Lecture 2 PAC Learning.

ern (R) = Pr [R mislabel p]

\n
$$
= Pr [PR and p \notin R]
$$
\n
$$
= Pr [PR and p \notin R]
$$
\n
$$
= Pr [PR and p \notin R]
$$
\n
$$
= Pr [PR and p \notin R]
$$
\nor is a trivial function of error is also defined based on the same D.

\nSolution:

\nAlgorithm:

\nI. Draw m samples (for sufficiently log c)

\n
$$
= Pr [PR and p \notin R]
$$

correctly label all the sample points

err (R) = Pr $[$ $p \in A]$ = $D(A)$ $p - Q$

by our definition of R, there is no sample point in $A := R \triangle R$

Idcally, we want: Pr $[$ # samples in $A = 0$] ≤ 6
D $\int_{0}^{\infty} \frac{m}{(1-\rho(A))^{m}} \frac{m}{(1-\epsilon)^{m}} \left(\frac{independent}{samples}\right)$ \leq e^{sin} set $m = \frac{log 16}{e}$ \leq $\frac{2}{3}$ => Hence, with probability at least 1-8 $err(\hat{R})$ \leq ϵ . $e^{ificient}$ + samples = $o(\frac{log 1/6}{\epsilon})$
time $o(m)$ Well behaved target class

Probably. Approximately. Correct (PAC)		
X. instance, space	set of all instances	
C: X \rightarrow \{+1, -1\}	concept	a. function to label elements
C. concept class. a collection of labeling functions		
C. concept class. a collection of label all instances		
D. forget. distribution. distribution over instances		
Sample/training data set	$\langle x_1, c^*(x_1) \rangle$	
$\langle x_1, c^*(x_2) \rangle$		

+ distribution free setting "distribation free setting
samples drawn from an arbitrary
hut enter is neusured according samples drawn from an arbitrary distribution. samples drawn from an arbitrary distribution.
but error is measured according to the same same distribution. some papers focus on specific class of distributions such as Gaussians. + We say we are in the realizable case if there e_{k} ists a concept $\zeta^{*}\in C$ that label all the instances in the domain perfectly the goal is to find an unknown unknown target concept c in a known concept class using labeled somp f_{ind} \hat{c} in C with small error w , h. prob. · Efficiency : # -
C with
samples. & fine samples E time

learning (Probably Approximately correct suppose that we have ^a concept class (over X . We say that C is PAC learnable if there exists an algorithm ^A ^s . + : [↓] EC , YD over ^X , ⁺ &, ^S -(0, 0.5) ^A receives ² , ⁶ , and samples(9., C14, ¹⁷ ---> < Un , C(Rul) where di's are iid samples from ^D. proper (ec] M Then , ^w . p. 21-5, A outputs ^C ^s . t. err((22 . The probability is taken over the randomness in the samples and any internal coin flips of ^A .

- Usually efficiency means : sample complexity & time complexity = $O(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array})$ + E ⁼ error parameter ^S - confidence parameter These two parameters capture two kinds of error : E : small discrepancy between concepts is not detectable. ϵ : with some small probability, the sample set with some small probability, the

other notation

true error : err (c) = P_r $(x,y)=0$ $(c(x) \neq y)$

training error : # samples in ^T $err(C) =$ H Samples in T
 $\frac{1}{s}$, $\frac{1}{t}$ Cex, $\frac{1}{t}$,

fraction of samples in the training $fraction$ of samples in the
set that \subset is mis-labeled.

ERM
In both example we picked concepts & and that were consistent with the samples in the training set What we did is called : ERM : Empirical Risk Minimization \hat{z} comes from samples error ERM algorithm : it finds a concept \hat{h} such that $\hat{er}(\hat{h})$ = 0

+ Uniform convergence. (UC) Class C has the uniform convergence property if \forall ε , ζ \in $(0,1)$, dist \bigcirc 3 m (as a function of E, S, H, but not D since we don't know D). s.t. for a training set of size m: Pr
 $T\sim D^m$ $\left[\forall c \in C : \left| \text{err}_T(c) - \text{err}(c) \right| \leq \epsilon \right] \geq 1-\epsilon$ Uniform convergence implies agrostic PAC Leurnability via EMR. $UC \implies VceC_{B}$ err_s(c) > opt+ \mathcal{E}_{12} $UC \implies C^* = the best option$ $\qquad \qquad \text{erv}(C^*) \leq OPT + E$ $rac{OPT + E}{2}$

There are two types of error in the agnostic setting : $err(\hat{c})$ < min $err(c)$ + \hat{c} two types a

c setting:

min err (c)

c 6 C

pp = approximation e \mathcal{E}_{est} := estimation error E_{app} = approximation error ↓ depends only to the choice of the class C = Is ^C rich enough to cupture how data is labeled? 6 larger Eapp Eest more complex \uparrow

TERM works for a finite class C if
we have enough samples. - Problem setup: samples $(x_1, y_1), \ldots, (x_m, y_m) \sim D$ P_r $(x,y) \sim D$ $C(x) \neq y$ $c \in C$: $enc(c)$: Realizable case $\frac{1}{s+1}$ err (c) = 0 Assume $1 c^* c C$ Goal find $\hat{c} \in C$ s.t. with probability $1-\delta$, err l \hat{c}) $\leq \epsilon$ $\sqrt{\frac{\rho_{row}}{\rho_{row}}}$ Bad hypotheres $C_{B} = \{c \in C \mid err(Cc) > E\}$

\n
$$
\begin{array}{r}\n \text{training set} \\
 \hline\n \text{err}_{T}(c) := \frac{|\n\{(*,j)\in T | c(a) \neq j\}|}{|T|} \\
 \text{This leading training samples}\n \end{array}
$$
\n

\n\n $M := \left\{ T \mid \exists c \in C_{B} \text{ s.t. } \hat{\text{err}}_{T}(c) = 0 \right\}$ \n

\n\n $u_{\text{pion observing T, we may pick } c + \text{hat}$ \n

\n\n $\begin{array}{r}\n \text{is a bad choice, but it "looked"} \\
 \hline\n \text{proof from ERM perspective, since } \\
 \text{err}_{T}(c) = 0.\n \end{array}$ \n

\n\n $0 \text{ar goal is to show observing a} \\
 \text{dataset } T \in M, \text{ happens only with} \\
 \text{proofoability 6.}\n$

\n\n $This is a \text{Rficient to prove } K.$ \n

 f_{ix} $c \in C_B$ what is the probability of err_{T} (c) = 0 P_{r} $[err_{T}(c) = 0]$ $= Pr_{T\cup\Lambda} [Y(x,y) 6T CCF) = Y$ $\begin{pmatrix} iid & b \\ jid & k \end{pmatrix} = \begin{pmatrix} P_{r} & c(d) - y \\ (d, y) - p \end{pmatrix}$ r
err(c) $\left\{e^{\frac{1}{2}t}\right\}$ $\left(1-\frac{1}{2}\right)$ $\left(1-\frac{1}{2}\right)$ $\left(1-\frac{1}{2}\right)$

Now, we are ready to bound $Pr_{T\sim D^{m}}[TEM]$ = $Pr_{T\sim0}$ [] c $\in C_{B}$ st $\hat{err}_{T}^{(0,s)}$ $=$ $\sum_{c \in C_{\beta}} Pr_{ro}$ [err_{r} ($= 0$] $\leq C_{B}$. $e^{-\epsilon m}$
 $\leq C_{B}$. $e^{-\epsilon m}$ set $m = Log(ICI/S)$ => Pr (ontputting a misleading of \leq 8 $\mathbf D$

 $\begin{array}{c|cc}\n\text{The agrostic case:} \\
\hline\n\text{What if there is}\n\\
\text{if there is}\n\end{array}$ The agrostic case: what it there is no perfect $\epsilon \in C$? \forall c G \cup corr (c) > 0 Goal roal
Find C E C s.t. $err(C^2)$ \leftarrow min $err(C)$ + ϵ $\begin{array}{ccc} \n 13 & no & perfect \\ \n 15 & no & perfect \\ \n 17 & (c) & & & 0 \\ \n 18 & 11 & 11 & 11 \\ \n 19 & 11 & 11 & 11 \\ \n 10 & 11 & 11 & 11 \\ \n 11 & 11 & 11 & 11 \\ \n 12 & 11 & 11 & 11 \\ \n 13 & 11 & 11 & 11 \\ \n 14 & 11 & 11 & 11 \\ \n 15 & 11 & 11 & 11 \\ \n 16 & 11 & 11 & 11 \\ \n 17 & 11 & 11 &$ cEC ⁼ OPT the best possible option

Uniform convergence implies agrostic PAC
Learnability via EMR. $UC \implies VceC_{B}$ err_s(c) > $oPT + 2V_2$ $UC \implies C^* = \text{the best option}$ $\text{erv}(C^*) \le OPT + E$ OPT OPT+E Perror Exercise Suppose we have a finite class C. and $ms0((log |cl/s))$ then $w.p.$ at least
1-8, for all $c^2 \in C$, we have: $|er_{s}$ (c) - er (c) < $\frac{2}{3}$

No free lunch theorem says if there is no universal learner? for a complex C even when ϵ app is 0, ϵ est > constant with some constant probability E_{app} is 0, $E_{est} \gg constant$
with some constant probability
[unless we have $D(UX)$ samples]

 \bullet & & \bullet 9 \bullet 9 \bullet & & & & & Suppose we have a set of $2n$ points There are $\frac{2^m}{2}$ possible labelings of these $2m$ points. Suppose C is the class of 2^m func. that assigns these labelings to these points.

Assume this is the Assume this
true labeling.
1 4 Fix a labeling of the points \int Now assume D is the uniform distribution on the zm points with their label. T \leftarrow Draw m samples from D (WLOG assume they are unique) How many function in C label T correctly ? 2^m P ⁼ ⁼ $rrcctl_{J}$? 2^m

{ c C (er_{T} (c) , 0 } G promising hypothese. IPI = 2 m/2 How many of them has error $<$ ϵ ?

 c is misleading if (err(c)> E $\int_{\text{and}}^{\infty} \frac{1}{\text{erf}} \cos \theta \, d\theta$ $M_{z=1}$ c \in Cerr (c) > & & err_T (c) = 0) IM1 $=\frac{|M|}{|P|}$.
IPI $= 2^m$ Pr[c $\in M$] a makes $rac{2}{2}$ PrL $c \in M$) $rac{1}{2}$ mak
a random concept $rac{1}{2}$ $\frac{P}{2}$ m.e in P mistakes m in expectation $= 2$. Pr [$\#$ mistake $\lt e$] $= 2$ (1-Pr[$\frac{1}{2}$ mistakes < $\frac{1}{2}$ -($\frac{1}{2}$ -0)] $\begin{pmatrix} m & (-2m(l_{1} - \epsilon)) \\ 2 & (l - \epsilon) \end{pmatrix}$ J
Hoeffding bound 22.099
 240

=> 0.99% of the promising concept are bad !

Def . Restriction of ^C to S See Restriction of C to S
Let S be a set of m points
domain X. S = {x,,..., xm}
The restriction of C to S is the Let ^S be ^a set of ^m points in Let S be a set of m
domain X. S = {x,,..., xm} The restriction of C to S is the set \mathcal{O} functions from S to $\{0, 1\}$ that of functions from S to 10.
con be derived from C. $C_{S} : \{(c11, c12, 1), \ldots, (n_{n})\}$ (CEC) where we represent each function From ISI S to $\{0,1\}$ as a vector in $\{0,1\}$ or $\{0,1\}$ Ri $C = {R_1, R_2, R_3}$ The restriction of C to S is the set
of functions from S to 10.15 that
con be derived from C.
 $C_{\leq} : \{(c(x_1), c(x_2), ..., c(x_n)) | c \in C\}$
where we represent each function from
S to 10.15 as a vector in 10.15¹⁵¹
or 10.15
 $\frac{R_1}{m$ \cdot $\begin{array}{c} \begin{array}{c} \begin{array}{c} \kappa_1 & \kappa_2 \\ \kappa_3 \end{array} \\ \hline \end{array} \end{array}$ Restrictions : $\begin{array}{c} \kappa_1^2 & \kappa_2 \\ \hline \end{array} \begin{array}{c} \begin{array}{c} \kappa_1 \\ \kappa_2 \end{array} \\ \hline \end{array}$ label to points inside
the rectangle R_{i} Uz I (⁺ ¹ - $\left(- \right)$, +)

while C might have infinitely many **11** hypotheses, its "effective size" is small while C might t
hypotheses, its "e
def growth function
Let C be a conce def growth function Let ^C be ^a concept class . Then, the Let C be a concept class Then, the
growth function of C, denoted ζ M + N, is defined as : τ_c (m) = max $|C_s|$ $SCN:15cm$ 2 (m) \approx number of functions from s to $\{0, 1\}$ that can be obtained number of
to $\{0,1\}$ theory cEC. - With no assumption, we know ICs $IS1$ m is bounded by 2^{131} = 2

del. shattering A Class C shatters a finite set S if the restriction of C to S is the set of all functions from C to $\{0, 1\}$. That is $|C_5| = 2$ Isl m C = axis-aligned rectungles Example $\overline{}$ x_i $\overline{\mathcal{L}}$ $(+ , +)$ $(+, -)$ $(-, +)$ \bullet $(-, -)$

How about 3 points? M_{1} $\frac{\star}{2}$ $\frac{1}{2}$ Can you label them with $(+,-,+)$ C does not sheetten this S. $How about$ 4 points? \bullet what we have shown earlier indicates: if C shatters 5, we cannot learn with 151, m, samples.

Def. VC Dimension The ve dimension of ^a concept class C, denoted by VCdim (C), is the maximal size of a set s that C, denoted by VCdim (C
movimal size of a set
con be shattered by C. can be shattered by C.
If C can shatter sets of arbitrary large size, we say $VCdim(C) = \infty$ large size, we say $VCdim(C) = \infty$
Example 1:
Vc dim (Axis-aligned rectangle) = 4 We need to show: - there is a set of size 4 that is shattened. - No set of size ³ is shattered.

Example 2: finite classes: log ICI $|C_5| \leq |C| = 2$ C cannot shatter any set of size larger than log1c) $VCdim$ $LICl$ \prec log ICl $shather$
 $then$ leg
 \longleftrightarrow Jf $Vcdim$ (C) = d M $Vc dim(C) = d$
 $V m c d$ =7 C_c (m) \leq 2 $H m > d$ =7 $Z_{c} (m) < 2$

VC dimension -infinite classes can still be PAC-leannable. => size is not determinant of learnability. So, what is then ? VC-dim of C characterizes

The fundamental theorem of PAC learning for a concept class ^C of ^c : Xel-t with 0- ¹ loss function, the Following are equivalent : - C has uniform convergence. - Any ERM is a successful agnostic PAC learner => # has a finite VC dim .

