
COMP 382: Reasoning about Algorithms

Greedy Algorithms: Huffman
Encoding, Caching Problem

Prof. Maryam Aliakbarpour

co-instructors: Prof. Anjum Chida & Prof. Konstantinos Mamouras

October 21, 2025

Today’s Lecture

1. Huffman Encoding

2. The Caching Problem

Reading:

• Chapter 5 of the Algorithms book [Dasgupta et al., 2006]

• Chapter 14 of [Roughgarden, 2022]

• Chapter 4.3 of [Tardos and Kleinberg, 2005]

2 / 52

https://people.eecs.berkeley.edu/~vazirani/algorithms/chap5.pdf

1. Huffman Encoding

A greedy algorithm form string compression

The World in Zeros and Ones

Storing a File

Characters in a file

are saved on a disk

as their binary code

equivalents (e.g., ASCII).

Digital Audio (MP3)

Sound is digitized into

numbers, then encoded

into a compressed

format like MP3.

Sending Text
to a Printer

Text is sent to a printer

as a sequence of bi-

nary data, which the

printer interprets.

4 / 52

The World in Zeros and Ones

Storing a File

Characters in a file

are saved on a disk

as their binary code

equivalents (e.g., ASCII).

Digital Audio (MP3)

Sound is digitized into

numbers, then encoded

into a compressed

format like MP3.

Sending Text
to a Printer

Text is sent to a printer

as a sequence of bi-

nary data, which the

printer interprets.

4 / 52

The World in Zeros and Ones

Storing a File

Characters in a file

are saved on a disk

as their binary code

equivalents (e.g., ASCII).

Digital Audio (MP3)

Sound is digitized into

numbers, then encoded

into a compressed

format like MP3.

Sending Text
to a Printer

Text is sent to a printer

as a sequence of bi-

nary data, which the

printer interprets.

4 / 52

Encoding for Digitalization

An encoding is a scheme that maps a message (a sequence of characters) from an
alphabet into a message in another alphabet, most commonly binary digits (bits).

Example: ASCII (American Standard Code for Information Interchange) It assigns a
unique number (and thus a unique binary code) to every letter, digit, and punctuation
mark.

Character → 8-Bit Binary Code
a → 01100001

b → 01100010

: → 00111010

1 → 00110001

... → ...

Codeword

Code

5 / 52

Encoding for Digitalization

An encoding is a scheme that maps a message (a sequence of characters) from an
alphabet into a message in another alphabet, most commonly binary digits (bits).

Example: ASCII (American Standard Code for Information Interchange) It assigns a
unique number (and thus a unique binary code) to every letter, digit, and punctuation
mark.

Character → 8-Bit Binary Code
a → 01100001

b → 01100010

: → 00111010

1 → 00110001

... → ...

Codeword

Code

5 / 52

Encoding and Decoding

Example: Consider a string with four symbols: A, B, C, and D, and a 2-bit code for each
symbol

A→00 B→01 C→10 D→11

Encoding

ADB→ 00 11 01

Decoding

00 11 01→ ADB

Data transmission

6 / 52

Encoding and Decoding

Example: Consider a string with four symbols: A, B, C, and D, and a 2-bit code for each
symbol

A→00 B→01 C→10 D→11

Encoding

ADB→ 00 11 01

Decoding

00 11 01→ ADB

Data transmission

6 / 52

Fixed Length Code

A fixed length code uses the same number of bits for each symbol.

Example: If we use this 2-bit code to encode a string of length 130 million bits, this fixed
length code requires:

130 million symbols× 2 bits/symbol = 260 million bits.

But what if the symbols appear with different frequencies?

Symbol Frequency
A 70 million
B 3 million
C 20 million
D 37 million

7 / 52

Variable Length Code

Idea: Can we use shorter codewords for frequent symbols (like A) and longer ones for
infrequent symbols (like B)?

We can have a variable-length code: A=0, B=001, C=11, D=01.

This variable length code requires:

• A (1 bit): 70 mil .× 1 = 70 million bits

• B (3 bits): 3 mil .× 3 = 9 million bits

• C (2 bits): 20 mil × 2 = 40 million bits

• D (2 bits): 37 mil × 2 = 74 million bits

193 million bits

↓ %25 reduction in the size

8 / 52

Variable Length Code

Idea: Can we use shorter codewords for frequent symbols (like A) and longer ones for
infrequent symbols (like B)?

We can have a variable-length code: A=0, B=001, C=11, D=01.

This variable length code requires:

• A (1 bit): 70 mil .× 1 = 70 million bits

• B (3 bits): 3 mil .× 3 = 9 million bits

• C (2 bits): 20 mil × 2 = 40 million bits

• D (2 bits): 37 mil × 2 = 74 million bits

193 million bits ↓ %25 reduction in the size

8 / 52

The Fundamental Question

What is the most efficient way to encode a string?

• What properties must a code have to be instantly and unambiguously decodable?

• Given the frequency of each symbol, find the valid code that produces the shortest
possible encoded message.

9 / 52

The Fundamental Question

What is the most efficient way to encode a string?

• What properties must a code have to be instantly and unambiguously decodable?

• Given the frequency of each symbol, find the valid code that produces the shortest
possible encoded message.

9 / 52

The Prefix-Free Property

The Challenge: Variable-length codes can be ambiguous. In our example, the bit-string
001 is undecipherable. It could be AD or B.

This happens because the code for A is a

prefix of the code for B:

0 0 1

B

A D

The Solution: Prefix-Free Codes!

We ensure that our encoding follows this rule: No codeword is a prefix of any other
codeword. This property ensures that any encoded string is uniquely decipherable.

10 / 52

The Prefix-Free Property

The Challenge: Variable-length codes can be ambiguous. In our example, the bit-string
001 is undecipherable. It could be AD or B. This happens because the code for A is a

prefix of the code for B:

0 0 1

B

A D

The Solution: Prefix-Free Codes!

We ensure that our encoding follows this rule: No codeword is a prefix of any other
codeword. This property ensures that any encoded string is uniquely decipherable.

10 / 52

The Prefix-Free Property

The Challenge: Variable-length codes can be ambiguous. In our example, the bit-string
001 is undecipherable. It could be AD or B. This happens because the code for A is a

prefix of the code for B:

0 0 1

B

A D

The Solution: Prefix-Free Codes!

We ensure that our encoding follows this rule: No codeword is a prefix of any other
codeword. This property ensures that any encoded string is uniquely decipherable.

10 / 52

Binary Tree Representation

Any prefix-free code can be represented by a full binary tree (where every internal node
has two children).

[unwasteful]
Prefix-Free Code

Full Binary Tree⇔

11 / 52

Binary Tree Representation

How it works:

• The symbols (A, B, C, D) are the leaves of
the tree.

• The path from the root to a leaf generates its
codeword, using 0 for a left branch and 1 for
a right branch.

Decoding: Start at the root and follow the path
based on the input bits. When you reach a leaf,
output the symbol and return to the root.

A

D

B C

0 1

0 1

0 1

12 / 52

Binary Tree Representation

How it works:

• The symbols (A, B, C, D) are the leaves of
the tree.

• The path from the root to a leaf generates its
codeword, using 0 for a left branch and 1 for
a right branch.

Decoding: Start at the root and follow the path
based on the input bits. When you reach a leaf,
output the symbol and return to the root.

A

D

B C= 001

0 1

0 1

0 1

12 / 52

Binary Tree Representation

How it works:

• The symbols (A, B, C, D) are the leaves of
the tree.

• The path from the root to a leaf generates its
codeword, using 0 for a left branch and 1 for
a right branch.

Decoding: Start at the root and follow the path
based on the input bits. When you reach a leaf,
output the symbol and return to the root.

A

D

B C= 001

0 1

0 1

0 1

12 / 52

Binary Tree Representation

• Why is this code prefix-free?

If a symbol was at an internal node, it would
be a prefix for all of its successors. Having the
symbols in the leaves implies that no code-
word is the prefix of another one.

• Why do we consider only full binary trees?

If a node has only a single child, we can im-
prove the code by removing that node. This
change shortens the codeword’s length with-
out causing any issues.

A

D

B C

0 1

0 1

0 1

13 / 52

Binary Tree Representation

• Why is this code prefix-free?

If a symbol was at an internal node, it would
be a prefix for all of its successors. Having the
symbols in the leaves implies that no code-
word is the prefix of another one.

• Why do we consider only full binary trees?

If a node has only a single child, we can im-
prove the code by removing that node. This
change shortens the codeword’s length with-
out causing any issues.

A

D

B C= 001

0 1

0 1

0 1

13 / 52

The Fundamental Question

What is the most efficient way to encode a string?

=
What is the optimal prefix-free code/binary tree that minimizes the

message length based on symbol frequencies?

We will now explore Huffman’s algorithm, a classic and elegant case where a simple
greedy strategy is provably optimal for solving the prefix-free data compression problem.

14 / 52

The Fundamental Question

What is the most efficient way to encode a string?

=
What is the optimal prefix-free code/binary tree that minimizes the

message length based on symbol frequencies?

We will now explore Huffman’s algorithm, a classic and elegant case where a simple
greedy strategy is provably optimal for solving the prefix-free data compression problem.

14 / 52

Defining Cost of a Tree

Suppose we have n symbols in alphabet Σ, and the fa denotes the frequency of element a.

The cost of a tree, denoted by T , is the total length of the encoded message, which can
be expressed in terms of the weighted sum of the path lengths.

Cost: L(T) :=
∑
x∈Σ

fx × (length of codeword for symbol x)

=
∑
x∈Σ

fx × (depth of symbol x)

15 / 52

Defining Cost of a Tree

Suppose we have n symbols in alphabet Σ, and the fa denotes the frequency of element a.

The cost of a tree, denoted by T , is the total length of the encoded message, which can
be expressed in terms of the weighted sum of the path lengths.

Cost: L(T) :=
∑
x∈Σ

fx × (length of codeword for symbol x)

=
∑
x∈Σ

fx × (depth of symbol x)

15 / 52

Huffman’s Greedy Algorithm

The core insight: The two symbols with the smallest frequencies must be siblings at the
lowest level of the optimal tree.

The Greedy Strategy

1. Identify the two symbols with the lowest frequencies.

2. Join them as children of a new parent node. This parent’s frequency is the sum of its
children’s frequencies (fi + fj).

3. Remove the original two symbols from the list and add this new parent node.

4. Repeat this process until only one node remains—the root of the tree.

16 / 52

Huffman Algorithm: An Example

B:3 C:20 D:37 A:70

B:3 C:20

BC:23

0

1

D:37

BCD:60

0

1

A:70

ABCD:130

0

1

Symbol Frequency
A 70 million
B 3 million
C 20 million
D 37 million

The Huffman algorithm gives us the following code:

A→1 B→000 C→001 D→01

Total length: 213 million bits

↓ %18 reduction in the size

17 / 52

Huffman Algorithm: An Example

D:37 A:70

B:3 C:20

BC:23

B:3 C:20

BC:23

0

1

D:37

BCD:60

0

1

A:70

ABCD:130

0

1

Symbol Frequency
A 70 million
B 3 million
C 20 million
D 37 million

The Huffman algorithm gives us the following code:

A→1 B→000 C→001 D→01

Total length: 213 million bits ↓ %18 reduction in the size

17 / 52

Huffman Algorithm: An Example

A:70
B:3 C:20

BC:23

D:37

BCD:60

B:3 C:20

BC:23

0

1

D:37

BCD:60

0

1

A:70

ABCD:130

0

1

Symbol Frequency
A 70 million
B 3 million
C 20 million
D 37 million

The Huffman algorithm gives us the following code:

A→1 B→000 C→001 D→01

Total length: 213 million bits ↓ %18 reduction in the size

17 / 52

Huffman Algorithm: An Example

B:3 C:20

BC:23

D:37

BCD:60

A:70

ABCD:130

B:3 C:20

BC:23

0

1

D:37

BCD:60

0

1

A:70

ABCD:130

0

1

Symbol Frequency
A 70 million
B 3 million
C 20 million
D 37 million

The Huffman algorithm gives us the following code:

A→1 B→000 C→001 D→01

Total length: 213 million bits ↓ %18 reduction in the size

17 / 52

Huffman Algorithm: An Example

B:3 C:20

BC:23

0

1

D:37

BCD:60

0

1

A:70

ABCD:130

0

1

Symbol Frequency
A 70 million
B 3 million
C 20 million
D 37 million

The Huffman algorithm gives us the following code:

A→1 B→000 C→001 D→01

Total length: 213 million bits ↓ %18 reduction in the size

17 / 52

Huffman Algorithm: An Example

B:3 C:20

BC:23

0

1

D:37

BCD:60

0

1

A:70

ABCD:130

0

1

Symbol Frequency
A 70 million
B 3 million
C 20 million
D 37 million

The Huffman algorithm gives us the following code:

A→1 B→000 C→001 D→01

Total length: 213 million bits ↓ %18 reduction in the size
17 / 52

The Algorithm in Pseudocode

Input: An array ‘f‘ of frequencies for ‘n‘ symbols.
Data Structure: Use a priority queue ‘H‘ to find minimums.

procedure Huffman(f)

1. Initialize: Insert all ‘n‘ symbols into the priority queue ‘H‘.

2. Iterate n − 1 times (from k = n + 1 to 2n − 1):
• Extract the two nodes with the minimum frequencies:
i = deletemin(H), j = deletemin(H).

• Create a new parent node ‘k‘ with children ‘i‘ and ‘j‘.

• Set the new node’s frequency: f[k] = f[i] + f[j].

• Insert the new node ‘k‘ back into ‘H‘.

The algorithm’s runtime is O(n log n).

18 / 52

Proof of Optimality

Theorem

For every alphabet Σ and non-negative symbol frequencies {fx}x∈Σ, the Huffman algorithm
outputs a prefix-free code with the minimum-possible encoding length.

In other words, the algorithm finds a full binary tree (a Σ-tree) with the minimum
possible weighted leaf depth, where the average is weighted by symbol frequencies.

L(T) =
∑
x∈Σ

fx · (depth of leaf x in T)

19 / 52

Proof of Optimality

Theorem

For every alphabet Σ and non-negative symbol frequencies {fx}x∈Σ, the Huffman algorithm
outputs a prefix-free code with the minimum-possible encoding length.

In other words, the algorithm finds a full binary tree (a Σ-tree) with the minimum
possible weighted leaf depth, where the average is weighted by symbol frequencies.

L(T) =
∑
x∈Σ

fx · (depth of leaf x in T)

19 / 52

Proof by Induction

• Statement:

P(n)← “The Huffman algorithm is correct for any alphabet of size at most n.”

• Base Case: P(2) For an alphabet with two symbols, Huffman’s algorithm assigns one
symbol the code ‘0’ and the other ‘1’. This is trivially optimal.

• Inductive Hypothesis: Assume P(n − 1) is true for n > 2. That
is, assume Huffman’s algorithm is correct for all alphabets with size
less than n.

• Inductive Step: We must prove P(n) is true, using the inductive
hypothesis.

20 / 52

Proof by Induction

• Statement:

P(n)← “The Huffman algorithm is correct for any alphabet of size at most n.”

• Base Case: P(2) For an alphabet with two symbols, Huffman’s algorithm assigns one
symbol the code ‘0’ and the other ‘1’. This is trivially optimal.

• Inductive Hypothesis: Assume P(n − 1) is true for n > 2. That
is, assume Huffman’s algorithm is correct for all alphabets with size
less than n.

• Inductive Step: We must prove P(n) is true, using the inductive
hypothesis.

20 / 52

Proof by Induction

• Statement:

P(n)← “The Huffman algorithm is correct for any alphabet of size at most n.”

• Base Case: P(2) For an alphabet with two symbols, Huffman’s algorithm assigns one
symbol the code ‘0’ and the other ‘1’. This is trivially optimal.

• Inductive Hypothesis: Assume P(n − 1) is true for n > 2. That
is, assume Huffman’s algorithm is correct for all alphabets with size
less than n.

• Inductive Step: We must prove P(n) is true, using the inductive
hypothesis.

20 / 52

Proof by Induction

• Statement:

P(n)← “The Huffman algorithm is correct for any alphabet of size at most n.”

• Base Case: P(2) For an alphabet with two symbols, Huffman’s algorithm assigns one
symbol the code ‘0’ and the other ‘1’. This is trivially optimal.

• Inductive Hypothesis: Assume P(n − 1) is true for n > 2. That
is, assume Huffman’s algorithm is correct for all alphabets with size
less than n.

• Inductive Step: We must prove P(n) is true, using the inductive
hypothesis.

20 / 52

Proof Strategy: High-Level Plan

Let a and b be the symbols with the two smallest frequencies. The proof hinges on two
main ideas.

• Claim #1 guarantees that Huffman’s algorithm finds the best possible tree among
the set of trees where a and b are siblings.

• Claim #2 (Exchange Argument) guarantees that there is an optimal tree where
the two lowest-frequency symbols, a and b, are siblings.

• Combining these two ideas, the tree produced by Huffman’s algorithm must be an
optimal tree.

21 / 52

Proof Strategy: High-Level Plan

• Goal: Prove Huffman’s algorithm finds
the optimal tree in the set of all trees T
(the outer circle).

• Claim #1: The algorithm finds the op-
timal tree within the restricted set Tab
(the inner circle).

• Claim #2: An optimal tree from T is
guaranteed to also be in Tab.

• Conclusion: Therefore, finding the op-
timum in the inner circle is sufficient to
find the global optimum.

All trees T

Tab

T ∗

T ← all possible trees
Tab ← trees where a and b as siblings.

22 / 52

Proof Strategy: High-Level Plan

• Goal: Prove Huffman’s algorithm finds
the optimal tree in the set of all trees T
(the outer circle).

• Claim #1: The algorithm finds the op-
timal tree within the restricted set Tab
(the inner circle).

• Claim #2: An optimal tree from T is
guaranteed to also be in Tab.

• Conclusion: Therefore, finding the op-
timum in the inner circle is sufficient to
find the global optimum.

All trees T

Tab

T ∗

T ← all possible trees
Tab ← trees where a and b as siblings.

22 / 52

Proof Strategy: High-Level Plan

• Goal: Prove Huffman’s algorithm finds
the optimal tree in the set of all trees T
(the outer circle).

• Claim #1: The algorithm finds the op-
timal tree within the restricted set Tab
(the inner circle).

• Claim #2: An optimal tree from T is
guaranteed to also be in Tab.

• Conclusion: Therefore, finding the op-
timum in the inner circle is sufficient to
find the global optimum.

All trees T

Tab

T ∗

T ← all possible trees
Tab ← trees where a and b as siblings.

22 / 52

Proof Strategy: High-Level Plan

• Goal: Prove Huffman’s algorithm finds
the optimal tree in the set of all trees T
(the outer circle).

• Claim #1: The algorithm finds the op-
timal tree within the restricted set Tab
(the inner circle).

• Claim #2: An optimal tree from T is
guaranteed to also be in Tab.

• Conclusion: Therefore, finding the op-
timum in the inner circle is sufficient to
find the global optimum.

All trees T

Tab

T ∗

T ← all possible trees
Tab ← trees where a and b as siblings.

22 / 52

Claim #1: Optimality in a Restricted Set

Lemma (Optimality in Tab)

Suppose we have an alphabet Σ of size n. If Huffman’s algorithm outputs an optimal tree
for any alphabet of size n − 1, then the output of the Huffman algorithm minimizes the
weighted leaf depth over all Σ-trees in which a and b are siblings.

23 / 52

Proving Claim #1: Correspondence

Consider a new alphabet Σ′ where we “fuse” a and b into a new pseudo-symbol ’ab’.

• The frequency of ’ab’ is fab = fa + fb.

• Σ′ = (Σ \ {a, b}) ∪ {ab}
• |Σ′| = n − 1

T’ T’
ab (ab)

a b
T

24 / 52

Proving Claim #1: Correspondence

Consider a new alphabet Σ′ where we “fuse” a and b into a new pseudo-symbol ’ab’.

• The frequency of ’ab’ is fab = fa + fb.

• Σ′ = (Σ \ {a, b}) ∪ {ab}
• |Σ′| = n − 1

T’ T’
ab (ab)

a b
T

24 / 52

Proving Claim #1: Preserving Cost

Let T ′ be a Σ′-tree and T be the corresponding tree in Tab. The weighted leaf depths of
T and T ′ are related by:

L(T) = L(T ′) + fa + fb

Proof: For any symbol x ̸= a, b, ab, its depth is the same in T and T ′. The leaves for a
and b in T are one level deeper than the leaf for ’ab’ in T ′.

L(T)− L(T ′) = fa · dT (a) + fb · dT (b) − fab · dT ′(ab)

= fa · (dT ′(ab) + 1) + fb · (dT ′(ab) + 1)− (fa + fb) · dT ′(ab)

= fa + fb

25 / 52

Proving Claim #1: Preserving Cost

Let T ′ be a Σ′-tree and T be the corresponding tree in Tab. The weighted leaf depths of
T and T ′ are related by:

L(T) = L(T ′) + fa + fb

Proof: For any symbol x ̸= a, b, ab, its depth is the same in T and T ′. The leaves for a
and b in T are one level deeper than the leaf for ’ab’ in T ′.

L(T)− L(T ′) = fa · dT (a) + fb · dT (b) − fab · dT ′(ab)

= fa · (dT ′(ab) + 1) + fb · (dT ′(ab) + 1)− (fa + fb) · dT ′(ab)

= fa + fb

25 / 52

Proving Claim #1: The Correspondence

There is a one-to-one correspondence between:

Σ′-trees (for
the smaller alphabet)

Tab := Σ-trees where
a and b are siblings⇔

T ′ T

L(T ′) L(T) = L(T ′) + fa + fbmin L(T ′) minL(T) = min L(T ′) + fa + fb

Since fa + fb is a constant, a tree T is optimal in Tab if and only if the corresponding T ′

is an optimal Σ′-tree.

26 / 52

Proving Claim #1: The Correspondence

There is a one-to-one correspondence between:

Σ′-trees (for
the smaller alphabet)

Tab := Σ-trees where
a and b are siblings⇔

T ′ T

L(T ′) L(T) = L(T ′) + fa + fbmin L(T ′) minL(T) = min L(T ′) + fa + fb

Since fa + fb is a constant, a tree T is optimal in Tab if and only if the corresponding T ′

is an optimal Σ′-tree. 26 / 52

Proving Claim #1: The Correspondence

There is a one-to-one correspondence between:

Σ′-trees (for
the smaller alphabet)

Tab := Σ-trees where
a and b are siblings⇔

T ′ T

L(T ′) L(T) = L(T ′) + fa + fb

min L(T ′) minL(T) = min L(T ′) + fa + fb

Since fa + fb is a constant, a tree T is optimal in Tab if and only if the corresponding T ′

is an optimal Σ′-tree. 26 / 52

Proving Claim #1: The Correspondence

There is a one-to-one correspondence between:

Σ′-trees (for
the smaller alphabet)

Tab := Σ-trees where
a and b are siblings⇔

T ′ T

L(T ′) L(T) = L(T ′) + fa + fb

min L(T ′) minL(T) = min L(T ′) + fa + fb

Since fa + fb is a constant, a tree T is optimal in Tab if and only if the corresponding T ′

is an optimal Σ′-tree. 26 / 52

Proving Claim #1: Putting It All Together

We can now connect the pieces to prove Main Idea #1:

1. Huffman’s algorithm on Σ begins by merging a and b. The rest is equivalent to running
it on the residual problem (Σ′), so THuff lies in Tab and corresponds to a residual tree
T ′
Huff on Σ′.

2. By the inductive hypothesis (since |Σ′| = k − 1), T ′
Huff is an optimal Σ′-tree.

3. Because the cost mapping preserves optimality, THuff must be the optimal tree among
all trees in Tab.

Thus, Huffman’s algorithm is optimal over the set Tab, which implies Claim #1.

27 / 52

Proving Claim #1: Putting It All Together

We can now connect the pieces to prove Main Idea #1:

1. Huffman’s algorithm on Σ begins by merging a and b. The rest is equivalent to running
it on the residual problem (Σ′), so THuff lies in Tab and corresponds to a residual tree
T ′
Huff on Σ′.

2. By the inductive hypothesis (since |Σ′| = k − 1), T ′
Huff is an optimal Σ′-tree.

3. Because the cost mapping preserves optimality, THuff must be the optimal tree among
all trees in Tab.

Thus, Huffman’s algorithm is optimal over the set Tab, which implies Claim #1.

27 / 52

Proving Claim #1: Putting It All Together

We can now connect the pieces to prove Main Idea #1:

1. Huffman’s algorithm on Σ begins by merging a and b. The rest is equivalent to running
it on the residual problem (Σ′), so THuff lies in Tab and corresponds to a residual tree
T ′
Huff on Σ′.

2. By the inductive hypothesis (since |Σ′| = k − 1), T ′
Huff is an optimal Σ′-tree.

3. Because the cost mapping preserves optimality, THuff must be the optimal tree among
all trees in Tab.

Thus, Huffman’s algorithm is optimal over the set Tab, which implies Claim #1.

27 / 52

Claim #2: An Optimal solution exists in restricted set

Lemma

There is an optimal tree where the two lowest-frequency symbols, a and b, are siblings.

All trees T

Tab

T ∗

28 / 52

Proving Claim #2: The Exchange Argument

We now prove that an optimal tree must exist in Tab.

Let T ∗ be an arbitrary optimal Σ-tree. Let x and y be two symbols that are siblings at
the deepest level of T ∗.

If {a, b} = {x , y}, we are done.

If not, we create a new tree T̃ by swapping
the positions of a and x .

Let’s compare the cost:

L(T ∗)− L(T̃)

= (fx − fa) · (dT∗(x)− dT∗(a))

≥ 0

x y

T ∗ : An optimal tree

a

swap

29 / 52

Proving Claim #2: The Exchange Argument

We now prove that an optimal tree must exist in Tab.

Let T ∗ be an arbitrary optimal Σ-tree. Let x and y be two symbols that are siblings at
the deepest level of T ∗.

If {a, b} = {x , y}, we are done.

If not, we create a new tree T̃ by swapping
the positions of a and x .

Let’s compare the cost:

L(T ∗)− L(T̃)

= (fx − fa) · (dT∗(x)− dT∗(a))

≥ 0

x y

T ∗ : An optimal tree

a

swap

29 / 52

Proving Claim #2: The Exchange Argument

We now prove that an optimal tree must exist in Tab.

Let T ∗ be an arbitrary optimal Σ-tree. Let x and y be two symbols that are siblings at
the deepest level of T ∗.

If {a, b} = {x , y}, we are done.

If not, we create a new tree T̃ by swapping
the positions of a and x .

Let’s compare the cost:

L(T ∗)− L(T̃)

= (fx − fa) · (dT∗(x)− dT∗(a))

≥ 0

x y

T ∗ : An optimal tree

a

swap

29 / 52

Proving Claim #2: The Math

As long as fa ≤ fx , by swapping leaf a with a leaf x at the deepest level, the cost of the
tree does not increase.

Due to this fact we can swap a (the lowest frequency element) with x (the leaf at the
deepest level), without increasing the cost of the tree.

Therefore, L(T̃) ≤ L(T ∗), which means the new tree T̃ is also optimal.

We can similarly swap b with y and not increase the cost, to obtain another optimal tree
for which the symbols a and b are siblings.

Hence, a tree with the minimum cost exists that resides in Tab.

This proves Claim #2.

30 / 52

Proving Claim #2: The Math

As long as fa ≤ fx , by swapping leaf a with a leaf x at the deepest level, the cost of the
tree does not increase.

Due to this fact we can swap a (the lowest frequency element) with x (the leaf at the
deepest level), without increasing the cost of the tree.

Therefore, L(T̃) ≤ L(T ∗), which means the new tree T̃ is also optimal.

We can similarly swap b with y and not increase the cost, to obtain another optimal tree
for which the symbols a and b are siblings.

Hence, a tree with the minimum cost exists that resides in Tab.

This proves Claim #2.

30 / 52

Proving Claim #2: The Math

As long as fa ≤ fx , by swapping leaf a with a leaf x at the deepest level, the cost of the
tree does not increase.

Due to this fact we can swap a (the lowest frequency element) with x (the leaf at the
deepest level), without increasing the cost of the tree.

Therefore, L(T̃) ≤ L(T ∗), which means the new tree T̃ is also optimal.

We can similarly swap b with y and not increase the cost, to obtain another optimal tree
for which the symbols a and b are siblings.

Hence, a tree with the minimum cost exists that resides in Tab.

This proves Claim #2.

30 / 52

Proving Claim #2: The Math

As long as fa ≤ fx , by swapping leaf a with a leaf x at the deepest level, the cost of the
tree does not increase.

Due to this fact we can swap a (the lowest frequency element) with x (the leaf at the
deepest level), without increasing the cost of the tree.

Therefore, L(T̃) ≤ L(T ∗), which means the new tree T̃ is also optimal.

We can similarly swap b with y and not increase the cost, to obtain another optimal tree
for which the symbols a and b are siblings.

Hence, a tree with the minimum cost exists that resides in Tab.

This proves Claim #2.

30 / 52

Proving Claim #2: The Math

As long as fa ≤ fx , by swapping leaf a with a leaf x at the deepest level, the cost of the
tree does not increase.

Due to this fact we can swap a (the lowest frequency element) with x (the leaf at the
deepest level), without increasing the cost of the tree.

Therefore, L(T̃) ≤ L(T ∗), which means the new tree T̃ is also optimal.

We can similarly swap b with y and not increase the cost, to obtain another optimal tree
for which the symbols a and b are siblings.

Hence, a tree with the minimum cost exists that resides in Tab.

This proves Claim #2.

30 / 52

Conclusion of the Proof

• Claim #2 (Exchange Argument) guarantees that there is an optimal tree where
the two lowest-frequency symbols, a and b, are siblings.

• Claim #1 (Inductive Argument) guarantees that Huffman’s algorithm finds the
best possible tree among the set of trees where a and b are siblings.

• Combining these two ideas, the tree produced by Huffman’s algorithm must be an
optimal tree.

This completes the inductive step, and thus the proof of correctness for Huffman’s
algorithm.

Q.E.D.

31 / 52

The Caching Problem

A Greedy Algorithm, Minimizing Misses

The Caching Problem

The Setup: We have a set U of n data points stored in main memory. We have a
two-level memory system where we keep an extra copy of few of these data points.

• A small, fast cache of size k .

• A large, slow main memory.

Cache (size k)

Main Memory

Fast

Slow

Data Transfer

33 / 52

The Caching Problem

The Process:

• We process a sequence of m memory requests: d1, d2, . . . , dm.

• If request di is in the cache → Cache Hit (fast).
• If request di is NOT in the cache → Cache Miss (slow).

• We must fetch di from main memory.
• If the cache is full, we must evict an item to make space.

The Goal: Design an eviction policy (a schedule) that minimizes the total number of
cache misses.

Setting: We consider the “offline” setting where we have the knowledge of all future
requests.

34 / 52

The Caching Problem

The Process:

• We process a sequence of m memory requests: d1, d2, . . . , dm.

• If request di is in the cache → Cache Hit (fast).
• If request di is NOT in the cache → Cache Miss (slow).

• We must fetch di from main memory.
• If the cache is full, we must evict an item to make space.

The Goal: Design an eviction policy (a schedule) that minimizes the total number of
cache misses.

Setting: We consider the “offline” setting where we have the knowledge of all future
requests.

34 / 52

Caching: An Example (k = 3)

Let cache size k = 3.
Initial cache (t=0): a b c

cache (t = 1):cache (t = 1 & 2): d b c

cache (t = 3): a b c

Request sequence:

requests

d b a d a f c f a d

Miss! Hit! Miss!

Takeaway: Evicting a causes a refill at t = 2. Evicting c would have been better.

35 / 52

Caching: An Example (k = 3)

Let cache size k = 3.
Initial cache (t=0): a b c

cache (t = 1):cache (t = 1 & 2): d b c

cache (t = 3): a b c

Request sequence:

requests

d b a d a f c f a d

Miss! Hit! Miss!

Takeaway: Evicting a causes a refill at t = 2. Evicting c would have been better.

35 / 52

Caching: An Example (k = 3)

Let cache size k = 3.
Initial cache (t=0): a b c

cache (t = 1):cache (t = 1 & 2): d b c

cache (t = 3): a b c

Request sequence:

requests

d b a d a f c f a d

Miss!

Hit! Miss!

Takeaway: Evicting a causes a refill at t = 2. Evicting c would have been better.

35 / 52

Caching: An Example (k = 3)

Let cache size k = 3.
Initial cache (t=0): a b c

cache (t = 1):

cache (t = 1 & 2):

d b c

cache (t = 3): a b c

Request sequence:

requests

d b a d a f c f a d

Miss!

Hit! Miss!

Takeaway: Evicting a causes a refill at t = 2. Evicting c would have been better.

35 / 52

Caching: An Example (k = 3)

Let cache size k = 3.
Initial cache (t=0): a b c

cache (t = 1):cache (t = 1 & 2):

d b c

cache (t = 3): a b c

Request sequence:

requests

d b a d a f c f a d

Miss! Hit!

Miss!

Takeaway: Evicting a causes a refill at t = 2. Evicting c would have been better.

35 / 52

Caching: An Example (k = 3)

Let cache size k = 3.
Initial cache (t=0): a b c

cache (t = 1):

cache (t = 1 & 2): d b c

cache (t = 3): a b c

Request sequence:

requests

d b a d a f c f a d

Miss! Hit!

Miss!

Takeaway: Evicting a causes a refill at t = 2. Evicting c would have been better.

35 / 52

Caching: An Example (k = 3)

Let cache size k = 3.
Initial cache (t=0): a b c

cache (t = 1):

cache (t = 1 & 2): d b c

cache (t = 3): a b c

Request sequence:

requests

d b a d a f c f a d

Miss! Hit! Miss!

Takeaway: Evicting a causes a refill at t = 2. Evicting c would have been better.

35 / 52

Caching: An Example (k = 3)

Let cache size k = 3.
Initial cache (t=0): a b c

cache (t = 1):

cache (t = 1 & 2): d b c

cache (t = 3): a b c

Request sequence:

requests

d b a d a f c f a d

Miss! Hit! Miss!

Takeaway: Evicting a causes a refill at t = 2. Evicting c would have been better.

35 / 52

Caching: An Example (k = 3)

Let cache size k = 3.
Initial cache (t=0): a b c

cache (t = 1):

cache (t = 1 & 2): d b c

cache (t = 3): a b c

Request sequence:

requests

d b a d a f c f a d

Miss! Hit! Miss!

Takeaway: Evicting a causes a refill at t = 2. Evicting c would have been better.

35 / 52

A Greedy Strategy: Evict Farthest-in-Future

Belady’s Algorithm (Farthest-in-Future)

When a cache miss occurs on request di :

• Find the item currently in the cache that will be requested farthest in the future.

• Evict that item.

Intuition: Keep items that will be needed soon. Evicting an item we won’t need for a
long time (or ever again) seems like a safe bet.

36 / 52

Belady’s Algorithm: Evict Farthest-in-Future

Initial cache (t=0): a b c

cache (t = 1): a b d

Request sequence:

requests

d b a d a f c f a d

Miss!

Hit! Hit! Hit! Hit!

37 / 52

Belady’s Algorithm: Evict Farthest-in-Future

Initial cache (t=0): a b c

cache (t = 1): a b d

Request sequence:

requests

d b a d a f c f a d

Miss!

Hit! Hit! Hit! Hit!

37 / 52

Belady’s Algorithm: Evict Farthest-in-Future

Initial cache (t=0): a b c

cache (t = 1): a b d

Request sequence:

requests

d b a d a f c f a d

Miss!

Hit! Hit! Hit! Hit!

37 / 52

Belady’s Algorithm: Evict Farthest-in-Future

Initial cache (t=0): a b c

cache (t = 1): a b d

Request sequence:

requests

d b a d a f c f a d

Miss! Hit! Hit! Hit! Hit!

37 / 52

Reduced Schedules

A Canonical Form for Schedules

Reduced Schedules: A Canonical Form

Reduced schedule. Only loads an item when it is requested and not already in cache.

Does pre-loading help?

No! Because any schedule can be turned into a reduced one without increasing misses.

Suppose an algorithm prematurely loads an element f before any request to f . We can
construct a reduction S ′ that “pretends” to load f then actually loads f only at its first
request.

requests
d b a d a f c f a d

f is loaded here

39 / 52

Reduced Schedules: A Canonical Form

Reduced schedule. Only loads an item when it is requested and not already in cache.

Does pre-loading help?

No! Because any schedule can be turned into a reduced one without increasing misses.

Suppose an algorithm prematurely loads an element f before any request to f . We can
construct a reduction S ′ that “pretends” to load f then actually loads f only at its first
request.

requests
d b a d a f c f a d

f is loaded here

39 / 52

Reduced Schedules: A Canonical Form

Reduced schedule. Only loads an item when it is requested and not already in cache.

Does pre-loading help?

No! Because any schedule can be turned into a reduced one without increasing misses.

Suppose an algorithm prematurely loads an element f before any request to f . We can
construct a reduction S ′ that “pretends” to load f then actually loads f only at its first
request.

requests
d b a d a f c f a d

f is loaded here

39 / 52

Reduced Schedules: A Canonical Form

Reduced schedule. Only loads an item when it is requested and not already in cache.

Does pre-loading help?

No! Because any schedule can be turned into a reduced one without increasing misses.

Suppose an algorithm prematurely loads an element f before any request to f . We can
construct a reduction S ′ that “pretends” to load f then actually loads f only at its first
request.

requests
d b a d a f c f a d

f is loaded here

39 / 52

Reduction of a Schedule

If S brings f early (when f is not requested), define S ′ a be to be an schedule that does not load
f . S ′ can follow all the actions of S unless it involves f . The first event involving f is either:

• an eviction of f before any request — then the early load was unnecessary and S ′ avoids it; or

• the first request to f — then S ′ incurs the miss at that step, which we can charge to the early
operation of S .

Thus S ′ is reduced and brings in no more items than S ; the number of misses/evictions does not
increase.

requests

d b a d a f c f a d

f is loaded here

f is evicted here

first requested here

40 / 52

Reduction of a Schedule

If S brings f early (when f is not requested), define S ′ a be to be an schedule that does not load
f . S ′ can follow all the actions of S unless it involves f . The first event involving f is either:

• an eviction of f before any request — then the early load was unnecessary and S ′ avoids it; or

• the first request to f — then S ′ incurs the miss at that step, which we can charge to the early
operation of S .

Thus S ′ is reduced and brings in no more items than S ; the number of misses/evictions does not
increase.

requests

d b a d a f c f a d

f is loaded here f is evicted here

first requested here

40 / 52

Reduction of a Schedule

If S brings f early (when f is not requested), define S ′ a be to be an schedule that does not load
f . S ′ can follow all the actions of S unless it involves f . The first event involving f is either:

• an eviction of f before any request — then the early load was unnecessary and S ′ avoids it; or

• the first request to f — then S ′ incurs the miss at that step, which we can charge to the early
operation of S .

Thus S ′ is reduced and brings in no more items than S ; the number of misses/evictions does not
increase.

requests

d b a d a f c f a d

f is loaded here

f is evicted here

first requested here

40 / 52

Reduction of a Schedule

If S brings f early (when f is not requested), define S ′ a be to be an schedule that does not load
f . S ′ can follow all the actions of S unless it involves f . The first event involving f is either:

• an eviction of f before any request — then the early load was unnecessary and S ′ avoids it; or

• the first request to f — then S ′ incurs the miss at that step, which we can charge to the early
operation of S .

Thus S ′ is reduced and brings in no more items than S ; the number of misses/evictions does not
increase.

requests

d b a d a f c f a d

f is loaded here

f is evicted herefirst requested here

40 / 52

Why We Can Restrict to Reduced Schedules

Since every (possibly non-reduced) schedule can be transformed into an equally good or
better reduced schedule, we lose no generality by restricting our attention to reduced
schedules.

all schedules

reduced schedules n
u
m
b
er

of
m
is
se
s

S

S ′

reduction(S) = S ′
misses(S ′) ≤ misses(S)

41 / 52

Why We Can Restrict to Reduced Schedules

Since every (possibly non-reduced) schedule can be transformed into an equally good or
better reduced schedule, we lose no generality by restricting our attention to reduced
schedules.

all schedules

reduced schedules n
u
m
b
er

of
m
is
se
s

S

S ′

reduction(S) = S ′
misses(S ′) ≤ misses(S)

41 / 52

Why We Can Restrict to Reduced Schedules

Since every (possibly non-reduced) schedule can be transformed into an equally good or
better reduced schedule, we lose no generality by restricting our attention to reduced
schedules.

all schedules

reduced schedules n
u
m
b
er

of
m
is
se
s

S

S ′

reduction(S) = S ′
misses(S ′) ≤ misses(S)

41 / 52

Proof of Correctness

An Exchange Argument

Proof Idea: The Exchange Argument

We will show that the Farthest-in-Future schedule (SFF) is optimal.

1. Let S∗ be any reduced and optimal schedule. Our goal is to show that S∗ has at
least as many misses as SFF .

2. If S∗ and SFF are identical, we are done.

3. If not, we find the first decision where they differ.

4. We will then perform an exchange to modify S∗ to be more like SFF without in-
creasing the number of misses.

5. By repeating this process, we can transform S∗ into SFF entirely, proving SFF is
optimal.

43 / 52

Proof Idea: The Exchange Argument

We will show that the Farthest-in-Future schedule (SFF) is optimal.

1. Let S∗ be any reduced and optimal schedule. Our goal is to show that S∗ has at
least as many misses as SFF .

2. If S∗ and SFF are identical, we are done.

3. If not, we find the first decision where they differ.

4. We will then perform an exchange to modify S∗ to be more like SFF without in-
creasing the number of misses.

5. By repeating this process, we can transform S∗ into SFF entirely, proving SFF is
optimal.

43 / 52

Proof Idea: The Exchange Argument

We will show that the Farthest-in-Future schedule (SFF) is optimal.

1. Let S∗ be any reduced and optimal schedule. Our goal is to show that S∗ has at
least as many misses as SFF .

2. If S∗ and SFF are identical, we are done.

3. If not, we find the first decision where they differ.

4. We will then perform an exchange to modify S∗ to be more like SFF without in-
creasing the number of misses.

5. By repeating this process, we can transform S∗ into SFF entirely, proving SFF is
optimal.

43 / 52

Proof Idea: The Exchange Argument

We will show that the Farthest-in-Future schedule (SFF) is optimal.

1. Let S∗ be any reduced and optimal schedule. Our goal is to show that S∗ has at
least as many misses as SFF .

2. If S∗ and SFF are identical, we are done.

3. If not, we find the first decision where they differ.

4. We will then perform an exchange to modify S∗ to be more like SFF without in-
creasing the number of misses.

5. By repeating this process, we can transform S∗ into SFF entirely, proving SFF is
optimal.

43 / 52

Proof Idea: The Exchange Argument

We will show that the Farthest-in-Future schedule (SFF) is optimal.

1. Let S∗ be any reduced and optimal schedule. Our goal is to show that S∗ has at
least as many misses as SFF .

2. If S∗ and SFF are identical, we are done.

3. If not, we find the first decision where they differ.

4. We will then perform an exchange to modify S∗ to be more like SFF without in-
creasing the number of misses.

5. By repeating this process, we can transform S∗ into SFF entirely, proving SFF is
optimal.

43 / 52

Proof Step 1: The Inversion

Let dj = d be the first request on which S∗ and SFF act differently.

• Because S∗ is reduced, this happens on a cache miss for some item d .

• Before this step, both schedules have identical cache contents.
• At step j , to make room for d :

• SFF evicts e.
• S∗ evicts f .

Greedy Implication

By the greedy rule of SFF, e must be requested farther in the future than f .

44 / 52

Proof Step 1: The Inversion

S∗ cache:

t = j − 1 e f

SFF cache:

e f

t = j−− 1 e d d f

requests
d f e f

first inversion (t = j)

SFF evicts e.S∗ evicts f .

45 / 52

Proof Step 1: The Inversion

S∗ cache:

t = j − 1 e f

SFF cache:

e f

t = j−− 1 e d d f

requests
d f e f

first inversion (t = j) SFF evicts e.

S∗ evicts f .

45 / 52

Proof Step 1: The Inversion

S∗ cache:

t = j − 1 e f

SFF cache:

e f

t = j−− 1 e d d f

requests
d f e f

first inversion (t = j) SFF evicts e.S∗ evicts f .

45 / 52

Proof Step 1: The Inversion

S∗ cache:

t = j − 1 e f

SFF cache:

e f

t = j−− 1 e d d f

requests
d f e f

first inversion (t = j) SFF evicts e.S∗ evicts f .

45 / 52

Proof Step 2: The Exchange

Construct a new schedule S ′ from S∗ by changing one decision.

• Up to step j , S ′ behaves exactly like S∗.

• At step j , S ′ evicts e (like SFF) instead of f .
• After step j , S ′ follows S∗ whenever possible.

• events that do not involve f and e.

S∗ cache:

t = j−− 1 e d

S ′ cache:

d f

46 / 52

Proof Step 2: The Exchange

Construct a new schedule S ′ from S∗ by changing one decision.

• Up to step j , S ′ behaves exactly like S∗.

• At step j , S ′ evicts e (like SFF) instead of f .

• After step j , S ′ follows S∗ whenever possible.

• events that do not involve f and e.

S∗ cache:

t = j−− 1 e d

S ′ cache:

d f

46 / 52

Proof Step 2: The Exchange

Construct a new schedule S ′ from S∗ by changing one decision.

• Up to step j , S ′ behaves exactly like S∗.

• At step j , S ′ evicts e (like SFF) instead of f .
• After step j , S ′ follows S∗ whenever possible.

• events that do not involve f and e.

S∗ cache:

t = j−− 1 e d

S ′ cache:

d f

46 / 52

Proof Step 2: The Exchange

Construct a new schedule S ′ from S∗ by changing one decision.

• Up to step j , S ′ behaves exactly like S∗.

• At step j , S ′ evicts e (like SFF) instead of f .
• After step j , S ′ follows S∗ whenever possible.

• events that do not involve f and e.

S∗ cache:

t = j−− 1 e d

S ′ cache:

d f

46 / 52

Proof Step 2: The Exchange

The first problematic event at t = j ′:

S∗ actions:

• S∗ evicts e.

e d

• f is requested, c is evicted.

e d c

• e is requested.

S ′ actions:

• SFF evicts f.

d f

• Evict c , and bring back e.

d f c

• not going to happen...
A request for f must come earlier.

47 / 52

Proof Step 2: The Exchange

The first problematic event at t = j ′:

S∗ actions:

• S∗ evicts e.

e d

• f is requested, c is evicted.

e d c

• e is requested.

S ′ actions:

• SFF evicts f.

d f

• Evict c , and bring back e.

d f c

• not going to happen...
A request for f must come earlier.

47 / 52

Proof Step 2: The Exchange

The first problematic event at t = j ′:

S∗ actions:

• S∗ evicts e.

dj′ d

• f is requested, c is evicted.

e d c

• e is requested.

S ′ actions:

• SFF evicts f.

d f

• Evict c , and bring back e.

d f c

• not going to happen...
A request for f must come earlier.

47 / 52

Proof Step 2: The Exchange

The first problematic event at t = j ′:

S∗ actions:

• S∗ evicts e.

dj′ d

• f is requested, c is evicted.

e d c

• e is requested.

S ′ actions:

• SFF evicts f.

d dj′

• Evict c , and bring back e.

d f c

• not going to happen...
A request for f must come earlier.

47 / 52

Proof Step 2: The Exchange

The first problematic event at t = j ′:

S∗ actions:

• S∗ evicts e.

dj′ d

• f is requested, c is evicted.

e d c

• e is requested.

S ′ actions:

• SFF evicts f.

d dj′

• Evict c , and bring back e.

d f c

• not going to happen...
A request for f must come earlier.

47 / 52

Proof Step 2: The Exchange

The first problematic event at t = j ′:

S∗ actions:

• S∗ evicts e.

dj′ d

• f is requested, c is evicted.

e d f

• e is requested.

S ′ actions:

• SFF evicts f.

d dj′

• Evict c , and bring back e.

d f c

• not going to happen...
A request for f must come earlier.

47 / 52

Proof Step 2: The Exchange

The first problematic event at t = j ′:

S∗ actions:

• S∗ evicts e.

dj′ d

• f is requested, c is evicted.

e d f

• e is requested.

S ′ actions:

• SFF evicts f.

d dj′

• Evict c , and bring back e.

d f e

• not going to happen...
A request for f must come earlier.

47 / 52

Proof Step 2: The Exchange

The first problematic event at t = j ′:

S∗ actions:

• S∗ evicts e.

dj′ d

• f is requested, c is evicted.

e d f

• e is requested.

S ′ actions:

• SFF evicts f.

d dj′

• Evict c , and bring back e.

d f e

• not going to happen...
A request for f must come earlier.

47 / 52

Proof Step 3: Comparing Costs After the Exchange

After the exchange step, we obtained a new schedule S ′.

• S ′ performs no more evictions than the original S∗.

• However, S ′ might not be reduced—it could load some items earlier (e.g. e) than needed.

• Let S ′′ be the reduced version of S ′ obtained by delaying such loads until they are first
requested.

Key observation: Since the reduction never increases the number of misses,

#misses(S ′′) ≤ #misses(S ′) ≤ #misses(S∗).

Thus S ′′ is also optimal and now agrees with SFF through step j+1.

48 / 52

Proof Step 4: Concluding Optimality of SFF

Showing that SFF is optimal:

• Use contradiction on the maximum prefix where S∗ and SFF agree.

• Equivalently, prove by induction on the step index j .

• Repeat the exchange step until j reaches the full length of SFF.

Conclusion

The Farthest-in-Future schedule SFF is optimal.

49 / 52

Online Caching: Least Recently Used (LRU)

• A widely used practical strategy is Least Recently Used (LRU).

• Rule: On a miss, evict the item whose last request was longest ago in the past.

• Intuition (Locality of Reference):
• Recently accessed items are likely to be accessed again soon.
• Hence the past is a useful predictor for the near future.

• Parallel with Farthest-in-Future:
• LRU: Longest in the Past
• FF: Farthest in the Future

50 / 52

The Upshot

• Farthest-in-Future is a provably optimal greedy strategy for caching.

• Catch: It is an offline algorithm requiring perfect knowledge of future requests.

• In practice: We use online heuristics; the most common is LRU.

• Farthest-in-Future is a crucial benchmark for evaluating online caching algorithms.

51 / 52

References

Dasgupta, S., Papadimitriou, C. H., and Vazirani, U. (2006).

Algorithms.

McGraw-Hill, Inc., USA, 1 edition.

Roughgarden, T. (2022).

Algorithms Illuminated: Omnibus Edition.

Soundlikeyourself Publishing, LLC.

Tardos, E. and Kleinberg, J. (2005).

Algorithm Design.

Pearson.

52 / 52

	Huffman Encoding
	Fixed and Variable Length Codes
	Binary Tree Representation
	Proof of Optimality

	The Caching Problem
	Reduced Schedules
	Proof of Correctness

