COMP 382: Reasoning about Algorithms

Greedy Algorithms: Car Refu- P
eling Problem, Job Scheduling S

Prof. Maryam Aliakbarpour

co-instructors: Prof. Anjum Chida & Prof. Konstantinos Mamouras

October 16, 2025




Today’s Lecture

1. Introduction to Greedy Algorithms
2. Car Refueling Problem
3. Job Scheduling Problem

4. Huffman Encoding
Reading:
® Chapter 5 of the Algorithms book [Dasgupta et al., 2006]

e Chapter 13 of [Roughgarden, 2022]
e Chapter 14 of [Roughgarden, 2022]

2/51


https://people.eecs.berkeley.edu/~vazirani/algorithms/chap5.pdf

1. Introduction to Greedy Algorithms



What is a Greedy Algorithm?

® Solves an optimization problem:

® Maximize or minimize an objective
® Subject to constraints

e Builds the solution step by step

® At each step:

® Choose what looks best locally
® Once a choice is made, it is not changed later (irrevocable).

Key question: Do locally optimal choices lead to a global optimum?

451



A Classic Problem: Making Change

The Problem
How do you make change for a customer using the fewest possible coins? The coin
denominations are: 25¢, 10¢, b5¢, 1¢.

5/51



A Classic Problem: Making Change

The Problem
How do you make change for a customer using the fewest possible coins? The coin
denominations are: 25¢, 10¢, b5¢, 1¢.

The Greedy Strategy

At each step, pick the largest denomination coin that is less than or equal to the remaining
amount owed.

5/51



Example: Change for 67¢

The Goal: Make change for 67¢ by always choosing the largest possible coin at each
step.

Amount: 67¢

L 4




Example: Change for 67¢

The Goal: Make change for 67¢ by always choosing the largest possible coin at each
step.

Amount: 67¢ 42¢

L 4




Example: Change for 67¢

The Goal: Make change for 67¢ by always choosing the largest possible coin at each
step.

Amount: 67¢ 42¢ 17¢

L 4




Example: Change for 67¢

The Goal: Make change for 67¢ by always choosing the largest possible coin at each
step.

Amount: 67¢ 42¢ 17¢ 7¢

L 4




Example: Change for 67¢

The Goal: Make change for 67¢ by always choosing the largest possible coin at each
step.

Amount: 67¢ 42¢ 17¢ 7¢ 2¢

L 4




Example: Change for 67¢

The Goal: Make change for 67¢ by always choosing the largest possible coin at each
step.

Amount: 67¢ 42¢ 17¢ 7¢ 2¢ 1¢

L 4




Example: Change for 67¢

The Goal: Make change for 67¢ by always choosing the largest possible coin at each
step.

Amount: 67¢ 42¢ 17¢ 7¢ 2¢ 1¢ O¢

[\
?

6/51



Is the Greedy Approach Always Optimal?

For Standard U.S. Coins: Yes.

The greedy strategy of always picking the largest coin denomination (25¢, 10¢, 5¢, 1¢) is
proven to yield the optimal solution (the minimum number of coins).

7/51



Is the Greedy Approach Always Optimal?

For Standard U.S. Coins: Yes.

The greedy strategy of always picking the largest coin denomination (25¢, 10¢, 5¢, 1¢) is
proven to yield the optimal solution (the minimum number of coins).

Exercise: Prove this optimality for the U.S. coin system.

7/51



Is the Greedy Approach Always Optimal?

For Arbitrary Coin Systems: No.

A greedy approach does not guarantee a globally optimal solution for all sets of coin
denominations. The "locally best” choice can prevent finding the " globally best” solution.

8/51



Is the Greedy Approach Always Optimal?

For Arbitrary Coin Systems: No.

A greedy approach does not guarantee a globally optimal solution for all sets of coin
denominations. The "locally best” choice can prevent finding the " globally best” solution.

Counterexample: Consider a currency system with coins valued at 4¢, 3¢, and 1¢.
We want to make change for an amount of = 6¢.

8/51



Is the Greedy Approach Always Optimal?

For Arbitrary Coin Systems: No.

A greedy approach does not guarantee a globally optimal solution for all sets of coin
denominations. The "locally best” choice can prevent finding the " globally best” solution.

Counterexample: Consider a currency system with coins valued at 4¢, 3¢, and 1¢.
We want to make change for an amount of = 6¢.

Greedy Solution
® Take 4¢ (Remaining: 2¢)
® Take 1¢ (Remaining: 1¢)
¢ Take 1¢ (Remaining: 0¢)

Total: 3 coins

8/51



Is the Greedy Approach Always Optimal?

For Arbitrary Coin Systems: No.

A greedy approach does not guarantee a globally optimal solution for all sets of coin
denominations. The "locally best” choice can prevent finding the " globally best” solution.

Counterexample: Consider a currency system with coins valued at 4¢, 3¢, and 1¢.
We want to make change for an amount of = 6¢.

Greedy Solution Optimal Solution
® Take 4¢ (Remaining: 2¢) ® Take 3¢ (Remaining: 3¢)
® Take 1¢ (Remaining: 1¢) ® Take 3¢ (Remaining: 0¢)
¢ Take 1¢ (Remaining: 0¢)

Total: 3 coins Total: 2 coins

8/51



The Power and the Pitfall

® Often simple to design and understand.

9/51



The Power and the Pitfall

e Often simple to design and understand.

® Usually very efficient and fast.

9/51



The Power and the Pitfall

The Pitfal

® Often simple to design and understand. ® The “obvious” greedy choice can fail to

o produce a globally optimal solution.
® Usually very efficient and fast.

9/51



The Power and the Pitfall

The Power The Pitfall

® Often simple to design and understand. ® The “obvious” greedy choice can fail to
produce a globally optimal solution.

® Usually very efficient and fast.
Greedy algorithms are poorly suited for

complex strategic games, e.g., chess and
go.

9/51



The Power and the Pitfall

The Power The Pitfall

® Often simple to design and understand. ® The “obvious” greedy choice can fail to
produce a globally optimal solution.

® Usually very efficient and fast.
Greedy algorithms are poorly suited for

complex strategic games, e.g., chess and
go.

[ ® The most difficult part is proving that
! the algorithm is actually producing an

% optimal solution.

9/51



2. Car Refueling Problem

A greedy algorithm for car refueling



The Refueling Problem

The Setup:

® You are driving from A (position 0) to B.
® Your car’s range on a full tank is L miles.

® There are gas stations at known positions xi, x2, . .., Xp.

Goal: Find a refueling strategy that minimizes the total number of stops.

200 mi 500 mi 850 mi
Start (0 mi)
P
[ 2 @
A\ Range = L 2 B

-
‘‘‘‘‘‘‘

11/51



A Greedy Strategy: Farthest-First

When you need to refuel, how should you choose the next stop?

® Should you stop at the closest possible station?

® Should you stop at a station in the middle of your range?

12/51



A Greedy Strategy: Farthest-First

When you need to refuel, how should you choose the next stop?

® Should you stop at the closest possible station?

® Should you stop at a station in the middle of your range?

Optimal Greedy Strategy

From your current position, drive to the farthest reachable gas station within your range
L. Refuel there, and repeat the process.

This strategy maximizes your progress towards the destination with each stop. But is it
optimal?

12/51



Proof of Correctness: General Recipe

The proof of correctness for a greedy algorithm has two main steps:
® The produced solution is valid given the constraints of the problem.

® The final solution is optimal.

13/51



Proof of Correctness: General Recipe

The proof of correctness for a greedy algorithm has two main steps:
® The produced solution is valid given the constraints of the problem. Usually easy.

® The final solution is optimal. This is the main hurdle.

13/51



Proof of Correctness: General Recipe

The proof of correctness for a greedy algorithm has two main steps:

® The produced solution is valid given the constraints of the problem. Usually easy.

® The final solution is optimal. This is the main hurdle.

Common Techniques for Proving Optimality: The core idea is a comparison with an
optimal solution.
® Greedy Stays Ahead: Show that the greedy choice is always “better” than or equal
to the optimal choice at every step, leading to an equally good final result.

e Exchange Argument: Show that any differences between a supposed optimal solution
and the greedy solution can be “exchanged” to make the optimal solution more like
the greedy one, without making it worse.

13/51



Proving Optimality

To prove our “Farthest-First” strategy is optimal, we'll use a classic technique: Greedy
Stays Ahead.

1. Setup: Let's define two refueling strategies:

* G={g1,8,...,8¢«}: The sequence of stops chosen by our Greedy algorithm.
® O={o01,02,...,0m}: The sequence of stops in any Optimal solution.

14 /51



Proving Optimality

To prove our “Farthest-First” strategy is optimal, we'll use a classic technique: Greedy
Stays Ahead.

1. Setup: Let's define two refueling strategies:

* G={g1,8,...,8¢«}: The sequence of stops chosen by our Greedy algorithm.
® O={o01,02,...,0m}: The sequence of stops in any Optimal solution.

2. Goal: We want to prove that our greedy solution makes the minimum number of
stops, i.e., k = m.

14 /51



Proving Optimality

To prove our “Farthest-First” strategy is optimal, we'll use a classic technique: Greedy
Stays Ahead.

1. Setup: Let's define two refueling strategies:

* G={g1,8,...,8¢«}: The sequence of stops chosen by our Greedy algorithm.
® O={o01,02,...,0m}: The sequence of stops in any Optimal solution.

2. Goal: We want to prove that our greedy solution makes the minimum number of
stops, i.e., k = m.

3. Method: Greedy Stays Ahead. We will show that the greedy choice is always at
least as close to the destination as the optimal choice at every step.

14/51



Proof Part 1: “Greedy Stays Ahead” Lemma

Lemma

For every stop i, the greedy choice g; takes us at least as far as the optimal choice o;.
Formally:
g >o; foralli>1

Proof by Induction:

Greated by Jamie Dickinson 15/51
from Noun Project



Proof Part 1: “Greedy Stays Ahead” Lemma

e Base Case (i=1): From the start, the greedy algorithm picks the farthest reachable
station, g1. Any other choice, including the optimal first stop o1, must be reachable.
By definition of our greedy choice, g1 > o5.

___________
- -
______

- -~

-
- ~o
- ~

16 /51



Proof Part 1: “Greedy Stays Ahead” Lemma

e Base Case (i=1): From the start, the greedy algorithm picks the farthest reachable
station, g1. Any other choice, including the optimal first stop o1, must be reachable.
By definition of our greedy choice, g1 > o5.

Range =
——"“ o1 ~~.~~)
Start Optimal’s 1st stop

16 /51



Proof Part 1: “Greedy Stays Ahead” Lemma

e Base Case (i=1): From the start, the greedy algorithm picks the farthest reachable
station, g1. Any other choice, including the optimal first stop o1, must be reachable.
By definition of our greedy choice, g1 > o5.

Range =
—__—"— 01 é1~~'~~)
Feim
Start Optimal’s 1st stop Greedy's 1st stop

16 /51



Proof Part 1: “Greedy Stays Ahead” (Inductive Step)

Inductive Hypothesis: Assume the lemma holds for stop i — 1, so gj_1 > 0;_1.

L L
0j—1 8i—1

Optimal Pos Greedy Pos

17/51



Proof Part 1: “Greedy Stays Ahead” (Inductive Step)

Inductive Hypothesis: Assume the lemma holds for stop i — 1, so gj_1 > 0;_1.

Inductive Step (for stop i):

[ ] [ ]
0i—1 8i—1

Optimal Pos Greedy Pos

17/51



Proof Part 1: “Greedy Stays Ahead” (Inductive Step)

Inductive Hypothesis: Assume the lemma holds for stop i — 1, so gj_1 > 0;_1.

Inductive Step (for stop i):

® The optimal solution stops at o;, which must be reachable from o;_1.

o< o_1+1L

-
-="
-

Optimal Pos Greedy Pos 17/51



Proof Part 1: “Greedy Stays Ahead” (Inductive Step)

Inductive Hypothesis: Assume the lemma holds for stop i — 1, so gj_1 > 0;_1.

Inductive Step (for stop i):

® Since gj_1 > 0j_1, our car at g;_1 can reach farther than the car at o;_1.

0j<o_1+L<g_1+1L

- -
- -
- -~
- ~
- ~

-
-
-

17/51



Proof Part 1: “Greedy Stays Ahead” (Inductive Step)

Inductive Hypothesis: Assume the lemma holds for stop i — 1, so gj_1 > 0;_1.

Inductive Step (for stop i):

® This means station o; is also reachable from our position at gj_1.

0;<o 1+L<g 1+L and g = Lnaxij
Jxi<gia
L
IS CEEE TP o T
° ) .
0j—-1 8i-1

17/51



Proof Part 1: “Greedy Stays Ahead” (Inductive Step)

Inductive Hypothesis: Assume the lemma holds for stop i — 1, so gj_1 > 0;_1.

Inductive Step (for stop i):

® The greedy algorithm chooses the farthest station, g;. By definition, g; > o;.

Oiﬁg:
L
——__’: ----------- OI g,'..)
L L
0j—1 8i-1

17/51



Proof Part 2: Proving Optimality

Now we use the “Greedy Stays Ahead” lemma (g; > 0;) to show the greedy solution is
optimal.

Proof by Contradiction

Assume the greedy solution G is not optimal. This would mean that the greedy solution
makes more stops than the optimal solution, i.e., kK > m.

If k > m, then there is a stop gmny1 in the greedy solution. This stop was chosen because
the destination B was not reachable from the previous greedy stop, gm.

B—gn>1L

However, let’s consider the optimal solution. After its final stop, oy, it must be able to
reach the destination.
B—-o,<L

18/51



Proof Part 2: Proving Optimality

From our lemma, we know that g, > op,. This implies:

B—gn<B-opn

Combining these inequalities, we get:
L<B—-—gn<B—-o0on,<L

This simplifies to L < L, which is a contradiction!

Conclusion

Our assumption that the greedy solution is not optimal must be false. Therefore, the greedy
solution makes the same number of stops as the optimal solution (k = m) and is indeed
optimal.

19/51



3. Job Scheduling Problem

A greedy algorithm for job scheduling



A Scheduling Problem

The Setup: We are given n jobs to be processed on a single machine. Each job j has:

® A length (or processing time) /; > 0.
* A weight (or priority) w; > 0.

The Goal: Find an ordering of jobs that minimizes the sum of weighted completion
times:

min > w;Gj(o)
j=1

Where:

® o (sigma) represents a schedule, which is an ordering of the jobs.
® C;j(o) is the completion time of job j in that specific schedule.

21/51



How Completion Times Work

Completion Time C;: The time at which job j finishes processing.

(w2, b) (ws, )

Job 1 Job 2 Job 3
(w1, h)

! w 1 time

G G G

The completion times are calculated as follows:

e (=1
* G=h+h
'C3:/1+/2—|—/3

The cost is: wyl + W2(/1 + /2) + W3(/1 + b+ /3).

22/51



Special Case 1: Equal Lengths

If all job lengths are the same, we should schedule jobs in decreasing order of weight.

Give high-priority jobs smaller completion times.

w1

w2

w3

Wy

time

23/51



Special Case 2: Equal Weights

If all job weights are the same, we should schedule jobs in increasing order of length.

Get short jobs out of the way to minimize impact on later jobs.

h

h

i3

la

time

24/51



Potential Scores for General Case

Our special cases give conflicting advice for a short, low-weight job vs. a long,
high-weight job.

25 /51



Potential Scores for General Case

Our special cases give conflicting advice for a short, low-weight job vs. a long,
high-weight job.

We need a “score” that combines length and weight.
Then, we schedule jobs in decreasing order of this score.

25 /51



Potential Scores for General Case

Our special cases give conflicting advice for a short, low-weight job vs. a long,
high-weight job.

We need a “score” that combines length and weight.
Then, we schedule jobs in decreasing order of this score.

a N 4
Proposal 1: The Difference Proposal 2: The Ratio
Score = w; — |; Score = w;/|;
(GreedyDiff) (GreedyRatio)
k J N

25 /51



Comparing the Greedy Strategies

Let's test our two algorithms on a simple instance. Which job should go first?

Job 1
h=5w =3

¢ GreedyDiff prefers Job 2 (higher difference).

Job 2
/2:2,W2:1

Job 1 | Job 2
wi— I -2 -1
w;/l; 0.6 0.5

® GreedyRatio prefers Job 1 (higher ratio).

26 /51



The Winning Strategy

GreedyDiff Schedule (Job 2, Job 1)

Cost=(1-2)+(3-7)=23

Job 2 Job 1
/2:2,W2:1 /1:5,W1:3
G =2 G=7
GreedyRatio Schedule (Job 1, Job 2) Cost = (3-5)+(1-7) =22
Job 1 Job 2
/1:5,W1:3 12:2,W2:].
G =5 G=7

27/51



The Winning Algorithm: GreedyRatio

GreedyDiff is not optimal.

GreedyRatio is better for this instance. ~ —  Let's design an algorithm!

Greedy Strategy Based on GreedyRatio

1. For each job j, compute the score w;//;.

2. Sort the jobs in descending order of their scores.
3. Schedule the jobs in this sorted order.

Running Time: The algorithm is dominated by the sorting step, so its running time is
O(nlogn).

28/51



The Main Theorem

Theorem

For any set of jobs with positive lengths and weights, the GreedyRatio algorithm produces
a schedule with the minimum possible sum of weighted completion times.

29/51



The Exchange Argument: A General Technique

This is a powerful method for proving a greedy algorithm is correct. The core idea is to
show that any other solution can be transformed into the greedy one without increasing
the cost.

1. Start with an assumed optimal solution, ¢*, that is different from the greedy one, o.

30/51



The Exchange Argument: A General Technique

This is a powerful method for proving a greedy algorithm is correct. The core idea is to
show that any other solution can be transformed into the greedy one without increasing
the cost.

1. Start with an assumed optimal solution, ¢*, that is different from the greedy one, o.

2. Find a place where ¢* differs from the greedy choice. This is an “inversion”.

30/51



The Exchange Argument: A General Technique

This is a powerful method for proving a greedy algorithm is correct. The core idea is to
show that any other solution can be transformed into the greedy one without increasing
the cost.

1. Start with an assumed optimal solution, ¢*, that is different from the greedy one, o.
2. Find a place where ¢* differs from the greedy choice. This is an “inversion”.

3. Perform a small, local exchange to make o* look more like o.

30/51



The Exchange Argument: A General Technique

This is a powerful method for proving a greedy algorithm is correct. The core idea is to
show that any other solution can be transformed into the greedy one without increasing
the cost.

1. Start with an assumed optimal solution, ¢*, that is different from the greedy one, o.
2. Find a place where ¢* differs from the greedy choice. This is an “inversion”.
3. Perform a small, local exchange to make o* look more like o.

4. Show that this exchange does not increase the cost (and often improves it).

30/51



The Exchange Argument: A General Technique

This is a powerful method for proving a greedy algorithm is correct. The core idea is to
show that any other solution can be transformed into the greedy one without increasing
the cost.

1. Start with an assumed optimal solution, ¢*, that is different from the greedy one, o.

N

. Find a place where ¢* differs from the greedy choice. This is an “inversion”.
3. Perform a small, local exchange to make o* look more like o.

4. Show that this exchange does not increase the cost (and often improves it).

o1

. Argue that the greedy solution is at least as good as any optimal solution.

30/51



Proof Sketch: The Exchange Argument

[Assumption: for now suppose scores are unique.]

The proof works by showing that any schedule that is not the greedy schedule can be
improved.

1. Assume for contradiction that there is an optimal schedule o* that is different from

the greedy schedule o.

2. Since o* # o, there must be two adjacent jobs i and j in o* that are "out of order”
according to the greedy rule.
This is not necessarily the first step where the solutions differ.

3. We will swap these two jobs to create a new, better schedule, which contradicts the
assumption that ¢* was optimal.

31/51



Proof Sketch: The Inversion

An "out of order” pair is an inversion. In ¢*, we find adjacent jobs i, j where i is

scheduled before j, but:

Inversion

Other Jobs

Job i/

Job j

More Jobs

Optimal Schedule o*

32/51



Proof Sketch: The Swap

We create a new schedule ¢’ by swapping jobs / and ;.

Exchange!

T~

Other Jobs

Job i Job

More Jobs

Optimal Schedule o*

33/51



Proof Sketch: The Swap

We create a new schedule ¢’ by swapping jobs / and ;.

Exchange
Other Jobs Job i Job j More Jobs
Optimal Schedule o*
Other Jobs Job j Job i More Jobs

After Swap Schedule o’

33/51



Proof Sketch: Cost-Benefit of the Swap

How does the swap affect the total cost?

e Completion times of "Other Jobs" are unchanged.
® Completion time of j decreases by /;. Cost change: —w;l;.

® Completion time of i increases by /;. Cost change: +w;l;.

The total change in cost is:
A(COSt) = W,'/j — WJ/,

34/51



Proof Sketch: The Contradiction

From the previous slide, we know the change in cost is w;/; — w;l;.

From our initial assumption about the inversion, we know: 7 < %
i lj

35/51



Proof Sketch: The Contradiction

From the previous slide, we know the change in cost is w;/; — w;l;.

From our initial assumption about the inversion, we know: 9 < %
i lj

Multiplying by the positive values /;/; gives:

W,'/_,' < WJ'/,' — W,'/j—WJ'/,' <0

The change in cost is negative! The new schedule ¢’ is strictly better than o*.

Contradiction!
This contradicts our assumption that ¢* was optimal. Therefore, no such ¢* can exist, and
the greedy schedule must be optimal.

35/51



Why Is This Sufficient?

If any non-greedy schedule can be improved by a swap, then the greedy schedule must
already be optimal.

® We showed that whenever two adjacent jobs are out of greedy order, swapping them
strictly decreases the total cost.

® Therefore, any schedule that is not in greedy order can be transformed into a strictly
better one.

® Hence, the only schedule that cannot be improved is the greedy schedule itself.

Note that the uniqueness of the score assumption plays a central role here. Since 7 < %

the change in cost is strictly negative (not zero). Therefore, the optimal schedule is unique
— precisely the one produced by the greedy rule.

36/51



Possible Concluding Proofs

Strictly improving the optimal solution. The exchange step strictly improves any non-
greedy “optimal” schedule, which is impossible — an optimal schedule cannot be improved.
Therefore, no optimal schedule can differ from the greedy one.

37/51



Possible Concluding Proofs

Strictly improving the optimal solution. The exchange step strictly improves any non-
greedy “optimal” schedule, which is impossible — an optimal schedule cannot be improved.
Therefore, no optimal schedule can differ from the greedy one.

Proof by contradiction. Assume there exists an optimal schedule O that differs from the
greedy schedule G. Among all such optimal schedules, choose the one that is most similar
to G (i.e., matches G on the largest prefix of jobs).

Now, apply the exchange argument to O to obtain a new schedule O’ that is even closer
to G and has no higher cost. This contradicts our choice of O as the most similar optimal
schedule.

37/51



Possible Concluding Proofs

Strictly improving the optimal solution. The exchange step strictly improves any non-
greedy “optimal” schedule, which is impossible — an optimal schedule cannot be improved.
Therefore, no optimal schedule can differ from the greedy one.

Proof by contradiction. Assume there exists an optimal schedule O that differs from the
greedy schedule G. Among all such optimal schedules, choose the one that is most similar
to G (i.e., matches G on the largest prefix of jobs).

Now, apply the exchange argument to O to obtain a new schedule O’ that is even closer
to G and has no higher cost. This contradicts our choice of O as the most similar optimal
schedule.

Inductive completion. By repeatedly applying this exchange argument, we can transform
any valid schedule into the greedy one without increasing cost. Hence, the greedy schedule
is optimal. 37 /51



The Upshot

® Greedy algorithms build solutions via a sequence of myopic, locally optimal decisions.

® |t is often easy to propose one or more greedy algorithms for a problem.

® Most greedy algorithms are not correct. Always be skeptical!

® When a greedy algorithm is correct, proving it can be difficult. The exchange argu-
ment and greedy stays ahead are two powerful proof techniques.

38 /51



References

@ Dasgupta, S., Papadimitriou, C. H., and Vazirani, U. (2006).
Algorithms.
McGraw-Hill, Inc., USA, 1 edition.
@ Roughgarden, T. (2022).
Algorithms Illluminated: Omnibus Edition.
Soundlikeyourself Publishing, LLC.

51/51



	Introduction to Greedy Algorithms
	Car Refueling Problem
	Job Scheduling Problem
	Huffman Encoding
	Fixed and Variable Length Codes
	Binary Tree Representation


