evict Farthest-in-Future

Initial cache (t=0):

a
—
—

a

U][cr
Q][n

cache (t = 1):
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Reduced Schedules: A Canonical Form

Reduced schedule. Only loads an item when it is requested and not already in cache.
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Reduced Schedules: A Canonical Form

Reduced schedule. Only loads an item when it is requested and not already in cache.

Does pre-loading help?

No! Because any schedule can be turned into a reduced one without increasing misses.

Suppose an algorithm prematurely loads an element f before any request to f. We can
construct a reduction S’ that “pretends” to load f then actually loads f only at its first
request.

f is loaded here

0000000000 __
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Reduction of a Schedule

If S brings f early (when f is not requested), define S’ a be to be an schedule that does not load
f. S’ can follow all the actions of S unless it involves f. The first event involving f is either:

f is loaded here first requested here

00000000
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f. S’ can follow all the actions of S unless it involves f. The first event involving f is either:

® an eviction of f before any request — then the early load was unnecessary and S’ avoids it; or

® the first request to f — then S’ incurs the miss at that step, which we can charge to the early
operation of S.
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Reduction of a Schedule

If S brings f early (when f is not requested), define S’ a be to be an schedule that does not load
f. S’ can follow all the actions of S unless it involves f. The first event involving f is either:

® an eviction of f before any request — then the early load was unnecessary and S’ avoids it; or

® the first request to f — then S’ incurs the miss at that step, which we can charge to the early
operation of S.

Thus S’ is reduced and brings in no more items than S; the number of misses/evictions does not
increase.

f is loaded here

0000000000 __
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Why We Can Restrict to Reduced Schedules

Since every (possibly non-reduced) schedule can be transformed into an equally good or
better reduced schedule, we lose no generality by restricting our attention to reduced
schedules.

all schedules

number of misses

reduced schedules
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Why We Can Restrict to Reduced Schedules

Since every (possibly non-reduced) schedule can be transformed into an equally good or
better reduced schedule, we lose no generality by restricting our attention to reduced

schedules.

all schedules

reduction(S) = S’
misses(S’) < misses(S)

5/
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Proof of Correctness

An Exchange Argument



Proof Idea: The Exchange Argument

We will show that the Farthest-in-Future schedule (Sgg) is optimal.

1. Let S* be any reduced and optimal schedule. Our goal is to show that S* has at
least as many misses as Sgr.
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Proof Idea: The Exchange Argument

We will show that the Farthest-in-Future schedule (Sgg) is optimal.

1. Let S* be any reduced and optimal schedule. Our goal is to show that S* has at
least as many misses as Sgr.

2. If S* and Sgr are identical, we are done.
3. If not, we find the first decision where they differ.

4. We will then perform an exchange to modify $* to be more like Sgr without in-
creasing the number of misses.

5. By repeating this process, we can transform S* into Sgg entirely, proving Sgr is
optimal.
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Proof Step 1: The Inversion

Let d; = d be the first request on which 5* and Spr act differently.

® Because S5* is reduced, this happens on a cache miss for some item d.

® Before this step, both schedules have identical cache contents.
® At step j, to make room for d:

® Spp evicts e.
® S* evicts f.

Greedy Implication

By the greedy rule of Spr, e must be requested farther in the future than f.
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Proof Step 1: The Inversion

S* cache: Srr cache:
- @O0 @O0
)L

- @EO)

first inversion (t = j) S* evicts f.

SFF evicts e.
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Proof Step 2: The Exchange

Construct a new schedule S’ from S* by changing one decision.

e Up to step j, S’ behaves exactly like S*.
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Proof Step 2: The Exchange

Construct a new schedule S’ from S* by changing one decision.

e Up to step j, S’ behaves exactly like S*.

e At step j, S’ evicts e (like Spr) instead of 7.
e After step j, S’ follows S* whenever possible.
® events that do not involve f and e.

S* cache: S’ cache:

- @O0 @6
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Proof Step 2: The Exchange

The first problematic event at t = J':
S* actions: S’ actions:
® S* evicts e.

JJL LI

® f is requested, c is evicted.

JOE] | LI

® ¢ is requested.
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Proof Step 2: The Exchange

The first problematic event at t = J':

S* actions: S’ actions:
® S* evicts e. ® Spr evicts f.
218808 (=)
® f is requested, c is evicted. ® Bvict ¢, and bring back e.
S | L)
* e is requested. ® not going to happen... .
A request for  must come earlier.
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Proof Step 3: Comparing Costs After the Exchange

After the exchange step, we obtained a new schedule S'.

e S’ performs no more evictions than the original S*.
® However, S’ might not be reduced—it could load some items earlier (e.g. ) than needed.

® |et S” be the reduced version of S’ obtained by delaying such loads until they are first
requested.

Key observation: Since the reduction never increases the number of misses,

#misses(S”) < #misses(S') < #misses(S*).

Thus S” is also optimal and now agrees with Sgr through step j+1.
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Proof Step 4: Concluding Optimality of Sg¢

Showing that Sgr is optimal:

® Use contradiction on the maximum prefix where $* and Spr agree.
® Equivalently, prove by induction on the step index ;.
® Repeat the exchange step until j reaches the full length of Spp.

Conclusion

The Farthest-in-Future schedule Sgf is optimal.
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Online Caching: Least Recently Used (LRU)

e A widely used practical strategy is Least Recently Used (LRU).
® Rule: On a miss, evict the item whose last request was longest ago in the past.
¢ Intuition (Locality of Reference):
® Recently accessed items are likely to be accessed again soon.
® Hence the past is a useful predictor for the near future.
® Parallel with Farthest-in-Future:

® LRU: Longest in the Past
® FF: Farthest in the Future
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The Upshot

® Farthest-in-Future is a provably optimal greedy strategy for caching.

e Catch: It is an offline algorithm requiring perfect knowledge of future requests.

® In practice: We use online heuristics; the most common is LRU.

e Farthest-in-Future is a crucial benchmark for evaluating online caching algorithms.
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