
Lecture 2

PAC Learning.
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Example 1 : Running base on

↓

temperature precipitation front
jo

Learning an axis-aligned rectangle & in IR

samples : points p ...... Pr s D over IR

label y, . . ... In

Y ; =[
if p : E R

Otherwise

-

.

-

& &

I -

#
· ---

-

Goal : output &S .

t
. error of R is

small (say El with high probability
(say 1 - S)



err(R)
= PrLR mislaba or

=
Pr I IPER and pR Ip- D

IpR and PER)

D is arbitrary but fix.
E

whileD can be potentially unusual/irregular,

the notion of error is also defined based

on the same D >

=>

solution :

Algorithm :

1- Draw m samples (for sufficiently large)

2. Set R to be a rectangle that



correctly label all the sample points

&

--

A:=Ra

I -

# the area that

· --- we mislabel points
-

err(R) = Pr [peA] = D(A)

p- D

by our definition of R
,
there is no sample

point in A :=
RSR

If err() > e => DIA) > E

How likely it is to not see any sample

from A ?



Ideally , we want :

?

Pr/#samples in A = 0] 1
S

D

&
=
(1- DCA))"(1-2) (independent)samples

↳
e

·
EM

sat moly
-

1

=> Hence ,
with probability at least 1-S

errIR)[ E

efficient # samples = old sI
time O(m)

Well behaved target class



↑ably Approximately Correct (PAC)

X instance space set of all instances

(input space/domain)

c : X- ( + 1
,

- 13 concept a function to inbel elements

C concept class a collection of labeling functions

c target concept cel and label all instances

correctly

& target distribution distribution over instances

sample/training data set <m .,
(UI) >

I <12 ,
c

P
(2) >

i

<an , <
*

(Un))



-
"distribution free" setting

samples drawn from an arbitrary distribution.
-

but error is measured according to the same
-

distribution.

some papers focus on specific class

of distributions such as Gaussians
.

t We say we are in the -elizablecase

if there exists a concept &EC that

label all the instances in the domain perfectly

the goal is to find an unknown target concept
--

C in a known concept class using labeled sampi
-

find I in C with small error w
. h . prob.

-

· Efficiency : # samples & time
--



learning(Probably Approximately correct

suppose that we have a concept class (

over X
.

We say that C is PAC learnable

if there exists an algorithm A s
.
+ :

↓ EC
,
YD over X

,
+ &

, S -(0 ,
0.5)

A receives 2 , 6 ,
and samples(9., C14, 17

---> < Un , C(Rul) where di's are iid

samples from D. proper

(ec]
M

Then
,

w . p . 21-5 ,
A outputs C s .

t
.

err(( 22 .

The probability is taken over the randomness

in the samples and any
internal coin

flips of A .



- Usually efficiency means :

sample complexity & time complexity

= O( ploy ((n , Y))

+ E = error parameter

S -
confidence parameter

These two parameters capture two kinds

of error :

E : small discrepancy between concepts is not

detectable.

8 : with some small probability ,
the sample set

is not representative of reality.



other notation

true error :

err (c) = Pr I (a) + j]
(x ,))- D

training error :

# samples in T

eir() =-(i)

fraction of samples in the training
set that a is mis-labeled.



Eith
In example we picked concepts

& and that were consistent with

the samples in the training set

What we did is called :

ERM : Empirical Risk Minimization

y ↑
comesFrom samples error

ERM algorithm : it finds a concept
A

h such that err()
=
0



↑ Uniform convergence .

(UC)

Class C has the uniform convergence

property if- 2, 6 ECO, 11 ,
dist D

= m (as a function of E , S ,
It

,
but not

D since we don't know D) .

s
.

t· for

a training set of size mi

Pr [ c EC : feir-() = err()(c] =
1s

T- Du

Uniform&reagenizeimplies agnosticaI learnability via

UC = + caC ers(c) < OPT + &
N

UC => C
*

= the best option) err(( ) <OPT+ E
S

Bad

OPT OPT+ E ↓ error

-m ! 11111111111>
O 7

OPT + -z



There are two types of error

in the agnostic setting :

err(2) < min err(c) +
E

cEC -

- Eest= estimation
error

& app approximation
error

A

↓

depends only to the choice

of the class C

=

Is C rich enough to cupture how

data is labeled?

6

larger Eapp Eest

more complex &

↑ ↓



&Ree works for a finite class (if

we have enough samples.

- Problem setup :

samples (n, y ,
, .

. ., (mm
, Ym) D

ceC : err(c) : = Pr (((n+ ]]
(9, ])s D

Realizable case

&
Assume - c @C st

.
errca = 0

Goal
-

find EC s
.

t
. with probability

1-8
,
err(c) E.

-

Prouf

Bad hypothesesCB = (cClerr(c) > 2]



training set

-

e) =
(a ,x (T)c(x) + 33)

ITI

Misleading training samples

M == [T17cEG st
. er(ro)

upon observing T,
we may pick c that

is a bad choice
,
but it "looked"

good from ERM perspective ,
since

M

err(c) =
0.

T

Our goal is to show observing a

dataset TEM happens only with

probability 6.

This is sufficient to prove *.



fix cEC B.

what is the probability of

· er
+
( = 0

Pr [eir +
x = 0]

Ts Dm

I
Pr (f( ,y)

T
-
c(m) =j]

TJDE

inc
↑

->
= [Pr (c(d) -y] ja

samples (d , y) - D

m
-

Em

err(C) >E
->

2 (1 - E) Le



Now
,

we are ready to bound

Pr m (T EM]
TC D

= Pr
m
[JceC St . err0]

TTD

=
[ Pr (er() = 0]
CEC TSD"

/CBI . e
- em(c) .

e

em

set m = log(((((s)
=> Pr(outputting a misleading -]

2 S
- B



The agnostic case :

-

what if there is no perfect eEC ?

* <C) cor(c) > 0

Goal

find eC s .

t .

err(2) < min err(c) +
E

cEC

-
=
OPT

the best possible option



&tiformconvergenceimplies agnostiis

learnability

uc => + ceC ers(c) < OpT + 2
N

UC => C
*

= the best option) err(( ) <OPT+ E
S

Bad

OPT OPT+ E ↓ error

-m ! 11111111111>
O 7

OPT + -z

Exercise !

Suppose we have a finite class C,

and moOlog(2)/s)) ·
then w - p .

an least

22
- S

,
for all c EC ,

we have :

leirs (c) = err(c) <2



No free lunch theorem says if

there is no universal learner &

for a complexC even when

&
app is 0

,
dest is constant

with some constant probability

[unless we havef (IX) samples]



&

&

&

& 9

&

&
&

&

&

suppose we have
a set of em points

There are zm possible labelings
of these2m points .

Suppose C is the class of2 func

that assigns these labelings to these

points.



Assume this is the
true labeling.

Fix a labeling of the points ↓

Now assume D is the uniform

distribution on the zm points with

their label.

T
-

Draw m samples from D

WLOw assume they are unique)

How many
function in C label

m

T correctly ? 2

P = = (ce C er
+
( - 03

↳ promising hypothese . IP) = 2
m/2

How many of them has error

< E ?



C is misleading if err(c > 2I M

and err- (c) =
0

McEer( >& er- (coo

IM1= I
m

- 2 Pr[c[M] a makes
>

-P
a random concept & zm .

E

in P mistakes
M in expectation

=
2

.
Pr Mistake < 2]

= 2"(1-Pr(takes

> 2"(1-e
) - Cm(z - 2)Y

(

J
w/z

Hoeffling bound 2 20
.

99
&

r
2 m 240



=> 0.
99 % of the promising concept

are bad !



Def
. Restriction of C to S

-

Let S be a set of m points in

domain X. S = Ca, ..., km3

The restriction of C to S is the set

of functions from S to 40 , 13 that

can be derived from C.

&
s

: <((1) , clas ..... ((m)/CEC S

where we represent each function From

ISI
S to 10 ,

1 % as a rector indo . 11
m

or 10 , 13
Ri

C = (R ,,
Rz

, Rs]

assign positive
label to points inside*

-

n1 N2

Y
H , the rectangle

* Restrictions : ( +, + 1

R2

Uz I ( + 1
-

,
+ )



while I might have infinitely many
11

hypotheses, its "effectivesize is small

def
. growth function

-

Let C be a concept class. Then
,
the

growth function of C
,
denoted ZiNeN,

is defined as :

2 (m) = max ICs/
S(X : /Sl = m

2 (m) number of functions from s

to 10 , 15m that can be obtained

by cEC.

-

With no assumption ,
we know ICs
ISI m

is bounded by 2 =
2



def
. shaffering
-

A Class C shatters a finite set

S if the restriction of 2 to S

is the set of all functions from C

ISI
m

to 10, 13. That is 1Cs1 = 2 =

-

Example C-axis-aligned rectangles

H

&
↓ 2

S ⑨

(+ , + it
1 + 1 - ) Alt

-

&

( - + 1 ⑨
-

Tut
1 - 1 - )

[ -
-

·
-



How about 3 points ?

di
&

2
&

& R3

can you label them with

( +, - , + )

C does not shatter this S.

How about
&

4 points?

⑧ ⑳

⑨

-

what we have shown earlier indicates :

if C shatters S, wa cannot
z

learn with 13 = My samples.



Def . VC Dimension

The ve dimension of a concept class

C
,

denoted by VCdim (C)
,

is the

maximal size of a set s that

can be shattered by C.

IfC can shatter sets of arbitrary

large size
,

we say UCdim((1 = 0

Examples:

VC dim (Axis-aligned rectangle) = 4

We need to show :

-
there is a set of size 4 that

is shattered .

-

No set of size 3 is shattered.



Example 2 : finite classes :

log ICI
1CsI < (C) = 2

C cannot shatter
any

set of

size larger than log1c)

Vidim (IC) < log 1C)

-

If rc dim (C) = d

M

- m2d =2
,
(m)22

+m > d -7 z (m) 22



VC dimension

-
infinite classes can still be

PAC-learnable·
&

=> size is not determinant of

learnability.

So
,

what is then ?

inofCcharacter
a

its



The fundamental theorem of PAC

learning

for a concept class C of c : Xel-t

with 0-
1 loss function

,
the Following

are equivalent :

F
C has uniform convergence.

- Any ERM is a successful agnostic

PAC learner

=>

# has a finite VC dim
.



⑭~itin convergence

↓
⑳undere


